
POWER SERIES

R. E. SHOWALTER

1. sequences

We denote by lim
n→∞

an = a that the limit of the sequence {an} is the

number a. By this we mean that for any ε > 0 there is an integer N
such that |an − a| < ε for all integers n ≥ N . This makes precise the
statement that as n gets large, the error |an − a| gets small. This is
also denoted by “an → a”, and we say the sequence is convergent.

Example 1.1. For the sequence an = 1
n

we have lim
n→∞

an = 0. That is,

the sequence { 1
n
} is convergent and lim

n→∞
1
n

= 0.

Limits can be taken into sums, multiples and quotients (when the
denominator has a non-zero limit), such as in the two following exam-
ples.

Example 1.2. For the sequence an = n
n+1

, we have

lim
n→∞

n

n + 1
= lim

n→∞

1

1 + 1
n

=
1

1 + lim
n→∞

1
n

= 1.

Or directly we can compute

| n

n + 1
− 1| = 1

n + 1
→ 0.

Example 1.3. For the sequence an = 3n2−1
n2+n+1

we have

an =
3− 1

n2

1 + 1
n

+ 1
n2

,

so we have lim
n→∞

an = 3−0
1+0+0

= 3. Since we know the limit, we can check

directly for convergence from the crude estimate |an − 3| < 3
n

+ 4
n
→ 0.

In fact, for any function F (·) which is continuous at the point a, If
an → a, then F (an) → F (a). The two preceding examples follow from

the respective cases F (x) = 1
1+x

and F (x) = 3−x2

1+x+x2 and an = 1
n
.
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Note that for any number h ≥ 0 and integer n ≥ 1 we have

(1 + h)n ≥ 1 + hn.

This estimate is useful to identify limits of powers.

Example 1.4. To evaluate the limit n →∞ of the sequence an = pn,
if |p| < 1, we set |p| = 1

(1+h)
for some h > 0 to see that

|an| =
1

(1 + h)n
<

1

1 + nh
→ 0,

and if |p| > 1, we set |p| = h + 1 with h > 0 to get |pn| = (1 + h)n ≥
1 + hn →∞ as n →∞. In summary, we have

lim
n→∞

pn =

{
0 if |p| < 1,
1 if p = 1,

and the sequence does not converge otherwise.

Example 1.5. For the sequence of fractional powers,

an = p
1
n ,

we proceed similarly. If p > 1, then set p
1
n = 1 + hn so that p =

(1 + hn)n > 1 + nhn and 0 < hn < p−1
n

. This shows that lim
n→∞

p
1
n = 1.

If 0 < p < 1, then p = 1
q
, q > 1, so lim

n→∞
p

1
n = 1

lim
n→∞

q
1
n

= 1
1

= 1.

In summary, we have lim
n→∞

p
1
n = 1 for all 0 < p.

Here’s a more delicate one that will arise in applications.

Example 1.6. For the sequence an = n
1
n , we write

√
an = (

√
n)

1
n =

1 + hn, and then
√

n = (1 + hn)n ≥ 1 + nhn, so that we have hn ≤√
n−1
n

< 1√
n
→ 0. This shows that

1 ≤ an ≤ 1 + 2hn + h2
n ≤ 1 +

2√
n

+
1

n
,

and we see that an → 1. That is, lim
n→∞

n
1
n = 1.

Even though the base n is growing in this example, the fractional
power 1

n
still brings the sequence to 1. And this happens even with

higher powers of the base: for any fixed integer M ≥ 1 we have

lim
n→∞

(nM)
1
n = lim

n→∞
n

M
n =

(
lim

n→∞
n

1
n

)M
= 1.
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Cauchy Criterion. If the series {an} is convergent with lim
n→∞

an = a,

then for any pair of integers m, n we get |am − an| ≤ |am − a|+ |an −
a|, so for both of m, n sufficiently large, it follows that |am − an| is
arbitrarily small. The sequence is Cauchy if for any ε > 0 there is
an integer N such that for all pairs of integers m, n ≥ N we have
|am − an| < ε. In particular, we just noted that every convergent
sequence is Cauchy. A fundamental property of the real numbers is that
every Cauchy sequence is convergent. This provides a useful test for
convergence that does not depend on knowing the limit of the sequence.

