POWER SERIES

R. E. SHOWALTER

1. SEQUENCES

We denote by $\lim_{n\to\infty} a_n = a$ that the **limit** of the sequence $\{a_n\}$ is the number a. By this we mean that for any $\varepsilon > 0$ there is an integer N such that $|a_n - a| < \varepsilon$ for all integers $n \ge N$. This makes precise the statement that as n gets large, the error $|a_n - a|$ gets small. This is also denoted by " $a_n \to a$ ", and we say the sequence is **convergent**.

Example 1.1. For the sequence $a_n = \frac{1}{n}$ we have $\lim_{n \to \infty} a_n = 0$. That is, the sequence $\{\frac{1}{n}\}$ is convergent and $\lim_{n \to \infty} \frac{1}{n} = 0$.

Limits can be taken into sums, multiples and quotients (when the denominator has a non-zero limit), such as in the two following examples.

Example 1.2. For the sequence $a_n = \frac{n}{n+1}$, we have

$$\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = \frac{1}{1 + \lim_{n \to \infty} \frac{1}{n}} = 1.$$

Or directly we can compute

$$\left| \frac{n}{n+1} - 1 \right| = \frac{1}{n+1} \to 0.$$

Example 1.3. For the sequence $a_n = \frac{3n^2-1}{n^2+n+1}$ we have

$$a_n = \frac{3 - \frac{1}{n^2}}{1 + \frac{1}{n} + \frac{1}{n^2}},$$

so we have $\lim_{n\to\infty} a_n = \frac{3-0}{1+0+0} = 3$. Since we know the limit, we can check directly for convergence from the crude estimate $|a_n-3| < \frac{3}{n} + \frac{4}{n} \to 0$.

In fact, for any function $F(\cdot)$ which is continuous at the point a, If $a_n \to a$, then $F(a_n) \to F(a)$. The two preceding examples follow from the respective cases $F(x) = \frac{1}{1+x}$ and $F(x) = \frac{3-x^2}{1+x+x^2}$ and $a_n = \frac{1}{n}$.

Note that for any number $h \geq 0$ and integer $n \geq 1$ we have

$$(1+h)^n \ge 1 + hn.$$

This estimate is useful to identify limits of powers.

Example 1.4. To evaluate the limit $n \to \infty$ of the sequence $a_n = p^n$, if |p| < 1, we set $|p| = \frac{1}{(1+h)}$ for some h > 0 to see that

$$|a_n| = \frac{1}{(1+h)^n} < \frac{1}{1+nh} \to 0,$$

and if |p| > 1, we set |p| = h + 1 with h > 0 to get $|p^n| = (1 + h)^n \ge 1 + hn \to \infty$ as $n \to \infty$. In summary, we have

$$\lim_{n \to \infty} p^n = \begin{cases} 0 & \text{if } |p| < 1, \\ 1 & \text{if } p = 1, \end{cases}$$

and the sequence does not converge otherwise.

Example 1.5. For the sequence of fractional powers,

$$a_n = p^{\frac{1}{n}},$$

we proceed similarly. If p > 1, then set $p^{\frac{1}{n}} = 1 + h_n$ so that $p = (1 + h_n)^n > 1 + nh_n$ and $0 < h_n < \frac{p-1}{n}$. This shows that $\lim_{n \to \infty} p^{\frac{1}{n}} = 1$. If $0 , then <math>p = \frac{1}{q}$, q > 1, so $\lim_{n \to \infty} p^{\frac{1}{n}} = \frac{1}{\lim_{n \to \infty} q^{\frac{1}{n}}} = \frac{1}{1} = 1$. In summary, we have $\lim_{n \to \infty} p^{\frac{1}{n}} = 1$ for all 0 < p.

Here's a more delicate one that will arise in applications.

Example 1.6. For the sequence $a_n = n^{\frac{1}{n}}$, we write $\sqrt{a_n} = (\sqrt{n})^{\frac{1}{n}} = 1 + h_n$, and then $\sqrt{n} = (1 + h_n)^n \ge 1 + nh_n$, so that we have $h_n \le \frac{\sqrt{n-1}}{n} < \frac{1}{\sqrt{n}} \to 0$. This shows that

$$1 \le a_n \le 1 + 2h_n + h_n^2 \le 1 + \frac{2}{\sqrt{n}} + \frac{1}{n},$$

and we see that $a_n \to 1$. That is, $\lim_{n \to \infty} n^{\frac{1}{n}} = 1$.

