Exercise # **1** Due October 26.

Let $A_j(\cdot, \cdot) : G \times \mathbb{R}^{N+1} \to \mathbb{R}$ for each $0 \leq j \leq N$ and assume $A_j(x, \xi) \in \mathbb{R}$ is continuous in $\xi \in \mathbb{R}^{N+1}$ and measurable in $x \in G$, $1 , <math>k(\cdot) \in L^{p'}(G)$, and

$$|A_j(x,\xi)| \le C \sum_{i=0}^N |\xi_i|^{p-1} + k(x),$$
$$\sum_{j=0}^N A_j(x,\xi)\xi_j \ge c_0 \sum_{j=0}^N |\xi_j|^p - k(x),$$
$$\sum_{j=0}^N (A_j(x,\xi) - A_j(x,\eta))(\xi_j - \eta_j) \ge 0.$$

For each $\mathbf{u} \in L^p(G, \mathbb{R}^{N+1})$, that is, $\mathbf{u}(x) = (u_0(x), u_1(x), ..., u_N(x))$ with each $u_i \in L^p(G)$, denote the composite function $x \mapsto A_j(x, \mathbf{u}(x))$ by $A_j(\mathbf{u})$.

- Show that $A_j(\mathbf{u}) \in L^{p'}(G)$ for each $\mathbf{u} \in L^p(G)$.
- Show that $\mathbf{u} \in L^p(G, \mathbb{R}^{N+1}) \mapsto A_j(\mathbf{u}) \in L^{p'}(G)$ is continuous. (Hint: Use the Nemytskii Theorem.)
- Show that $u \in W^{1,p}(G) \mapsto A_j(u, \nabla u) \in L^{p'}(G)$ is continuous.

Define $\mathcal{A}: W^{1,p}(G) \to W^{1,p}(G)'$ by

$$\mathcal{A}(u)(v) = \int_G \sum_{j=0}^N A_j(x, u(x), \nabla u(x)) \partial_j v(x) \, dx, \quad u, \ v \in W^{1, p}(G).$$

where $\partial_0 = Id$.

• Show that \mathcal{A} is continuous, bounded, coercive, and monotone.