Rotating string

3.9 Rotating string (page 162)

Problem: For which value(s) of the angular velocity ω will the string (rope) be deflected?

Assumptions:
(1) The angular velocity ω is constant
(2) The tension T in the rope is constant and large

- gravitation can therefore be ignored
(3) The rope is uniform - the mass per unit length ρ is therefore constant
(4) The deflections are small
(5) The endpoints are fixed

Rotating string

Newton's second law: $(\downarrow) \Sigma F_{y}=m a$

$$
\begin{gathered}
T_{1} \sin \theta_{1}-T_{2} \sin \theta_{2}=\frac{m}{(\rho \Delta x)} \times \overbrace{\left(y \omega^{2}\right)}^{a=a_{n}} \\
\text { but } T_{1}=T_{2}=T \\
\rho \Delta x y \omega^{2}=T\left(\sin \theta_{1}-\sin \theta_{2}\right)
\end{gathered}
$$

but $\sin \theta_{1} \approx \tan \theta_{1}$ and $\sin \theta_{2} \approx \tan \theta_{2}$, since θ_{1} and θ_{2} are small (deflections small)
thus $\sin \theta_{1} \approx y^{\prime}(x)$ and $\sin \theta_{2} \approx y^{\prime}(x+\Delta x)$

$$
\begin{aligned}
\rho y \omega^{2} & =\frac{T\left(y^{\prime}(x)-y^{\prime}(x+\Delta x)\right)}{\Delta x} \\
\rho y \omega^{2} & =-T\left(\frac{y^{\prime}(x+\Delta x)-y^{\prime}(x)}{\Delta x}\right)
\end{aligned}
$$

but $\lim _{\Delta x \rightarrow 0} \frac{y^{\prime}(x+\Delta x)-y^{\prime}(x)}{\Delta x}=y^{\prime \prime}(x)$
thus $\rho y \omega^{2}=-T \frac{d^{2} y}{d x^{2}}$

$$
\Rightarrow \frac{d^{2} y}{d x^{2}}+\frac{\rho \omega^{2}}{T} y=0
$$

Rotating string

$$
\Rightarrow \quad \frac{d^{2} y}{d x^{2}}+\lambda y=0 \quad \text { where } \quad \lambda=\frac{\rho \omega^{2}}{T}
$$

with boundary cond's $y(0)=0$ and $y(L)=0$
(As before) Non-trivial solutions when:

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}=\frac{\rho \omega_{n}^{2}}{T}, n=1,2, \ldots
$$

Thus critical angular velocities: $\omega=\omega_{n}=\frac{n \pi}{L} \sqrt{\frac{T}{\rho}}$
Non-trivial solutions: $y_{n}=C \sin \left(\frac{n \pi x}{L}\right)$
For $n=1$ First critical angular velocity

$$
\omega_{1}=\frac{\pi}{L} \sqrt{\frac{T}{\rho}}
$$

First deflection mode: $y_{1}=C \sin \left(\frac{\pi x}{L}\right)$

Rotating string

$$
\begin{array}{ll}
0<\omega<\omega_{1} & \Rightarrow \text { no deflection } \\
\omega=\omega_{1} & \Rightarrow \text { first deflection mode } \\
\omega_{1}<\omega<\omega_{2} & \Rightarrow \text { no deflection } \\
\omega=\omega_{2} & \Rightarrow \text { second deflection mode }
\end{array}
$$

Show that the unit for ω is rad/s
Rotating string with elastic support

with boundary cond's $y(0)=0$ and $y^{\prime}(L)=0$

Rotating string

Case I: $\lambda=0$ Show that $y \equiv 0$ (trivial sol)

Case II: $\lambda<0$ Show that $y \equiv 0$ (trivial sol)

Case III: $\lambda>0$ Show that...

Non-trivial solutions only when:

$$
\lambda_{n}=\frac{(2 n-1)^{2}}{L^{2}} \frac{\pi^{2}}{4}, n=1,2,3, \ldots
$$

Non-trivial solutions (eigenfunctions):

$$
y_{n}(x)=C \sin \left(\frac{\pi(2 n-1)}{2 L} x\right)
$$

For $n=1$ First critical angular velocity

$$
\omega_{1}=\frac{\pi}{2 L} \sqrt{\frac{T}{\rho}}
$$

First deflection mode: $y_{1}=C \sin \left(\frac{\pi x}{2 L}\right) \quad$ (sketch)

