POWER SERIES

R. E. SHOWALTER

1. SEQUENCES

We denote by lim a, = a that the limit of the sequence {a,} is the

n—oo

number a. By this we mean that for any € > 0 there is an integer N
such that |a,, — a|] < € for all integers n > N. This makes precise the
statement that as n gets large, the error |a, — a| gets small. This is
also denoted by “a, — a”, and we say the sequence is convergent.

Example 1.1. For the sequence a, = % we have lim a, = 0. That is,

the sequence {+} is convergent and lim 1 = 0.

Limits can be taken into sums, multiples and quotients (when the
denominator has a non-zero limit), such as in the two following exam-
ples.

Example 1.2. For the sequence a, = we have

n:L-l’
. n 1 1

lim = lim T = —
n—oon + 1 n—oo 1 + = 1—|—11m;

n—oo

Or directly we can compute
n 1

1=
n+1 n-+1

Example 1.3. For the sequence a, =

0.

3n2—1

T we have

so we have lim a, = == = 3. Since we know the limit, we can check
e 14040 )

directly for convergence from the crude estimate |a, — 3| < % —l—% — 0.

In fact, for any function F'(-) which is continuous at the point a, If

a, — a, then F(a,) — F(a). The two preceding examples follow from

. _ 2
the respective cases F(z) = 11 and F(z) = ;2205 and a, = ;.
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Note that for any number h > 0 and integer n > 1 we have
(I1+h)" > 1+ hn.
This estimate is useful to identify limits of powers.

Example 1.4. To evaluate the limit n — oo of the sequence a, = p",

if [p| < 1, we set [p| = gy for some h >0 to see that

0] 1 _ 1
ay,| = —
(1+h)™ " 14+nh

0,

and if |p| > 1, we set |p| = h+ 1 with h > 0 to get [p"| = (1 + h)" >
14+ hn — o0 asn — oco. In summary, we have

hmpn:{ 0 df [p| <1,

and the sequence does not converge otherwise.
Example 1.5. For the sequence of fractional powers,
1
Qp = pm,

we proceed similarly. If p > 1, then set p% =14 h, so that p =
(14 hp)™ > 1+ nh, and 0 < h, < &=L, This shows that lim p% = 1.

n n—o0

Ifo<p<l, thenp:%, ¢>1, so lim pn = " L l:%zl.
n—0o0 im gn

n—oo

In summary, we have lim p% =1 for all 0 < p.

n—oo

Here’s a more delicate one that will arise in applications.

Example 1.6. For the sequence a, = nr, we write \/a, = (\/ﬁ)% =
1+ hy, and then /n = (1 + h,)" > 1+ nh,, so that we have h, <

‘/ﬁn_l < \/LE — 0. This shows that

1<a,<1+2h,+h><1+ 2 +1
— YN = n n — \/ﬁ n’

and we see that a, — 1. That is, lim nw =1

Even though the base n is growing in this example, the fractional
power % still brings the sequence to 1. And this happens even with
higher powers of the base: for any fixed integer M > 1 we have

3=

lim ()= = lim n = (lim n%)M = 1.

n—oo n—oo n—oo
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Cauchy Criterion. If the series {a,} is convergent with lim a, = a,

n—oo
then for any pair of integers m, n we get |a,, — a,| < |am — a| + |a, —
al, so for both of m, n sufficiently large, it follows that |a,, — a,| is
arbitrarily small. The sequence is Cauchy if for any € > 0 there is
an integer N such that for all pairs of integers m, n > N we have
|ay, — a,| < €. In particular, we just noted that every convergent
sequence is Cauchy. A fundamental property of the real numbers is that
every Cauchy sequence is convergent. This provides a useful test for
convergence that does not depend on knowing the limit of the sequence.

2. SERIES

Let {a,} be a sequence. Then define a new sequence {s,} by

sn:Zam:a1+a2+---+an, n>1.

m=1

This is the sequence of partial sums of {a,} or the series i an, and
a, is the n-th term of the series. If the sequence {s,} is go:ﬁvergent,
we say the series i a, converges and denote its limit also by i ay =
lim s,. It followsnfi)m the Cauchy test for convergence of the STZe:qluence

n—oo

(e.9]
{sn} that the series ) a, is convergent if and only if for any ¢ > 0
n=1
there is an N such that

|Sm — Sn| = |@ns1 + apya + -+ ap| <e

for all m > n > N. Finally, we note that if the series converges, then
we necessarily have a, = s, — s,_1 — s — s = 0, so the sequence of
terms {a,} converges to 0.

The most important example is the geometric series obtained from

the terms a, = p".

