THE WAVE EQUATION

R. E. SHOWALTER

1. LONGITUDINAL VIBRATIONS

We describe the longitudinal vibrations in a long narrow cylindrical rod of cross section
area S. The rod is located along the z—axis, and we identify it with the interval [a, b] in
R. The rod is assumed to stretch or contract in the horizontal direction, and we assume
that the vertical plane cross-sections of the rod move only horizontally. Denote by u(x,t)
the displacement in the positive direction from the point x € [a, b] at the time ¢ > 0. The
corresponding displacement rate or velocity is denoted by v(z,t) = uy(z,t).

Let o(z,t) denote the local stress, the force per unit area with which the part of the
rod to the right of the point x acts on the part to the left of x. Since force is positive
to the right, the stress is positive in conditions of tension. For a section of the rod,
1 < x < T, the total (rightward) force acting on that section due to the remainder of
the rod is given by

(o(22,t) — o(21,1))S.
If the density of the rod at z is given by p > 0, the momentum of this section is just

X2
/ pug(z,t)Sdr .
1
If we let F(z,t) denote any external applied force per unit of volume in the positive
x—direction, then we obtain from Newton’s second law that

d [**

7 pu(z,t) Sdr = (o(za,t) — U(xl,t))5'+/ F(x,t)Sdx
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for any such x; < x9. For a sufficiently smooth displacement u(z,t), we obtain the
conservation of momentum equation

(1) pug(x,t) —oy(x,t) = F(x,t) , a<z<b t>0.

The stress o(x,t) is determined by the type of material of which the rod is composed
and the amount by which the neighboring region is stretched or compressed, i.e., on the
elongation or strain, e(x,t). In order to define this, first note that a section [z, x+h] of the
rod is deformed by the displacement to the new position [z +u(z), (z+h)+u(x+h)]. The
elongation is the limiting increment of the change in the length due to the deformation
as given by

lim [u(x 4+ h) + (x+h)] — [u(z) +z] —h _ du(x)
h—0 h dz
so the strain is given by e(z,t) = u,(z,t).
1
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The relation between the stress and strain is a constitutive law, usually determined
by experiment, and it depends on the type of material. In the simplest case, with small
displacements, we find by experiment that o(x,t) is proportional to e(x,t), i.e., that
there is a constant k called Young’s modulus for which

o(x,t) =ke(x,t) .

The constant k£ is a property of the material, and in this case we say the material is
purely elastic. A rate-dependent component of the stress-strain relationship arises when
the force generated by the elongation depends not only on the magnitude of the strain
but also on the speed at which it is changed, i.e., on the strain rate e;(x,t) = v, (x,1).
The simplest such case is that of a visco-elastic material defined by the linear constitutive
equation
o(x,t) =ke(x,t) + pe(x,t)

in which the material constant p is the wiscosity or internal friction of the material.
Finally, if we include the effect of the transverse motions of the rod that result from the
elongations under conditions of constant volume or mass, we will get an additional term
to represent the transverse inertia. If the constant P denotes Poisson’s ratio, and r is
the average radius of that cross section, then the corresponding stress-strain relationship
is given as before by

o(x,t) = ke(z,t) + pe(z,t) + pr* Pey(w,t).
In terms of displacement, the total stress is
(2) o(z,t) = kuy (2, 1) + prug (2, 1) + pr? Pugy(z,t) .
The partial differential equation for the longitudinal vibrations of the rod is obtained by

substituting (2) into (1).

1.1. Initial and Boundary conditions. Since the momentum equation is second—order
in time, one may expect that in order to have a well-posed problem, two initial conditions
should be specified. Thus, we shall specify the initial conditions

u(z,0) = ug(x), w(z,t)=wvo(x), a<xz<b,

where ug(+) and vo(-) are the initial displacement and the initial velocity, respectively.
We list a number of typical possibilities for determining the two boundary conditions.
Each of these is illustrated as before with a condition at the right end, = b, and we
note that another such condition will also be prescribed at the left end, z = a.
1. The displacement could be specified at the end point:

u(b,t) = dy(t), t>0.

This is the Dirichlet boundary condition, or boundary condition of first type. It could be
obtained from observation of the endpoint position, or it could be imposed directly on
the endpoint. The homogeneous case dy(t) = 0 corresponds to a clamped end.