Even though the base n is growing in this example, the fractional power $\frac{1}{n}$ still brings the sequence to 1. And this happens even with higher powers of the base: for any fixed integer $M \geq 1$ we have

$$\lim_{n\to\infty} (n^M)^{\frac{1}{n}} = \lim_{n\to\infty} n^{\frac{M}{n}} = \left(\lim_{n\to\infty} n^{\frac{1}{n}}\right)^M = 1.$$

Cauchy Criterion. If the series $\{a_n\}$ is convergent with $\lim_{n\to\infty} a_n = a$, then for any pair of integers m, n we get $|a_m - a_n| \leq |a_m - a| + |a_n - a|$, so for both of m, n sufficiently large, it follows that $|a_m - a_n|$ is arbitrarily small. The sequence is Cauchy if for any $\varepsilon > 0$ there is an integer N such that for all pairs of integers m, $n \geq N$ we have $|a_m - a_n| < \varepsilon$. In particular, we just noted that every convergent sequence is Cauchy. A fundamental property of the real numbers is that every Cauchy sequence is convergent. This provides a useful test for convergence that does not depend on knowing the limit of the sequence.

2. Series

Let $\{a_n\}$ be a sequence. Then define a new sequence $\{s_n\}$ by

$$s_n = \sum_{m=1}^n a_m = a_1 + a_2 + \dots + a_n, \ n \ge 1.$$

This is the sequence of partial sums of $\{a_n\}$ or the series $\sum_{n=1}^{\infty} a_n$, and a_n is the **n-th term** of the series. If the sequence $\{s_n\}$ is convergent, we say the series $\sum_{n=1}^{\infty} a_n$ converges and denote its limit also by $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n$. It follows from the Cauchy test for convergence of the sequence $\{s_n\}$ that the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if for any $\varepsilon > 0$ there is an N such that

$$|s_m - s_n| = |a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon$$

for all $m \ge n \ge N$. Finally, we note that if the series converges, then we necessarily have $a_n = s_n - s_{n-1} \to s - s = 0$, so the sequence of terms $\{a_n\}$ converges to 0.

The most important example is the **geometric series** obtained from the terms $a_n = p^n$.

Example 2.1. The sequence of partial sums is

$$s_m = 1 + p^1 + p^2 + p^3 + \dots + p^m, \ m \ge 1.$$

Then we compute $s_m - ps_m = 1 - p^{m+1}$ to get

$$s_m = \begin{cases} m+1 & \text{if } p = 1, \\ \frac{1-p^{m+1}}{1-p} & \text{if } p \neq 1. \end{cases}$$

This shows that the series converges to the limit $\sum_{n=0}^{\infty} p^n = \frac{1}{1-p}$ if |p| < 1, and it is not convergent otherwise.

A series $\sum_{n=1}^{\infty} a_n$ is **absolutely convergent** if the series of absolute values $\sum_{n=1}^{\infty} |a_n|$ is convergent. The Cauchy criterion for convergence together with the inequality

$$|a_{n+1} + a_{n+2} + \dots + a_m| \le |a_{n+1}| + |a_{n+2}| + \dots + |a_m|$$

shows that absolute convergence implies convergence of the series. The series is **conditionally convergent** if it is convergent but *not* absolutely convergent. Examples will be given below.

Convergence Tests.

Theorem 2.1. Comparison Test: If there is a constant $C \geq 0$ for which $|a_n| \leq Cb_n$ for all n sufficiently large, and if $\sum_{n=1}^{\infty} b_n$ is convergent,

then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Proof. Use the estimate above with the Cauchy test for convergence of the two series. \Box

For example, by comparing with the geometric series, it follows that if there is a constant $C \geq 0$ and integer $N \geq 1$ for which $|a_n| \leq Cp^n$ for all $n \geq N$ for some $0 \leq p < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. Sufficient conditions are given by the following.

Corollary 2.2. Ratio Test: If $\left|\frac{a_{n+1}}{a_n}\right| \leq p < 1, \ n \geq N,$ or if $\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| \leq p < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Corollary 2.3. Root Test: If $|a_n|^{\frac{1}{n}} \leq p < 1$, $n \geq N$, or if $\lim_{n \to \infty} |a_n|^{\frac{1}{n}} \leq p < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Integral Test. Our last criterion for convergence of series with non-negative terms is obtained by comparing with an improper integral. Suppose the function $f(\cdot)$ is continuous, decreasing, and $f(x) \geq 0$ for all $x \geq 0$. Then for $n \leq x \leq n+1$ we have $f(n) \geq \int_n^{n+1} f(x) dx \geq f(n+1)$ so we obtain

$$\sum_{n=1}^{m} f(n) \ge \int_{1}^{m+1} f(x)dx \ge \sum_{n=1}^{m} f(n+1)$$

This shows that the improper integral $\int_1^\infty f(x)dx$ converges if and only if the series $\sum_{n=1}^\infty f(n) = f(1) + \sum_{n=1}^\infty f(n+1)$ converges. This criterion is the **integral test**.

