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1. Introduction

We shall develop various classes of initial-boundary-value problems for systems of par-
tial differential equations as models for classical problems of continuum mechanics. These
include the deformation of general anisotropic structures of elastic, visco-elastic or plas-
tic materials, the flow of fluids and diffusion through porous media, and combinations of
these together with appropriate interface conditions for diffusion through deformable me-
dia. The homogeneous and isotropic case will be included, as well as both compressible
and incompressible systems.

2. Fundamentals of Mechanics

In describing the kinematics of a continuum, it is important to distinguish a point in
space from a particle occupying that location. A deformation is a function that represents
a change in position of particles from an initial to a final configuration. The related notion
of flow is used to describe the entire time-dependent family of intermediate positions.
Each point in IR3 has spatial coordinates x = (x1, x2, x3). A particle in a region Ω ⊂ IR3

is identified with its original location X ∈ Ω, and its new position is denoted by the
deformation x = x(X) ∈ Ω̃ ⊂ IR3. The original position X is the material coordinate of
the particle, and the new position x is its spatial coordinate. The deformation X 7→ x =
x(X) is assumed to be continuously differentiable from Ω onto Ω̃ and invertible, and the
deformation gradient

∂x

∂X
=

(
∂xi

∂Xj

)
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Figure 1. Shear strain

is continuous and invertible at each point. The same holds for the corresponding inverse
x 7→ X = X(x). Assume also that the determinant satisfies det( ∂x

∂X
) > 0, so the defor-

mation is orientation preserving. Any function on Ω can be expressed in terms of either
spatial coordinates x or material coordinates X. The first is the Euler representation
and the latter is the material or Lagrangian representation.

2.1. Displacement and Strain. We consider a deformation of the body Ω for which
each point X ∈ Ω is moved to another point x(X) = X + u(X). The vector field u(X)
is the displacement function. The derivative of this map can be written as the sum of its
symmetric and skew-symmetric parts as

∂jui ≡
∂ui

∂Xj

= εij(u) + ωij(u) ,

εij(u) ≡ 1

2

(
∂ui

∂Xj

+
∂uj

∂Xi

)
, ωij(u) ≡ 1

2

(
∂ui

∂Xj

− ∂uj

∂Xi

)
.

We investigate the geometric meaning of these expressions. Figure 1 indicates the Xk-
projection of the deformed state of a rectangular element with sides originally parallel
to the axes. The shear strain in the XiXj-plane is measured by the average of the
two angles, α, β, made with the Xi axis and the Xj axis, respectively. These can be
approximated by

α ≈ tan(α) =
∂uj

∂Xi

, β ≈ tan(β) =
∂ui

∂Xj

.

Thus the shear strain in the three respective planes is given by εij(u) for i 6= j. The
Xi-elongation is the limiting relative change in the length in the Xi direction due to the
deformation as given by

lim
h→0

[ui(X + hei) + (Xi + h)]− [ui(X) + Xi]− h

h
=

∂ui

∂Xi

.
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This accounts for the diagonal terms in εij(u). In summary, the symmetric part of the
displacement gradient is the strain εij(u), whose off-diagonal terms are shear strain and
diagonal terms are elongations. Similarly it follows that the skew-symmetric part ωij(u)
is the rotation. The displacement field u(X) is a rigid motion if εij(u) = 0, and then it
is of the form u(X) = B X + c, where B is a skew-symmetric matrix.

The mechanical meaning of “strain” refers to effects on neighboring points that result
from their relative distance being changed by the deformation. Pick X ∈ Ω and a small
increment ξ ∈ IR3. Consider the nearby point X + ξ and corresponding change in the
increment ξ. The points X and X+ξ go to X+u(X) and X+ξ +u(X+ξ), respectively.
Thus the change in ξ due to the displacement u is given by

∆ξ = X + ξ + u(X + ξ)− (X + u(X))− ξ = u(X + ξ)− u(X) .

Using Taylor’s expansion on this we get (approximately)

∆ξi ≈ ∂jui(X) ξj .

This deformed state is characterized by changes in the distances between the points and
the angle θ of rotation of ξ to ∆ξ, and these are computed (approximately) by ignoring
products of the small displacement gradients to get

|ξ + ∆ξ|2 − |ξ|2 =
3∑

i,j=1

(ξi + ∂jui(X) ξj)
2 −

3∑
i=1

(ξi)
2

=
3∑

i,j=1

(
2∂jui(X) ξi ξj + ∂jui(X)2ξ2

i

)
≈ 2

3∑
i,j=1

∂jui(X) ξi ξj = 2
3∑

i,j=1

εij ξi ξj ,

(∆ξ, ξ) =
3∑

i,j=1

εij ξi ξj = ‖∆ξ‖‖ξ‖ cos(θ) .

