- 1. For Lebesgue measure on X = Y = [a, b], show that each *open set* in $X \times Y$ is measurable.
- 2. Let $g(\cdot)$ be integrable on the measure space (X, μ_1) and $h(\cdot)$ be integrable on the measure space (Y, μ_2) . Define f(x,y) = g(x)h(y) for $(x,y) \in X \times Y$. Show that f is integrable on $(X \times Y, \mu)$ with $\mu = \mu_1 \times \mu_2$ and that

$$\int_{X\times Y} f \, d\mu = \int_X g \, d\mu_1 \int_Y h \, d\mu_2 \, .$$

(Do not assume σ -finiteness of the measure spaces.)

3. Let X = Y be positive integers with the counting measure, and define the function on $X \times Y$ by

$$f(x,y) = \begin{cases} 2 - 2^{-x} & \text{if } x = y, \\ -2 + 2^{-x} & \text{if } x = y + 1, \\ 0 & \text{otherwise.} \end{cases}$$

Evaluate each of the following:

- (a) $\int_X f(\cdot, y) d\mu_1$
- (b) $\int_Y f(x,\cdot) d\mu_2$
- (c) $\int_X \int_Y f d\mu_2 d\mu_1$
- (d) $\int_Y \int_X f d\mu_1 d\mu_2$
- (e) $\int_{X\times Y} f d\mu$
- 4. Show that the existence of the integral

$$\int_X \left(\int_Y |f(x,y)| \, d\mu_2 \right) d\mu_1$$

implies the existence of

$$\int_{Y \vee Y} |f(x,y)| d(\mu_1 \times \mu_2).$$

(This is Problem 6 on page 361 of Kolmogorov - Fomin. See the Hint given there.)