PDE FINAL EXERCISE

May, 2015

Let G be a smoothly bounded domain in \mathbb{R}^{n} for which there is a well defined boundary trace operator $\gamma: H^{1}(G) \rightarrow L^{2}(\partial G)$. Let the boundary be partitioned into disjoint connected pieces, $\partial G=\Gamma_{D} \cup \Gamma_{R}$. Let $F(\cdot) \in L^{2}(G)$ be given along with the functions $a=a(x)$ and $\mathbf{b}=\mathbf{b}(x)$.

1. State a weak formulation of the boundary-value problem

$$
\begin{gather*}
-\nabla \cdot(a(x) \nabla p-\mathbf{b}(x) p)=F(x) \text { in } G, \tag{1a}\\
p=0 \text { on } \Gamma_{D}, \quad a \frac{\partial p}{\partial n}-\mathbf{b} \cdot \mathbf{n} p=0 \text { on } \Gamma_{R} \tag{1b}
\end{gather*}
$$

and show it has a unique solution. Specify the function spaces used, and the conditions assumed on the functions $a(x)$ and $\mathbf{b}(x)$. Reference the results that you use from HSM.
2. State a weak formulation of the boundary-value problem

$$
\begin{gather*}
-\nabla \cdot(a(x) \nabla u-\mathbf{b}(x) u)=F(x) \text { in } G, \tag{2a}\\
u=0 \text { on } \Gamma_{D}, \quad a \frac{\partial u}{\partial n}=0 \text { on } \Gamma_{R}, \tag{2b}
\end{gather*}
$$

and show it has a unique solution. Specify the function spaces used, and the conditions assumed on the functions $a(x)$ and $\mathbf{b}(x)$. Reference the results that you use from HSM.
3. Show the initial-boundary-value problem

$$
\begin{gather*}
\frac{\partial u}{\partial t}-\nabla \cdot(a(x) \nabla u-\mathbf{b}(x) u)=F(x, t) \text { in } G, \tag{3a}\\
\text { either }(1 \mathrm{~b}) \text { or }(2 \mathrm{~b}), \tag{3b}\\
u(x, 0)=u_{0}(x) \text { in } G, \tag{3c}
\end{gather*}
$$

has a unique solution and state the conditions assumed on the functions $a=a(x), \mathbf{b}=\mathbf{b}(x)$, $u_{0}(x)$, and $F(x, t)$.