Example 2.2. By taking the function $f(x) = \frac{1}{x^{\alpha}}$, we find the series $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ converges if and only if $\alpha > 1$.

Alternating Series. The series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ with $a_n \geq 0$ is an alternating series. That is, successive terms alternate sign. If also the terms are decreasing, $a_{n+1} \leq a_n$, then we can arrange the terms in two ways

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = (a_1 - a_2) + (a_3 - a_4) + (a_5 - a_6) + \dots$$
$$= a_1 - (a_2 - a_3) - (a_4 - a_5) - (a_6 - a_7) - \dots$$

to see that

$$s_2 \le s_4 \le s_6 \le \dots$$
 and $s_1 \ge s_3 \ge s_5 \ge \dots$

These show that the odd terms are decreasing and they lie above the even terms which are increasing. Finally we note that $s_{2^n+1} - s_{2^n} = a_{2^n+1}$, so if $\lim_{n\to\infty} a_n = 0$, then these two sequences converge to the common value which is $\lim_{n\to\infty} s_n$. We summarize this as

Theorem 2.4. An alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ with $a_n \geq 0$ and $a_{n+1} \leq a_n$ is convergent.

Example 2.3. The harmonic series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

is convergent (alternating series) but not absolutely convergent (by the integral test).

3. Sequences and Series of Functions

Let $\{f_n(\cdot)\}\$ be a sequence of functions on a set of numbers S. This sequence is **pointwise convergent** to a function $f(\cdot)$ on S if

$$\lim_{n\to\infty} f_n(x) = f(x) \text{ for every } x \in S.$$

That is, for every $x \in S$ and $\varepsilon > 0$, there is an integer N for which $|f_n(x) - f(x)| < \varepsilon$ for all $n \ge N$. (The integer N depends on ε and on x.)

The sequence $\{f_n(\cdot)\}$ is **uniformly convergent** to $f(\cdot)$ on S if for every $\varepsilon > 0$ there is an integer N for which $|f_n(x) - f(x)| < \varepsilon$ for all $n \geq N$ and for all $x \in S$. (The integer N depends on ε .)

Example 3.1. The sequence $f_n(x) = x^n$ converges pointwise to f(x) = 0 on the set S = (-1, 1). The convergence is uniform on S = (-p, p) for any p with 0 . See Example 1.4.

Example 3.2. The sequence $f_n(x) = x^{\frac{1}{n}}$ converges pointwise to f(x) = 1 on (0,1), but the convergence is not uniform. The convergence is uniform on any set of the form $S = (\alpha, 1)$ with $0 < \alpha < 1$ or $S = [\alpha, 1]$. See Example 1.5.

Theorem 3.1. If the sequence $\{f_n(\cdot)\}$ is uniformly convergent to $f(\cdot)$ on S and if each $f_n(\cdot)$ is continuous, then the limit $f(\cdot)$ is continuous on S.

Proof. Let $\lim_{n\to\infty} f_n(\cdot) = f(\cdot)$ uniformly on S and $x_0 \in S$. Let $\varepsilon > 0$. Uniform convergence implies there is an N for which $|f_N(x) - f(x)| < \frac{\varepsilon}{3}$ for all $x \in S$. Continuity of f_N implies that there is a $\delta > 0$ such that $|f_N(x) - f_N(x_0)| < \frac{\varepsilon}{3}$ for all $x \in S$ with $|x - x_0| < \delta$. But then we have $|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| < \varepsilon$ for all $x \in S$ with $|x - x_0| < \delta$.

Theorem 3.2. If the sequence of continuous functions $\{f_n(\cdot)\}$ is uniformly convergent to the (continuous) function $f(\cdot)$ on S = [a, b], then we have

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx.$$

Proof. Let $\varepsilon > 0$. There is an N for which $n \geq N$ implies $|f_n(x) - f(x)| < \frac{\varepsilon}{b-a}$ for all $x \in [a,b]$. Then

$$\left| \int_{a}^{b} f(x) dx - \int_{a}^{b} f_{n}(x) dx \right| \leq \int_{a}^{b} \left| f(x) - f_{n}(x) \right| dx < \varepsilon$$
 for $n > N$.

