Problem 1

Find the eigenfunction expansion of the solution of the initial-boundary-value problem

$$
\begin{array}{rrr}
u_{t}(x, t)+u_{x}(x, t)-\alpha^{2} u_{x x}(x, t)=f(x, t), & 0<x<\ell, & t>0, \\
u(0, t)=0, u(\ell, t)=0, & & t>0, \\
u(x, 0)=u_{0}(x), & 0<x<\ell
\end{array}
$$

Hint: Choose appropriate $\beta>0$ so that $w(x, t)=e^{-\beta x} u(x, t)$ satisfies a simpler problem.

Problem 2

Find the orthogonal complement $C_{0}^{\infty}(a, b)^{\perp}$ in the Hilbert space $H^{1}(a, b)$ for each of the three cases:
(i) (a, b) is a bounded interval;
(ii) $(a, b)=(0, \infty)$;
(iii) $(a, b)=(-\infty, \infty)$.

Due: Tuesday, 14:00, December 6.

