Final Exercises

Let $c \geq 0, \alpha \geq 0, f_{0} \in \Re$ and $F \in L^{2}(0, \ell)$ be given. Define the bilinear form
$a(u, v)=\int_{0}^{\ell}(\partial u(x) \partial v(x)+c u(x) v(x)) d x+\alpha u(\ell) v(\ell)$
and the linear functional $f(v)=\int_{0}^{\ell} F(x) v(x) d x+f_{0} v(\ell)$ on the space $V=\left\{v \in H^{1}(0, \ell): v(0)=0\right\}$.

1. Show that f is continuous and that $a(\cdot, \cdot)$ is continuous and V-elliptic.
2. Characterize the solution of

$$
u \in V: a(u, v)=f(v) \text { for all } v \in V
$$

as the solution of a boundary-value problem.
3. Repeat $\# 2$ for the space

$$
V=\left\{v \in H^{1}(0, \ell): v(0)=v(\ell)\right\}
$$

4. Show that $a(\cdot, \cdot)$ is $H^{1}(0, \ell)$-elliptic if either $c>0$ or $\alpha>0$.

Show that it is not $H^{1}(0, \ell)$-elliptic if $c=0$ and $\alpha=0$.

