Let $\gamma: W^{1, p}(G) \rightarrow L^{p}(G)$ be the trace map and denote its range by \mathbf{B}. Let $b \in \mathbf{B}$ and consider the non-homogeneous Dirichlet problem

$$
-\sum_{j=1}^{n} \partial_{j} a\left(\partial_{j} u(x)\right)=0 \text { in } G, \quad u(s)=b(s) \text { on } \partial G .
$$

Here the function $a(\cdot)$ is given by $a(s)=|s|^{p-1} \operatorname{sgn}(s)$ with $1<p<\infty$. By means of a translation, this can be rewritten as follows. Let $w=u-u_{b}$, where the function $u_{b} \in W^{1, p}(G)$ is chosen with $\gamma\left(u_{b}\right)=b$. Then w is characterized by

$$
w \in W_{0}^{1, p}(G): \quad-\sum_{j=1}^{n} \partial_{j} a\left(\partial_{j}\left(w+u_{b}\right)\right)=0 \text { in } W_{0}^{1, p}(G)^{\prime} .
$$

Thus, if we define $\mathbf{V}=W_{0}^{1, p}(G)$ and

$$
\mathcal{A}(w)(v)=\int_{G} \sum_{j=1}^{n} a\left(\partial_{j}\left(w+u_{b}\right)\right) \partial_{j} v d x, \quad w, v \in \mathbf{V}
$$

then $\mathcal{A}: \mathbf{V} \rightarrow \mathbf{V}^{\prime}$.
Exercise. Show that \mathcal{A} is strictly-monotone, continuous, bounded and coercive.
Corollary. For each $b \in \mathbf{B}$, there is a unique

$$
u \in W^{1, p}(G): \gamma(u)=b \text { and } \int_{G} \sum_{j=1}^{n} a\left(\partial_{j} u\right) \partial_{j} v d x=0 \text { for all } v \in W_{0}^{1, p}(G)
$$

Next we define $\mathcal{B}: \mathbf{B} \rightarrow \mathbf{B}^{\prime}$ as follows. Let $b, \tilde{b} \in \mathbf{B}$ be given. Let $u \in W^{1, p}(G)$ be given as above. Let $v \in W^{1, p}(G)$ with $\gamma(v)=\tilde{b}$ and define

$$
\mathcal{B}(b)(\tilde{b})=\int_{G} \sum_{j=1}^{n} a\left(\partial_{j} u\right) \partial_{j} v d x .
$$

Exercise. Show that the preceding integral is independent of the choice of $v \in W^{1, p}(G)$ with $\gamma(v)=\tilde{b}$, so this defines a function $\mathcal{B}: \mathbf{B} \rightarrow \mathbf{B}^{\prime}$ as desired. Exercise. Show that if for a $b \in \mathbf{B}$ the corresponding $u \in W^{1, p}(G)$ constructed above happens to be smooth, then

$$
\mathcal{B}(b)(\tilde{b})=\int_{\partial G} \sum_{j=1}^{n} a\left(\partial_{j} u\right) \nu_{j} \tilde{b} d s, \quad \tilde{b} \in \mathbf{B}
$$

where ν is the unit outward normal on ∂G. Thus, $\mathcal{B}(b)=\sum_{j=1}^{n} a\left(\partial_{j} u\right) \nu_{j}$ when the function u is smooth.

