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We review the basic terminology concerning metric spaces, and prove the very important Baire category
theorem, for both complete metric spaces and locally compact Hausdorff [

�
] spaces.
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1. Metric spaces, completeness

Recall that a metric space X, d is a set X with a metric d(, ), a real-valued function such that, for
x, y, z ∈ X ,
• (Positivity) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y
• (Symmetry) d(x, y) = d(y, x)
• (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) A metric space X has a natural topology with basis given
by open balls

{y ∈ X : d(x, y) < r}

of radius r > 0 centered at points x ∈ X

A Cauchy sequence in a metric space X is a sequence x1, x2, . . . with the property that for every ε > 0
there is N sufficiently large such that for i, j ≥ N we have d(xi, xj) < ε. A point x ∈ X is a limit of that
Cauchy sequence if for every ε > 0 there is N sufficiently large such that for i ≥ N we have d(xi, x) < ε. A
subset X of a metric space Y is dense in Y if every point in Y is a limit of a Cauchy sequence in X .

The following standard lemma is often useful, and makes explicit a bit of intuition.

Lemma: Let {xi} be a Cauchy sequence in a metric space X, d, and suppose that the sequence converges
to x in X . Given ε > 0, let N be sufficiently large such that for i, j ≥ N we have d(xi, xj) < ε. Then for
i ≥ N we also have d(xi, x) ≤ ε.

Proof: Let δ > 0 and take j ≥ N also large enough such that d(xj , x) < δ. Then for i ≥ N by the triangle
inequality

d(xi, x) ≤ d(xi, xj) + d(xj , x) < ε + δ

Since this holds for every δ > 0 we have the result. ///

A metric space is complete if every Cauchy sequence has a limit. [ � ]

2. Completions
[

�
] Recall that a topological vector space is locally compact if every point has an open neighborhood with compact closure.

A space is Hausdorff if for any two points x, y there are opens U, V such that x ∈ U , y ∈ V , and U ∩ V = φ.

[ � ] Convergence of Cauchy sequences is more properly called sequential completeness. In fact, for metric spaces, sequential

completeness implies implies the strongest form of completeness, namely convergence of Cauchy nets, as we will

observe more carefully later. This is not so important at the moment, but will have some importance for non-

metrizable spaces, which are rarely complete (in the strongest sense), but in practice often are at least sequentially

complete. A useful form of completeness stronger than sequential completeness but weaker than outright completeness

is local completeness, also called quasi-completeness, which will play a significant role later.
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A map f : X −→ Y from one metric space X, dX to another Y, dY is an isometry if it is distance-preserving,
that is, if

dY (f(x), f(x; )) = dX (x, x′)

for all x, x′ ∈ X . Certainly an isometry is continuous.

The usual definition of the completion Y of a metric space X is that Y is a complete metric space with an
isometry i : X −→ Y such that the image i(X) is dense. [ � ]

Before describing any construction of a completion, we can prove some things about the behavior of any
possible completion. In particular, we will prove that any two completions are naturally isometric to each
other. Thus, whatever choice of construction we make the outcome will be the same.

Proposition: Let i : X −→ Y and j : X −→ Z be two completions of a metric space X . Then there is a
unique bijective isometry h : Y −→ Z such that

j = h ◦ i

Proof: Given y ∈ Y , choose a Cauchy sequence xk in X such that i(xk) converges to y, and try to define

h(y) = lim
k

j(xk)

Even though we may anticipate that this will work fine, it is not a priori clear that the limit exists, that it
is well-defined, etc. Although nothing surprising happens, we check those details, as follows.

Since the map j preserves distances, the sequence j(xk) is Cauchy in Z, so has a limit since Z is complete.
For well-definedness, for xk and x′

k two Cauchy sequences whose images i(xk) and i(x′
k) approach y, since

i is an isometry eventually xk is close to x′
k. Thus,j(xk) is close to j(x′

k) by continuity. Thus, h(y) is
well-defined.