Corollary 3.3. If the sequence of continuous derivatives $\{f'_n(\cdot)\}$ is uniformly convergent to the (continuous) function $g(\cdot)$ on S = [a, b], and if the sequence $\{f_n(\cdot)\}$ converges pointwise to $f(\cdot)$ on S = [a, b], then $f(\cdot)$ is differentiable and f' = g.

Proof. For each $x \in (a, b]$ we have $\int_a^x f_n'(s) ds = f_n(x) - f_n(a)$, and taking limits yields $\int_a^x g(s) ds = f(x) - f(a)$

Let $\{f_n(\cdot)\}\$ be a sequence of functions on the set S. As before, we define a new sequence $\{s_n(\cdot)\}\$ by

$$s_n(\cdot) = \sum_{m=1}^n f_m(\cdot) = f_1(\cdot) + f_2(\cdot) + \dots + f_n(\cdot), \ n \ge 1, \ x \in S.$$

This is the sequence of partial sums of $\{f_n(\cdot)\}$ or the **series** $\sum_{n=1}^{\infty} f_n$. If the sequence $\{s_n\}$ is pointwise (or uniformly) convergent, we say the series $\sum_{n=1}^{\infty} f_n$ converges pointwise (or uniformly, respectively) and denote its limit also by $\sum_{n=1}^{\infty} f_n(x) = \lim_{n \to \infty} s_n(x)$.

Example 3.3. Taking the sequence $f_n(x) = x^n$, we obtain the **geometric series** $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ on (-1,1). The series is absolutely convergent, pointwise on (-1,1), and uniformly on any subinterval $[a,b] \subset (-1,1)$.

4. Power Series

Definition 4.1. An infinite series of the form

$$(4.1) \sum_{n=0}^{\infty} a_n (x-x_0)^n = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \dots$$

is a power series in x about the point x_0 .

This is a series of functions constructed from the terms $f_n(x) = a_n(x-x_0)^n$ for $n \ge 0$. The geometric series resulted from the particular choice of coefficients $a_n = 1$ and $x_0 = 0$.

Theorem 4.2. If the power series (4.1) converges at the point $x = x_0 + r$, then it converges absolutely at any point x with $|x - x_0| < |r|$, and for any p with 0 the convergence is uniform on those <math>x with $|x - x_0| \le p$.

Proof. Since the series $\sum_{n=0}^{\infty} a_n r^n$ is convergent, we have $\lim_{n\to\infty} a_n r^n = 0$, so there is an integer N such that $|a_n r^n| < 1$ for all $n \ge N$. Thus, for all $n \ge N$ we have $|a_n(x-x_0)^n| = |a_n r^n| |\frac{x-x_0}{r}|^n < |\frac{x-x_0}{r}|^n$, so by the comparison test we see that the series (4.1) converges absolutely for all x with $|x-x_0| < |r|$. Moreover, these estimates show the convergence is uniform for $|x-x_0| \le p$ for any p < |r|.

It follows that the set of points at which the series converges is either the single point 0, an interval (x_0-R,x_0+R) , possibly containing either endpoint, or the entire number line $\mathbb{R} = (-\infty, \infty)$. The number R is the radius of convergence, and we set R = 0 in the first case and $R = \infty$ in the last.

Theorem 4.3. Let R > 0 be the radius of convergence of the power series (4.1). Then the function $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ is infinitely differentiable and its derivative is given by the power series $f'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}$ with the same radius of convergence.

Proof. Let $|x-x_0| < R$ and choose ξ in the interval of convergence, ie., $|\xi - x_0| < R$, with $\frac{R}{2} < |\xi - x_0|$ and $|x - x_0| = p|\xi - x_0|$ with $0 \le p < 1$. Then the differentiated series is bounded by

$$|na_n(x-x_0)^{n-1}| = |na_n(\xi-x_0)^{n-1}|p^{n-1}| \le \frac{2}{R}Cnp^{n-1}$$

since the convergent series $\sum_{n=0}^{\infty} a_n (\xi - x_0)^n$ has bounded terms. The series $\sum_{n=0}^{\infty} n p^{n-1}$ converges by the limit ratio test, so the differentiated series converges for $|x - x_0| < R$ by the comparison test.

Department of Mathematics, Oregon State University, Corvallis, OR 97331 - $4605\,$

 $\textit{E-mail address} : \verb|show@math.oregonstate.edu|$