2. series

Let {an} be a sequence. Then define a new sequence {sn} by

sn =
n∑

m=1

am = a1 + a2 + · · ·+ an, n ≥ 1.

This is the sequence of partial sums of {an} or the series
∞∑

n=1

an, and

an is the n-th term of the series. If the sequence {sn} is convergent,

we say the series
∞∑

n=1

an converges and denote its limit also by
∞∑

n=1

an =

lim
n→∞

sn. It follows from the Cauchy test for convergence of the sequence

{sn} that the series
∞∑

n=1

an is convergent if and only if for any ε > 0

there is an N such that

|sm − sn| = |an+1 + an+2 + · · ·+ am| < ε

for all m ≥ n ≥ N . Finally, we note that if the series converges, then
we necessarily have an = sn − sn−1 → s − s = 0, so the sequence of
terms {an} converges to 0.

The most important example is the geometric series obtained from
the terms an = pn.

Example 2.1. The sequence of partial sums is

sm = 1 + p1 + p2 + p3 + · · ·+ pm, m ≥ 1.

Then we compute sm − psm = 1− pm+1 to get

sm =

{
m + 1 if p = 1,
1−pm+1

1−p
if p 6= 1.

This shows that the series converges to the limit
∞∑

n=0

pn = 1
1−p

if |p| < 1,

and it is not convergent otherwise.
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A series
∞∑

n=1

an is absolutely convergent if the series of absolute

values
∞∑

n=1

|an| is convergent. The Cauchy criterion for convergence

together with the inequality

|an+1 + an+2 + · · ·+ am| ≤ |an+1|+ |an+2|+ · · ·+ |am|
shows that absolute convergence implies convergence of the series. The
series is conditionally convergent if it is convergent but not abso-
lutely convergent. Examples will be given below.

Convergence Tests.

Theorem 2.1. Comparison Test: If there is a constant C ≥ 0 for

which |an| ≤ Cbn for all n sufficiently large, and if
∞∑

n=1

bn is convergent,

then
∞∑

n=1

an is absolutely convergent.

Proof. Use the estimate above with the Cauchy test for convergence of
the two series. �

For example, by comparing with the geometric series, it follows that
if there is a constant C ≥ 0 and integer N ≥ 1 for which |an| ≤ Cpn

for all n ≥ N for some 0 ≤ p < 1, then
∞∑

n=1

an is absolutely convergent.

Sufficient conditions are given by the following.

Corollary 2.2. Ratio Test: If |an+1

an
| ≤ p < 1, n ≥ N ,

or if lim
n→∞

|an+1

an
| ≤ p < 1, then

∞∑
n=1

an is absolutely convergent.

Corollary 2.3. Root Test: If |an|
1
n ≤ p < 1, n ≥ N ,

or if lim
n→∞

|an|
1
n ≤ p < 1, then

∞∑
n=1

an is absolutely convergent.

Integral Test. Our last criterion for convergence of series with non-
negative terms is obtained by comparing with an improper integral.
Suppose the function f(·) is continuous, decreasing, and f(x) ≥ 0 for all

x ≥ 0. Then for n ≤ x ≤ n+1 we have f(n) ≥
∫ n+1

n
f(x)dx ≥ f(n+1)

so we obtain
m∑

n=1

f(n) ≥
∫ m+1

1

f(x)dx ≥
m∑

n=1

f(n + 1)

This shows that the improper integral
∫∞

1
f(x)dx converges if and only

if the series
∑∞

n=1 f(n) = f(1)+
∑∞

n=1 f(n+1) converges. This criterion
is the integral test.