2. The horizontal force on the rod could be specified at the end point:

a(bt) = fyo(t), t>0.
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For the purely elastic case, o = ku,, this is the Neumann boundary condition, or bound-
ary condition of second type. The homogeneous condition with f,(¢) = 0 corresponds to
a free end.

3. The force on the end is determined by an elastic constraint, a restoring force
proportional to the displacement:

a(b,t) + ko(ulb, t) — dy(t)) = fo(t), t>0.

For the purely elastic case this is the Robin boundary condition, or boundary condition of
third type. Here both dy(-) and f,(+) are prescribed. The first is a prescribed displacement
of the spring reference, and the second is a horizontal force concentrated on the right
end point. For ky — oo, we obtain formally the Dirichlet boundary condition, while
for kg — 0 we get the Neumann condition. Thus the effective tension ko interpolates
between the first two types.

4. Another type of boundary condition arises if there is a concentrated mass at the end
point. Then u(b,t) is the displacement of this mass, and we have the dynamic boundary
condition

IOOUtt<b7 t) + U(ba t) = fb(t)v t> 07

which is the boundary condition of fourth type for the elastic case.

2. THE EIGENFUNCTION EXPANSION, II

We shall apply the method of separation of variables to the initial-boundary-value
problem for longitudinal vibrations with Dirichlet boundary conditions.

Example 1. Suppose the rod (0,£) is perfectly elastic and set o = %. Assume there

are no internal forces, i.e., f(x,t) = 0, and that both ends of the rod are fized. The
initial displacement and velocity are given by ug(x) and vo(z), respectively. The initial-
boundary-value problem for this scenario is

(3a) U (2,1) = @ g, (2,t), 0<z<l, t>0,
(3b) u(0,t) =0, u(¢,t) =0, t >0,
(3¢c) u(z,0) = ug(x), u(x,0) =uvp(x), 0<z <Ll

We look for non-null solutions of the form wu(z,t) = X (x)T(t) and find as before that

T”(t) X”(Z‘)
= O<z </l t>0.
2Tt~ X(x) rsh
Each side must be equal a common constant, denoted by —A\, and this leads to the pair
of ordinary differential equations

T't) + ANa>T(t)=0, t>0,
X"(z) + M X(2)=0, 0<z</l.

The boundary conditions given in (3b) imply that X (0) = X (¢) = 0.
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Note that if X(-) and T'(-) are solutions of these respective equations, then it follows
directly that their product is a solution (3a). We have already found the non-null solutions
of the boundary-value problem

X'"x)+ A X(x) =0, 0<z</,
(4) {X(é)):o, X<(£>):O. ot

The solutions are the normalized eigenfunctions

X, (2) = \/% sin(n%a:)

corresponding to the eigenvalues A\, = (n7/f)?. If we combine these with the corre-
sponding time-dependent solutions cos(ay/A,t) and sin(ay/A,t) of the first differential
equation and take linear combinations, we obtain a large class of solutions of the partial
differential equation (3a) and boundary conditions (3b) in the form of a series

u(z,t) = Z(A” cos(ay/Ant) + B sin(@\/)\_nt))X

where the sequences {4, } and {B,} are to be determined. From the initial conditions
(3c), it follows that these coefficients must satisfy

io:Aan(x) ZBa\/_X )=o), O0<az<l,
n=1

so we obtain

_ _ (vo(+), Xm(4))
Ap = (uo(+); Xm(+)), Bm = W, m>1.

In summary, the solution of the initial-boundary-value problem (3) is given by the series

u(z,t) = Z(cos (an/Ant) (uo (- ) + sin(a/Ant) — L (vo(

n=1

Denote the second term in the preceding formula by

Sl(e) = 3 (sm(ayAn e ),

n=1

This defines the operator S(t) on the space of functions on [0, ¢]. We can use this operator
to represent the solution by

(5) u(,t) = 8" (t)uo + S(t)vo

Example 2. Suppose the rod (0,/) is perfectly elastic and set o = %. Assume that both
ends of the rod are fized, the initial displacement and velocity are both null, and that there
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are distributed forces f(x,t) along its length. The initial-boundary-value problem for this
case 1s

(6a) Uy (z,1) = aPug,(z,t) + f(o,t), 0<x <l t>0,
(6b) u(0,t) =0, u(l,t) =0, t >0,
(6¢) w(z,0) =0, u(x,0)=0, 0<z</.

