Final Exercises

Let $c \ge 0$, $\alpha \ge 0$, $f_0 \in \Re$ and $F \in L^2(0, \ell)$ be given. Define the bilinear form

$$a(u,v) = \int_0^\ell (\partial u(x) \, \partial v(x) + c \, u(x) \, v(x)) \, dx + \alpha u(\ell) \, v(\ell)$$

and the linear functional $f(v) = \int_0^\ell F(x)v(x) dx + f_0v(\ell)$ on the space $V = \{v \in H^1(0, \ell) : v(0) = 0\}.$

1. Show that f is continuous and that $a(\cdot, \cdot)$ is continuous and V-elliptic.

2. Characterize the solution of

$$u \in V$$
: $a(u, v) = f(v)$ for all $v \in V$

as the solution of a boundary-value problem.

3. Repeat #2 for the space

$$V = \{ v \in H^1(0, \ell) : v(0) = v(\ell) \}.$$

4. Show that $a(\cdot, \cdot)$ is $H^1(0, \ell)$ -elliptic if either c > 0 or $\alpha > 0$.

Show that it is not $H^1(0, \ell)$ -elliptic if c = 0 and $\alpha = 0$.