\qquad
MATH 480, Spring 2005
1.
(a) Show that there is more than one solution of the initial-value problem

$$
\dot{u}(t)=u^{\alpha}(t), \quad u(0)=0,
$$

on $t \geq 0$, where the number α satisfies $0<\alpha<1$.
(b) Show that there is at most one solution of the initial-value problem

$$
\dot{u}(t)=-u^{1 / 3}(t), \quad u(0)=u_{0}
$$

on $t \geq 0$.
2.
(a) Show that if the function $f(t, s)$ satisfies

$$
\begin{equation*}
(f(t, u)-f(t, v))(u-v) \leq K(u-v)^{2} \tag{1}
\end{equation*}
$$

then there is at most one solution of the initial-value problem

$$
\dot{u}(t)=f(t, u(t)), \quad u(0)=u_{0}
$$

on $t \geq 0$.
(b) Describe in terms of monotonicity properties the functions $f(t, u)$ for which the condition (1) holds.
(c) Show that if

$$
\begin{equation*}
|f(t, u)-f(t, v)| \leq K|u-v| \tag{2}
\end{equation*}
$$

for some constant K,then there is at most one solution of the initial-value problem

$$
\dot{u}(t)=f(t, u(t)), \quad u(0)=u_{0}
$$

on any interval of the form $|t| \leq T$.
(d) Describe in terms of growth-rate properties the functions $f(t, u)$ for which the condition (2) holds.
3. Let $u(t)$ and $v(t)$ be solutions of the initial value problems

$$
\begin{gathered}
\dot{u}(t)+\sin (u(t))=0, \quad u(0)=u_{0} \\
\dot{v}(t)+\sin (v(t))+\frac{1}{10} \sin (10 v(t))=0, \quad u(0)=u_{0}
\end{gathered}
$$

Estimate the difference $|u(t)-v(t)|$ for $0 \leq t \leq T$ in terms of $u_{0}-v_{0}$.