For this problem with a non-homogeneous partial differential equation (6a), we look
for the solution in the form

(7) u(a,t) =Y () Xn (@

If we assume that f(z,t) has the eigenfunction expansion

=3 X (@),

- /O s 0X

and substituting this expansion into equation (6a) yields

then the coefficients are given by

[e.9]

Z[ n(t) + AP, ()] X an

n=1

By equating the coefficients of the series given in this last equation, we are led to the
sequence of initial-value problems

(8a) i (1) + An@Pun(t) = fo(1), t>0
(8b) u,(0) =0, ,(0)=0.
The solution to (8) is

w®) = [ sin(TE = ) () e

Now, if we use this in (7), we find that the solution to our non-homogeneous initial-
boundary-value problem (6) i

9) ulz, t) /Z—Sin m;a(t—T))fn() X, (x)dr.

nmTo

Note that we can use the operator S(t) to represent this formula as

(10) - t) = /0 S(t — ) f(r) dr.
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As before, each S(t) is an integral operator of the form

. ¢ . nra ¢ .oonT 2 . nmw
[S(t)vo)(z) = ; v sm(Tt)/o (vo(s) SIH(TS)) dsz sm(Tx)
_/ZQ(i l . (mrozt)s_ (mr )si (mr )) (s)d
—Ogn:1mm1n 7 in(—-s) sin(—-x))vo(s) ds

¢
—/ H(z,s,t)vy(s)ds

0

for which the kernel
2 =~ { . nmma, . 0T . nT
H(zx,s,t) = Z(; — sm(Tt) Sln(TS) 8111(7@)

is the Green’s function for the problem.

Example 3. Suppose the left end of the elastic rod is free while the right end has an
elastic constraint given by u(l,t) + uy(¢,t) = 0. The initial-boundary-value problem for
this situation is

(11a) U (7, 1) = @ Uge (7, 1), O<z<dt, t>0,
(11Db) u(0,8) =0, u(l,t)+uy(l,t) =0, t>0,
(11c) u(z,0) = ug(x), u(z,0)=uv(x), O<z <.

We seek a solution in the form
u(e,t) = X(2)T(2).

where the boundary conditions imply that X, (0) = 0 and X (¢)+ X, (¢) = 0. The method
of separation of variables leads us to the boundary-value problem

X"(x) + XX (z) =0, 0<z </,
X'(0) =0, X(£) + X'(¢) = 0.

We obtain a sequence of eigenvalues \,, and corresponding eigenfunctions given by

2.1 1
(12) X, (z) = (z)i cos (A\2z).
Note that for large )\, we have
Ay~ (22

14
so the eigenvalues are asymptotically close to those of the preceding example. Combin-
ing these results with the time-dependent solutions and using the orthogonality of the
eigenfunctions, we find solutions of the initial-boundary-value problem (11) in the form

u(z,t) = Z(cos o/ Mnt) (uo(- ) + sin(ay/Ant) (vl

n=1

) v, ),
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with the eigenfunctions given by (12). Once again, this can be represented in the form
(5) for an appropriate family of operators {S(t) : ¢ > 0}.

Exercise 1. Suppose the rod (0,() is elastic and that we account for the inertia of lateral
extension. Set o? = % and (32 = r2P, where P is Poisson’s ratio and r is the average
radius of a cross section as above. Assume there are no internal forces, i.e., f(x,t) =0,
and that both ends of the rod are fixed. The initial displacement and velocity are given
by uo(z) and vo(x), respectively. The initial-boundary-value problem is

(13a) U (7, 1) = gy (2,1) + BPrugen(z,t), 0<z <l >0,
(13b) u(0,t) =0, u(l,t) =0, t>0,
(13c) u(z,0) = ug(x), u(x,0) =uvp(x), 0<z<Ll.

Find the solution by separation of variables. Find the family of operators {S(t) : t > 0}
for which this can be represented in the form (5).
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