Let G be a region in the plane. The heat conduction problem is to find $u=u(x, y, t)$ which satisfies the initial-boundary-value problem

$$
\begin{array}{r}
\frac{\partial u}{\partial t}-\alpha^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=0, \quad(x, y) \in G, t>0 \\
u=0 \text { on the boundary } \partial G \\
u(x, y, 0)=u_{0}(x, y) .
\end{array}
$$

1. Let $G=(0, a) \times(0, b)$. Find the solution if
(a) $u_{0}(x, y)=1$,
(b) $u_{0}(x, y)=x$,
(c) $u_{0}(x, y)=x y$.
