MTH 614: Exercise set #2

Problems are due (electronically or in my mailbox in Kidder) on Dec 6 (Thursday) at 4pm = 1600.

1. In the classical theory of Fourier series, the orthonormal basis for $L^2(0, \ell)$ consists of cosine and sine functions. Denote these by $\{v_j(x), j = 1, 2, ..., \text{Each } f \in L^2(0, \ell) \text{ is represented by } f = \sum_{j=i}^{\infty} (f, v_j)_{L^2} v_j$. The *n*-th partial sum is $f_n = \sum_{j=i}^{n} (f, v_j)_{L^2} v_j$, and one can actually sum the series to obtain the representation $f_n(x) = \int_0^\ell f(y) D_n(y-x) dy$. The integrand is the Dirichlet kernel $D_n(x)$.

Denote the space of continuous ℓ -periodic functions by $C_p[0, \ell]$. For $f \in C_p[0, \ell]$ define $T_n f = f_n(0) = \int_0^{\ell} f(y) D_n(y) \, dy$ to get a sequence $\{T_n\}$ in the dual space $C_p[0, \ell]'$. From an explicit computation one finds that $||T_n|| \to \infty$. Show there exists a continuous periodic function whose Fourier series is not convergent at x = 0.

2. Let *H* be a hyperplane in a normed linear space *X*. That is, $H = \{x \in X : f(x) = \alpha\}$ where $f \in X^*$ and $\alpha \in \mathbb{R}$. Show that *H* is either closed or dense in *X*.

3. Let $\mathcal{B} \in \mathcal{L}(\mathbf{X}, \mathbf{Y}')$ where **X** and **Y** are Banach spaces. Show the following are equivalent:

- $\mathcal{B}: \mathbf{X} \to \mathbf{Y}'$ has closed range,
- $\mathcal{B}(\mathbf{X}) = (\operatorname{Ker} \mathcal{B}')^o$,
- there is a $\beta > 0$ for which $\sup_{y \in \mathbf{Y}} \frac{\beta x(y)}{\|y\|_{\mathbf{Y}}} \ge \beta \inf_{z \in \operatorname{Ker} \mathcal{B}} \|x + z\|_{\mathbf{X}}, \ x \in \mathbf{X}.$

4. a) Let
$$V = H^1(0, \ell)$$
 and $a(\cdot) \in L^{\infty}(0, \ell)$ with $a(x) \ge c > 0$. Show that $u \in V$: $\int_0^\ell a(x)\partial u(x)\partial v(x) dx = \int_0^\ell F(x)v(x) dx + \alpha v(\ell)$ for all $v \in V$.

characterizes a boundary-value problem.

b) Let $\mathcal{A}: V \to V'$ denote the corresponding operator. What is the kernel of \mathcal{A} ? For the functional

$$f(v) = \int_G F(x)v(x) \, dx + \alpha v(\ell),$$

when is f in $\operatorname{Rg} \mathcal{A}$?