Example 2.2. By taking the function f(x) = 1
xα , we find the series∑∞

n=1
1

nα converges if and only if α > 1.
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Alternating Series. The series
∞∑

n=1

(−1)n+1bn with bn ≥ 0 is an al-

ternating series. That is, successive terms an = (−1)n+1bn alternate
sign. If also the terms are decreasing, bn+1 ≤ bn, then we can arrange
the terms in two ways

∞∑
n=1

(−1)n+1bn = (b1 − b2) + (b3 − b4) + (b5 − b6) + . . .

= b1 − (b2 − b3)− (b4 − b5)− (b6 − b7)− . . .

to see that

s2 ≤ s4 ≤ s6 ≤ . . . and

s1 ≥ s3 ≥ s5 ≥ . . . .

These show that the odd terms are decreasing and they lie above the
even terms which are increasing. Finally we note that s2n+1 − s2n =
b2n+1, so if lim

n→∞
bn = 0, then these two sequences converge to the

common value which is lim
n→∞

sn. We summarize this as

Theorem 2.4. An alternating series
∞∑

n=1

(−1)n+1bn with bn ≥ 0, bn+1 ≤

bn and lim
n→∞

bn = 0 is convergent.

Example 2.3. The harmonic series
∞∑

n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

is convergent (alternating series) but not absolutely convergent (by the
integral test).

3. Sequences and Series of Functions

Let {fn(·)} be a sequence of functions on a set of numbers S. This
sequence is pointwise convergent to a function f(·) on S if

lim
n→∞

fn(x) = f(x) for every x ∈ S.

That is, for every x ∈ S and ε > 0, there is an integer N for which
|fn(x)− f(x)| < ε for all n ≥ N . (The integer N depends on ε and on
x.)

The sequence {fn(·)} is uniformly convergent to f(·) on S if for
every ε > 0 there is an integer N for which |fn(x) − f(x)| < ε for all
n ≥ N and for all x ∈ S. (The integer N depends on ε.)

Example 3.1. The sequence fn(x) = xn converges pointwise to f(x) =
0 on the set S = (−1, 1). The convergence is uniform on S = (−p, p)
for any p with 0 < p < 1. See Example 1.4.
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Example 3.2. The sequence fn(x) = x
1
n converges pointwise to f(x) =

1 on (0, 1), but the convergence is not uniform. The convergence is
uniform on any set of the form S = (α, 1) with 0 < α < 1 or S = [α, 1].
See Example 1.5.

Theorem 3.1. If the sequence {fn(·)} is uniformly convergent to
f(·) on S and if each fn(·) is continuous, then the limit f(·) is contin-
uous on S.

Proof. Let limn→∞ fn(·) = f(·) uniformly on S and x0 ∈ S. Let ε > 0.
Uniform convergence implies there is an N for which |fN(x)−f(x)| < ε

3
for all x ∈ S. Continuity of fN implies that there is a δ > 0 such that
|fN(x)− fN(x0)| < ε

3
for all x ∈ S with |x−x0| < δ. But then we have

|f(x)−f(x0)| ≤ |f(x)−fN(x)|+|fN(x)−fN(x0)|+|fN(x0)−f(x0)| < ε

for all x ∈ S with |x− x0| < δ. �

Theorem 3.2. If the sequence of continuous functions {fn(·)} is uni-
formly convergent to the (continuous) function f(·) on S = [a, b], then
we have

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

Proof. Let ε > 0. There is an N for which n ≥ N implies |fn(x) −
f(x)| < ε

b−a
for all x ∈ [a, b]. Then

|
∫ b

a

f(x) dx−
∫ b

a

fn(x) dx| ≤
∫ b

a

|f(x)− fn(x)| dx < ε

for n ≥ N . �

Corollary 3.3. If the sequence of continuous derivatives {f ′n(·)} is
uniformly convergent to the (continuous) function g(·) on S = [a, b],
and if the sequence {fn(·)} converges pointwise to f(·) on S = [a, b],
then f(·) is differentiable and f ′ = g.