Example 2.1. The sequence of partial sums is

Sm=1+p +p"+p"+ - +p", m>1.

Then we compute Sy, — psy, = 1 — p™ L to get
{ m+1 ifp=1,

S == _pm+1 .
m 11% if p#£ 1.

This shows that the series converges to the limit » p" = ﬁ if [p| < 1,
n=0
and it is not convergent otherwise.
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A series )’ a, is absolutely convergent if the series of absolute
n=1

oo
values > |a,| is convergent. The Cauchy criterion for convergence
n=1
together with the inequality
|1+ Gng2 + -+ | < anga] + |ange] + -0+ fam)

shows that absolute convergence implies convergence of the series. The
series is conditionally convergent if it is convergent but not abso-
lutely convergent. Examples will be given below.

Convergence Tests.

Theorem 2.1. Comparison Test: If there is a constant C' > 0 for
which |a,| < Cb, for all n sufficiently large, and if > b, is convergent,

n=1
then > a, is absolutely convergent.
n=1

Proof. Use the estimate above with the Cauchy test for convergence of
the two series. O

For example, by comparing with the geometric series, it follows that
if there is a constant C' > 0 and integer N > 1 for which |a,| < Cp"

o0

for all n > N for some 0 < p < 1, then ) a, is absolutely convergent.
n=1

Sufficient conditions are given by the following.

Corollary 2.2. Ratio Test: If [**%|<p <1, n> N,

or if lim |*25| <p < 1, then Y a, is absolutely convergent.
n—oo . n=1

Corollary 2.3. Root Test: If |an\% <p<l1l, n>N,
or if lim |a,|= <p <1, then 3. a, is absolutely convergent.
n—00 n=1
Integral Test. Our last criterion for convergence of series with non-

negative terms is obtained by comparing with an improper integral.
Suppose the function f(+) is continuous, decreasing, and f(z) > 0 for all

x > 0. Then for n <z <n+1 we have f(n) > f;ﬂ flz)dz > f(n+1)

SO we obtain
m m1 m
Stz [ fwe = fn+)
n=1 1 n=1

This shows that the improper integral floo f(z)dz converges if and only
if the series >~ | f(n) = f(1)+> ., f(n+1) converges. This criterion
is the integral test.

Example 2.2. By taking the function f(z) = m%, we find the series
S L converges if and only if o > 1.

n=1 no
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Alternating Series. The series > (—1)"*1b, with b, > 0 is an al-
n=1

ternating series. That is, successive terms a,, = (—1)""'b, alternate
sign. If also the terms are decreasing, b,,,; < b,, then we can arrange
the terms in two ways

o

D (1) by = (by = by) + (bs — ba) + (b5 — bg) + . ..
n=1
:bl—(bg—bg)—<b4—b5)—(b6—b7)—
to see that

S < 854 < 56 <

S1 2283285 2> ...

. and

These show that the odd terms are decreasing and they lie above the
even terms which are increasing. Finally we note that soni; — Son =

boniy, so if lim b, = 0, then these two sequences converge to the
n—oo
common value which is lim s,,. We summarize this as
n—oo

Theorem 2.4. An alternating series > (—1)"*1b, with b, > 0, b, <
n=1
b, and lim b, = 0 is convergent.

n—oo

Example 2.3. The harmonic series

— (—1)"* 1.1 1
=l o — =4
Z n 2+3 4+

n=1

is convergent (alternating series) but not absolutely convergent (by the
integral test).

3. SEQUENCES AND SERIES OF FUNCTIONS

Let {f.(-)} be a sequence of functions on a set of numbers S. This
sequence is pointwise convergent to a function f(-) on S if

lim f,(z) = f(x) for every x € S.

That is, for every x € S and € > 0, there is an integer N for which
|fu(z) — f(z)| < e for all n > N. (The integer N depends on ¢ and on
x

The sequence {f,(-)} is uniformly convergent to f(-) on S if for
every € > 0 there is an integer N for which |f,(z) — f(z)| < € for all
n > N and for all x € S. (The integer N depends on ¢.)

Example 3.1. The sequence f,(z) = x™ converges pointwise to f(z) =
0 on the set S = (—1,1). The convergence is uniform on S = (—p,p)
for any p with 0 < p < 1. See Example 1.4.
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Example 3.2. The sequence f,(x) = zn converges pointwise to f(x) =
1 on (0,1), but the convergence is not uniform. The convergence is
uniform on any set of the form S = (a, 1) with0 < o < 1 or S = [, 1].
See Fxample 1.5.

Theorem 3.1. If the sequence {f,(-)} is uniformly convergent to
f(-) on S and if each f,(-) is continuous, then the limit f(-) is contin-
uous on S.

