Let $\gamma : W^{1,p}(G) \to L^p(G)$ be the *trace map* and denote its *range* by **B**. Let $b \in \mathbf{B}$ and consider the non-homogeneous Dirichlet problem

$$-\sum_{j=1}^{n} \partial_j a(\partial_j u(x)) = 0 \text{ in } G, \quad u(s) = b(s) \text{ on } \partial G.$$

Here the function $a(\cdot)$ is given by $a(s) = |s|^{p-1}sgn(s)$ with 1 . By $means of a translation, this can be rewritten as follows. Let <math>w = u - u_b$, where the function $u_b \in W^{1,p}(G)$ is chosen with $\gamma(u_b) = b$. Then w is characterized by

$$w \in W_0^{1,p}(G): -\sum_{j=1}^n \partial_j a(\partial_j (w + u_b)) = 0 \text{ in } W_0^{1,p}(G)'.$$

Thus, if we define $\mathbf{V} = W_0^{1,p}(G)$ and

$$\mathcal{A}(w)(v) = \int_G \sum_{j=1}^n a(\partial_j (w + u_b)) \, \partial_j v \, dx \,, \qquad w, \ v \in \mathbf{V}$$

then $\mathcal{A}: \mathbf{V} \to \mathbf{V}'$.

Exercise. Show that \mathcal{A} is strictly-monotone, continuous, bounded and coercive.

Corollary. For each $b \in \mathbf{B}$, there is a unique

$$u \in W^{1,p}(G)$$
: $\gamma(u) = b$ and $\int_G \sum_{j=1}^n a(\partial_j u) \partial_j v \, dx = 0$ for all $v \in W_0^{1,p}(G)$.

Next we define $\mathcal{B} : \mathbf{B} \to \mathbf{B}'$ as follows. Let $b, \ \tilde{b} \in \mathbf{B}$ be given. Let $u \in W^{1,p}(G)$ be given as above. Let $v \in W^{1,p}(G)$ with $\gamma(v) = \tilde{b}$ and define

$$\mathcal{B}(b)(\tilde{b}) = \int_G \sum_{j=1}^n a(\partial_j u) \partial_j v \, dx \, .$$

Exercise. Show that the preceding integral is independent of the choice of $v \in W^{1,p}(G)$ with $\gamma(v) = \tilde{b}$, so this defines a function $\mathcal{B} : \mathbf{B} \to \mathbf{B}'$ as desired. **Exercise**. Show that if for a $b \in \mathbf{B}$ the corresponding $u \in W^{1,p}(G)$ constructed above happens to be smooth, then

$$\mathcal{B}(b)(\tilde{b}) = \int_{\partial G} \sum_{j=1}^{n} a(\partial_{j}u)\nu_{j}\tilde{b}\,ds, \quad \tilde{b} \in \mathbf{B},$$

where ν is the unit outward normal on ∂G . Thus, $\mathcal{B}(b) = \sum_{j=1}^{n} a(\partial_j u) \nu_j$ when the function u is smooth.