Final Exercise

We showed that $V=\left\{u \in L^{2}(a, b): \partial u \in L^{2}(a, b)\right.$ and $u(a)=$ $0\}$ is a Hilbert space with the scalar product

$$
(u, v)_{V}=\int_{a}^{b}(u v+\partial u \partial v) d x
$$

Exercise 1. Show that for each $f \in L^{2}(a, b)$ there is a unique

$$
\begin{equation*}
u \in V: \int_{a}^{b}(u v+\partial u \partial v) d x=\int_{a}^{b} f v d x \forall v \in V . \tag{1}
\end{equation*}
$$

Exercise 2. Denote (1) by $u=G(f)$. Show this is equivalent to a boundary-value problem.
Exercise 3. Show that $G \in \mathcal{L}\left(L^{2}(a, b), V\right)$ and that G is one-to-one.

Exercise 4. Show that $G \in \mathcal{L}\left(L^{2}(a, b)\right)$ is self-adjoint and compact. Hint: Let $u=G(f), v=G(g)$, compute $(f, G(g))_{L^{2}}=$ $(f, v)_{L^{2}}$ and $(g, G(f))_{L^{2}}=(g, u)_{L^{2}}$. Recall that the identity $H^{1}(a, b) \rightarrow L^{2}(a, b)$ is compact.

Exercise 5. Compute the eigenvalues and eigenfunctions for G. Hint: Note $G(u)=\mu u$ is equivalent to $G(\lambda u)=u$ with $\lambda=\mu^{-1}$, and use Exercise 2.

Exercise 6. Find the range $R g(G)$ and show it is a Hilbert space with the scalar-product

$$
(u, v)_{H^{2}}=\int_{a}^{b}\left(u v+\partial u \partial v+\partial^{2} u \partial^{2} v\right) d x .
$$

Show that $G \in \mathcal{L}\left(L^{2}(a, b), H^{2}(a, b)\right)$ Hint: Show that the graph of G is closed.