Proof. Let lim, o fn(-) = f(-) uniformly on S and zy € S. Let € > 0.
Uniform convergence implies there is an N for which |fx(z) — f(2)| < §
for all x € S. Continuity of fy implies that there is a § > 0 such that
|fn(x) = fn(xo)| < § forall z € S with |z — x| < §. But then we have

(@)= f (o) < [f () = fv (@)[+]fv (@) = fn (o) [+ [ (w0) = f(20)| < &
for all z € S with |z — x¢| < 6. O
Theorem 3.2. If the sequence of continuous functions {f,(-)} is uni-

formly convergent to the (Contmuous) function f(-) on S = [a,b], then
we have

lim fn dx—/f

n—oo

Proof. Let ¢ > 0. There is an N for which n > N implies |f,(z) —
f(z)] < 3= for all x € [a,b]. Then

!/f d:c—/fn dx|</ () = fulo)| do < <

for n > N. O

Corollary 3.3. If the sequence of continuous derivatives {f}(-)} is
uniformly convergent to the (continuous) function g(-) on S = [a,b],
and if the sequence {f,(-)} converges pointwise to f(-) on S = [a,b]
then f(-) is differentiable and f' = g.

Proof. For each x € (a, b] we have [*f/(s)ds = fu.(z) — fu(a), and
taking limits yields fa g(s)ds = f(x) — f(a) O

Let {f.(-)} be a sequence of functions on the set S. As before, we
define a new sequence {s,(-)} by

me —AO+ )+ 4 (), n>1, 2 ES,

This is the sequence of partial sums of {f,(-)} or the series »_ f,.
n=1
If the sequence {s,} is pointwise (or uniformly) convergent, we say

the series »_ f, converges pointwise (or uniformly, respectively) and
n=1

denote its limit also by > f,(z) = lim s,(z).

n=1
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Example 3.3. Taking the sequence f,(z) = ", we obtain the geomet-

ric series ) a" = ﬁ on (—1,1). The series is absolutely convergent,
n=0

pointwise on (—1,1), and uniformly on any subinterval [a,b] C (=1,1).

4. POWER SERIES

Definition 4.1. An infinite series of the form

(4.1) Z an (T —20)" = ag+ay(x —x0) +ag(x — x0)* +ag(x —z0)> +. ..
n=0

1s a power series in x about the point xy.

This is a series of functions constructed from the terms f,(z) =
an(x—x0)" for n > 0. The geometric series resulted from the particular
choice of coefficients a,, = 1 and xq = 0.

Theorem 4.2. [f the power series (4.1) converges at the point x =
xo + 1, then it converges absolutely at any point x with |x — xo| < |r,
and for any p with 0 < p < |r| the convergence is uniform on those x
with |x — zo| < p.

Proof. Since the series ZZOZO a,r™ is convergent, we have lim,, ., a,r" =
0, so there is an integer N such that |a,r"| < 1 for all n > N. Thus,
for all n > N we have |a,(z —20)"| = |a,r"||*="[" < |[*==*2|", so by the
comparison test we see that the series (4.1) converges absolutely for all
x with |z — x¢| < |r|. Moreover, these estimates show the convergence
is uniform for |x — zo| < p for any p < |r|. O

It follows that the set of points at which the series converges is either
the single point 0, an interval (zo— R, 2o+ R), possibly containing either
endpoint, or the entire number line R = (—o00,00). The number R is
the radius of convergence, and we set R = 0 in the first case and R = oo
in the last.

Theorem 4.3. Let R > 0 be the radius of convergence of the power
series (4.1). Then the function f(x) =Y " an(x — x0)" is infinitely
differentiable and its derivative is given by the power series f'(x) =
S0 nan(z — x0)" " with the same radius of convergence.

Proof. Let |x —x0| < R and choose £ in the interval of convergence, ie.,
€ — o] < R, with & < |¢ — x| and |z — xo| = p|€ — 20| With 0 < p < 1.
Then the differentiated series is bounded by

2
nan(e = 0)" 1| = [naa(€ — 20)" ! |p"! < —Cp!

since the convergent series >~ a,(§ — zo)" has bounded terms. The
series 2 np™~* converges by the limit ratio test, so the differentiated
series converges for |x — zy| < R by the comparison test. U
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Corollary 4.4 (Taylor’s formula). If the power series (4.1) has radius
of convergence R > 0 and its limit is the function f(x), that is,

(42) f(@) = aule —a0)"

= ag+ a1 (v — x0) + az(x — 30)? +az(z —x0)* + ..., |v— 20| <R,
then the n-th derivative of the sum f(z) at xq is given by
F™(z0) = nla,, n>0.
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