The complex-valued exponential

How should we define the complex-valued function $e^{i t}$ for real values of t so that it behaves like an exponential should? That is, we want the complex function $u(t)=e^{i t}$ to satisfy the initial-value problem

$$
\begin{equation*}
u^{\prime}(t)=i u(t), \text { and } u(0)=1 . \tag{1}
\end{equation*}
$$

The complex function $u(t)$ can be written as $u(t)=x(t)+i y(t)$ for a unique pair of real-valued functions, and our objective is to describe these two functions. Substituting $x(t)+i y(t)$ for $u(t)$ in (1) and comparing the real and imaginary parts show that $x(t)$ and $y(t)$ must satisfy the system

$$
\begin{align*}
\dot{x}(t)=-y(t), & x(0)=1, \\
\dot{y}(t)=x(t), & y(0)=0 . \tag{2}
\end{align*}
$$

Note that $\frac{d}{d t}\left(x^{2}(t)+y^{2}(t)\right)=0$, so $x^{2}(t)+y^{2}(t)$ is a constant. The initial conditions in (2) show the constant is one, so we have

$$
\begin{equation*}
x^{2}(t)+y^{2}(t)=1 . \tag{3}
\end{equation*}
$$

In fact, the pair $(x(t), y(t))$ traces out the unit circle in the plane with speed equal to one: $\sqrt{(\dot{x}(t))^{2}+(\dot{y}(t))^{2}}=1$, and we check the signs of derivatives to determine the direction is counterclockwise starting at $(1,0)$.
In the right half-plane, we determine from (2) and (3) that

$$
\frac{d y}{d t}=\sqrt{1-y^{2}}, \quad y(0)=0,
$$

and we separate and integrate this first order equation to obtain

$$
\begin{equation*}
\int_{0}^{y} \frac{d s}{\sqrt{1-s^{2}}}=t, \quad-1 \leq y \leq 1 \tag{4}
\end{equation*}
$$

The identity (4) defines the inverse function, $t=\arcsin (y)$ on the unit interval. Thus, $y(t)=\sin (t)$ and from (2) we get $x(t)=\cos (t)$. The same holds in the left half-plane, so the complex exponential is

$$
e^{i t}=\cos (t)+i \sin (t) .
$$

