The Riesz map of a Hilbert space H to its dual H' is given by

$$\mathcal{R}u(v) = (u, v)_H, \quad u, v \in H.$$

Let G be a bounded domain in \mathbb{R}^N .

- 1. Suppose $a \in L^{\infty}(G)$ with $0 < c \leq a(x)$ a.e. on G. On $H = L^{2}(G)$, show that $(u, v)_{a} = \int_{G} a(x)u(x)v(x) dx$ is an equivalent scalar product, and denote the corresponding Hilbert space by H_{a} . Characterize the Riesz map \mathcal{R}_{a} of H_{a} with generalized functions. (Note that $H_{a} \subset C_{0}^{\infty}(G)^{*}$ and $H'_{a} \subset C_{0}^{\infty}(G)^{*}$.)
- 2. For the Sobolev space $H_0^1(G)$ with the (equivalent) scalar product $(u, v)_1 = \int_G \nabla u(x) \nabla v(x) dx$, characterize the Riesz map with generalized functions.