Proof. For each x ∈ (a, b] we have
∫ x

a
f ′n(s) ds = fn(x) − fn(a), and

taking limits yields
∫ x

a
g(s) ds = f(x)− f(a) �

Let {fn(·)} be a sequence of functions on the set S. As before, we
define a new sequence {sn(·)} by

sn(·) =
n∑

m=1

fm(·) = f1(·) + f2(·) + · · ·+ fn(·), n ≥ 1, x ∈ S.

This is the sequence of partial sums of {fn(·)} or the series
∞∑

n=1

fn.

If the sequence {sn} is pointwise (or uniformly) convergent, we say

the series
∞∑

n=1

fn converges pointwise (or uniformly, respectively) and

denote its limit also by
∞∑

n=1

fn(x) = lim
n→∞

sn(x).
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Example 3.3. Taking the sequence fn(x) = xn, we obtain the geomet-

ric series
∞∑

n=0

xn = 1
1−x

on (−1, 1). The series is absolutely convergent,

pointwise on (−1, 1), and uniformly on any subinterval [a, b] ⊂ (−1, 1).

4. Power Series

Definition 4.1. An infinite series of the form

(4.1)
∞∑

n=0

an(x−x0)
n = a0 +a1(x−x0)+a2(x−x0)

2 +a3(x−x0)
3 + . . .

is a power series in x about the point x0.

This is a series of functions constructed from the terms fn(x) =
an(x−x0)

n for n ≥ 0. The geometric series resulted from the particular
choice of coefficients an = 1 and x0 = 0.

Theorem 4.2. If the power series (4.1) converges at the point x =
x0 + r, then it converges absolutely at any point x with |x − x0| < |r|,
and for any p with 0 < p < |r| the convergence is uniform on those x
with |x− x0| ≤ p.

Proof. Since the series
∑∞

n=0 anr
n is convergent, we have limn→∞ anr

n =
0, so there is an integer N such that |anr

n| < 1 for all n ≥ N . Thus,
for all n ≥ N we have |an(x−x0)

n| = |anr
n||x−x0

r
|n < |x−x0

r
|n, so by the

comparison test we see that the series (4.1) converges absolutely for all
x with |x− x0| < |r|. Moreover, these estimates show the convergence
is uniform for |x− x0| ≤ p for any p < |r|. �

It follows that the set of points at which the series converges is either
the single point 0, an interval (x0−R, x0+R), possibly containing either
endpoint, or the entire number line IR = (−∞,∞). The number R is
the radius of convergence, and we set R = 0 in the first case and R = ∞
in the last.

Theorem 4.3. Let R > 0 be the radius of convergence of the power
series (4.1). Then the function f(x) =

∑∞
n=0 an(x − x0)

n is infinitely
differentiable and its derivative is given by the power series f ′(x) =∑∞

n=1 nan(x− x0)
n−1 with the same radius of convergence.

Proof. Let |x−x0| < R and choose ξ in the interval of convergence, ie.,
|ξ−x0| < R, with R

2
< |ξ−x0| and |x−x0| = p|ξ−x0| with 0 ≤ p < 1.

Then the differentiated series is bounded by

|nan(x− x0)
n−1| = |nan(ξ − x0)

n−1|pn−1 ≤ 2

R
Cnpn−1

since the convergent series
∑∞

n=0 an(ξ − x0)
n has bounded terms. The

series
∑∞

n=0 npn−1 converges by the limit ratio test, so the differentiated
series converges for |x− x0| < R by the comparison test. �
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Corollary 4.4 (Taylor’s formula). If the power series (4.1) has radius
of convergence R > 0 and its limit is the function f(x), that is,

(4.2) f(x) =
∞∑

n=0

an(x− x0)
n

= a0 + a1(x− x0) + a2(x− x0)
2 + a3(x− x0)

3 + . . . , |x− x0| < R,

then the n-th derivative of the sum f(x) at x0 is given by

f (n)(x0) = n!an, n ≥ 0.
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