## Exercise Set \# 3 Due December 4.

Assume $B$ is m -accretive in the Hilbert space $H$ and consider the initialvalue problem

$$
\begin{equation*}
\frac{d}{d t} u(t)+B\left(u(t) \ni 0, \quad u(0)=u_{0} .\right. \tag{1}
\end{equation*}
$$

Let $\mathcal{B}$ denote the realization of $B$ in the space $\mathcal{H}=L^{2}((0,1), H)$ (see Example 2.C, p. 164), and let $\mathcal{A}=\frac{d}{d t}$ with $u(0)=u_{0}$ in the space $\mathcal{H}=L^{2}((0,1), H)$ (see Example 2.D, p. 164). Then (1) is given by $\mathcal{A}(u)+\mathcal{B}(u) \ni 0$ in $\mathcal{H}$.

In order to approximate the solution of (1), let $\alpha>0$ and solve $\mathcal{A}(u)+$ $\mathcal{B}_{\alpha}(u) \ni 0$, that is,

$$
\begin{equation*}
\frac{d}{d t} u(t)+B_{\alpha}(u(t)) \ni 0, \quad u(0)=u_{0} . \tag{2}
\end{equation*}
$$

Define a second variable by $v(t)=(I+\alpha B)^{-1} u(t)$ to obtain the system

$$
\begin{array}{r}
\frac{d}{d t} u(t)+\frac{1}{\alpha}(u(t)-v(t))=0, \quad u(0)=u_{0}, \\
B(v(t))+\frac{1}{\alpha}(v(t)-u(t)) \ni 0, \tag{3b}
\end{array}
$$

which is equivalent to (2). By eliminating $u$ from (3), we obtain the initialvalue problem

$$
\begin{equation*}
\frac{d}{d t}(v+\alpha B(v))+B(v) \ni 0,\left.\quad(v+\alpha B(v))\right|_{t=0}=u_{0} . \tag{4}
\end{equation*}
$$

## Exercise 1.

- Show that (2) has a unique solution, and determine for what class of initial values $u_{0}$ this holds.
- Show that (2) is equivalent to (3)
- Show that (3) is equivalent to (4).

Exercise 2. A second approximation of (1) is obtained similarly by

$$
\begin{equation*}
\mathcal{A}_{\alpha}(u)+\mathcal{B}(u) \ni 0, \tag{5}
\end{equation*}
$$

- Introduce a second variable $w=(I+\alpha \mathcal{A})^{-1} u$ to obtain a system similar to (3).
- Show that (5) has a unique solution.

Exercise 3. Let $G$ be a smoothly bounded domain in $\mathbb{R}^{N}, \varphi: \mathbb{R} \rightarrow \mathbb{R}$ a proper convex lower semicontinuous function, and on the space $H=L^{2}(G)$ define the proper convex lower semicontinuous function

$$
\begin{equation*}
\Psi(u)=\frac{1}{2} \int_{G}|\nabla u(x)|^{2} d x+\int_{G} \varphi(u(x)) d x \tag{6}
\end{equation*}
$$

with domain $\operatorname{dom}(\Psi)=\left\{u \in H_{0}^{1}(G): \varphi \circ u \in L^{1}(G)\right\}$.

- Characterize $f \in \partial \Psi(u)$ by a boundary-value problem. (See Example 2.F on p. 167 for comparison.)
- Find the initial-boundary-value problem that characterizes the system (3) with $B=\partial \Psi$