To show that h is an isometry, let y, y′ ∈ Y , with two Cauchy sequences xt and x′
t approaching y and y′

respectively. Given ε > 0, let N be large enough such that for r, s ≥ N we have dZ(h(i(xr)), h(i(xs))) < ε
and dZ(h(i(x′

r)), h(i(x′
s))) < ε where dZ(, ) is the metric in Z. Then (from the lemma above!) for such r

also
dZ(h(i(xr)), h(y)) ≤ ε

and
dZ(h(i(x′

r)), h(y′)) ≤ ε

By the triangle inequality

dZ(h(y), h(y′)) ≤ dZ(h(y), h(i(xr))) + dZ(h(i(xr)), h(i(x′
r))) + dZ(h(i(x′

r)), h(y′)) ≤ ε + d(xr , x
′
r) + ε

since j = h ◦ i is an isometry X −→ Z. But also, letting dY (, ) be the metric on Y ,

d(xr, x
′
r) = dY (i(xr), i(x

′
r)) ≤ dY (i(xr), y) + dY (y, y′) + dY (i(x′

r), y
′)

and
d(xr , x

′
r) = dY (i(xr), i(x

′
r)) ≥ −dY (i(xr), y) + dY (y, y′) − dY (i(x′

r), y
′)

so
|d(xr , x

′
r) − dY (y, y′)| ≤ 2ε

Thus
dZ(h(y), h(y′)) ≤ dY (y, y′) + 4ε

[ � ] The usual discussion of completion thus may accidentally neglect questions of uniqueness.
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This proves that h : Y −→ Z is an isometry. In particular, it is injective.

Now claim that h : Y −→ Z is a surjection. Indeed, if j(xk) is a Cauchy sequence approaching a point z ∈ Z,
then xk is Cauchy in X since j is an isometry. Then i(xk) is Cauchy in Y with some limit y, and h(y) = z
by the definition of h. In summary, the natural definition

h(lim
k

i(xk)) = lim
k

j(xk)

gives a bijective isometry from the one completion to the other. ///

Now we give the standard construction of a completion of X . Let C be the collection of Cauchy sequences
in X . Let ∼ be the relation on Cauchy sequences defined by {xs} ∼ {yt} if and only if for every ε > 0 there
is N sufficiently large such that for r, s ≥ N we have d(xr , ys) < ε. Attempt to define a metric D on C/ ∼
by

D({xs}, {yt}) = lim
s

d(xs, ys)

We must verify that this is well-defined on the quotient C/ ∼ and gives a metric. We have an injection
i : X −→ C/ ∼ by

x −→ {x, x, x, . . .} mod ∼

We should prove that this is an isometry, and that C/ ∼ really is complete.

3. The Baire category theorem

This standard result is both indispensable and mysterious.

A set E in a topological space X is nowhere dense if its closure Ē contains no non-empty open set. A
countable union of nowhere dense sets is said to be of first category, while every other subset (if any) is
of second category. The idea (not at all clear from this traditional terminology) is that first category sets
are small, while second category sets are large. In this terminology, the theorem’s assertion is equivalent to
the assertion that (non-empty) complete metric spaces and locally compact Hausdorff spaces are of second
category.

Further, a Gδ set is a countable intersection of open sets. Concommitantly, an Fσ set is a countable union of
closed sets. Again, the following theorem can be paraphrased as asserting that, in a complete metric space,
a countable intersection of dense Gδ’s is still a dense Gδ.

Theorem: (Baire category) Let X be a set with metric d making X a complete metric space. Or let X be
a locally compact Hausdorff topological space. The intersection of a countable collection U1, U2, . . . of dense
open subsets Ui of X is still dense in X .

Proof: Let Bo be a non-empty open set in X , and show that
⋂

i Ui meets Bo. Suppose that we have
inductively chosen an open ball Bn−1. By the denseness of Un, there is an open ball Bn whose closure Bn

satisfies
Bn ⊂ Bn−1 ∩ Un

Further, for complete metric spaces, take Bn to have radius less than 1/n (or any other sequence of reals
going to 0), and in the locally compact Hausdorff case take Bn to have compact closure.

Let
K =

⋂

n≥1

Bn ⊂ Bo ∩
⋂

n ≥ 1Un

For complete metric spaces, the centers of the nested balls Bn form a Cauchy sequence (since they are nested
and the radii go to 0). By completeness, this Cauchy sequence converges, and the limit point lies inside each
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closure Bn, so lies in the intersection. In particular, K is non-empty. For locally compact Hausdorff spaces,
the intersection of a nested family of non-empty compact sets is non-empty, so K is non-empty, and Bo

necessarily meets the intersection of the Un. ///

4


