PDE FINAL EXERCISE May, 2015

Let G be a smoothly bounded domain in \mathbb{R}^n for which there is a well defined boundary trace operator γ : $H^1(G) \to L^2(\partial G)$. Let the boundary be partitioned into disjoint connected pieces, $\partial G = \Gamma_D \cup \Gamma_R$. Let $F(\cdot) \in L^2(G)$ be given along with the functions a = a(x) and $\mathbf{b} = \mathbf{b}(x)$.

1. State a weak formulation of the boundary-value problem

(1a)
$$-\nabla \cdot (a(x)\nabla p - \mathbf{b}(x)p) = F(x) \text{ in } G,$$

(1b)
$$p = 0 \text{ on } \Gamma_D, \quad a \frac{\partial p}{\partial n} - \mathbf{b} \cdot \mathbf{n} p = 0 \text{ on } \Gamma_R,$$

and show it has a unique solution. Specify the function spaces used, and the conditions assumed on the functions a(x) and $\mathbf{b}(x)$. Reference the results that you use from HSM.

2. State a weak formulation of the boundary-value problem

(2a)
$$-\nabla \cdot (a(x)\nabla u - \mathbf{b}(x)u) = F(x) \text{ in } G,$$

(2b)
$$u = 0 \text{ on } \Gamma_D, \quad a \frac{\partial u}{\partial n} = 0 \text{ on } \Gamma_R,$$

and show it has a unique solution. Specify the function spaces used, and the conditions assumed on the functions a(x) and $\mathbf{b}(x)$. Reference the results that you use from HSM.

3. Show the initial-boundary-value problem

(3a)
$$\frac{\partial u}{\partial t} - \nabla \cdot (a(x)\nabla u - \mathbf{b}(x)u) = F(x,t) \text{ in } G,$$

- (3c) $u(x,0) = u_0(x)$ in G,

has a unique solution and state the conditions assumed on the functions a = a(x), $\mathbf{b} = \mathbf{b}(x)$, $u_0(x)$, and F(x, t).