Likewise, the relative change in volume or dilation, i.e., the change in volume per unit
volume, is approximated by the divergence,

(ξ1 + ∂1u1(X)ξ1)(ξ2 + ∂2u2(X)ξ2)(ξ3 + ∂3u3(X)ξ3)− ξ1ξ2ξ3

ξ1ξ2ξ3

≈
∑

εii(u) = ∇ · u.

These calculations show that if the displacement gradients are all zero, then a small
neighborhood of X will remain in the same state and thus differs from the original con-
figuration by a rigid displacement. More generally, when the displacement gradients
are small with respect to unity, the deformed state is characterized by the strain com-
ponents. This is the basic assumption of small deformation theory, which we assume
below. If both the displacement gradients and the displacements u(X) themselves are
small, then we identify the spatial and material coordinates, x ≈ X, and corresponding
gradients, ∂ui

∂Xj
≈ ∂ui

∂xj
. This is the small strain theory.
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2.2. Transport and Momentum. Just as deformation is a function that represents
a change in position from an initial to a final configuration, flow is used to describe a
time-dependent family of intermediate positions. A particle in a region Ω is identified
with its original location X ∈ Ω at t = 0, and its position at a later time t > 0 is denoted
by the deformation x = x(X, t). This curve in IR3 is the path of the particle X.

The distinction between spatial coordinates x and material coordinates X is even more
important for flows. For any function F (x, t), ∂F

∂t
is the usual partial derivative with x

fixed. We denote by D F
Dt

= ∂F (X,t)
∂t

the material derivative in which X is held fixed. For
example, the velocity of the particle X at time t is the material derivative

(2.1) v(t) =
dx(t)

dt
=

∂x(X, t)

∂t
.

Thus, for any spatial function F (x, t), the material derivative is given by

(2.2)
DF

Dt
=

∂F (x(X, t), t)

∂t
=

∂F (x, t)

∂xi

∂xi(X, t)

∂t
+

∂F (x, t)

∂t
=

∂F (x, t)

∂t
+ v ·∇F.

It is also known as the convective derivative.
We obtained the velocity at each point x from the particle paths in (2.1). Conversely,

we can recover the particle paths by solving the initial-value problem

(2.3)
dx

dt
= v(x, t), t > 0, x(0) = X,

for x = x(t). The acceleration of the particle is given by

(2.4) a =
Dv

Dt
=

∂v

∂t
+ v ·∇v.

This does not necessarily vanish if the flow is steady, i.e., v(x, t) = v(x), but then

a = v ·∇v.

The determinant of the deformation gradient is the Jacobian, J = det( ∂x
∂X

). It appears
as the scaling of volume under the change of coordinates, dx = J dX, and it is called the
expansion. The time-derivative of each term of the deformation gradient is given by

∂

∂t

∂xi

∂Xj

=
∂

∂Xj

∂xi

∂t
=

∂vi

∂Xj

=
∂vi

∂xk

∂xk

∂Xj

.

The derivative of any 3× 3 determinant is the sum of three terms, each being obtained
by differentiating one of the rows. The first term in dJ

dt
is∣∣∣∣∣∣

∂v1

∂xk

∂xk

∂X1

∂v1

∂xk

∂xk

∂X2

∂v1

∂xk

∂xk

∂X3

∇Xx2

∇Xx3

∣∣∣∣∣∣ =
∂v1

∂x1

J +
∂v1

∂x2

0 +
∂v1

∂x3

0 =
∂v1

∂x1

J ,

and the sum of the three terms is then
dJ

dt
= ∇ · vJ.

That is, the divergence of the velocity is the relative rate of change of the expansion,

(2.5) ∇ · v(t) = d
dt

ln J(t).

This is the Euler expansion formula.
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Let F (x, t) be a function, and at each t ≥ 0 let B(t) = {x(X, t) : X ∈ B} be the
position of a body B = B(0) of particles. We shall calculate the rate of change of

F (t) =

∫
B(t)

F (x, t) dx.

By a change of variable back to the material coordinates, we have from (2.5)

d

dt

∫
B(t)

F (x, t) dx =
d

dt

∫
B

F (x(X, t), t) JdX

=

∫
B

(
D

Dt
F (x(X, t), t) J + F (x(X, t), t)

D

Dt
J

)
dX

=

∫
B

(
D

Dt
F (x(X, t), t) + F (x(X, t), t)∇ · v

)
JdX

=

∫
B(t)

(
D

Dt
F (x, t) + F (x, t)∇ · v

)
dx .

Thus, we obtain the Reynolds transport theorem in either form

(2.6)
d

dt

∫
B(t)

F (x, t) dx =

∫
B(t)

(
∂

∂t
F (x, t) + ∇ · (F (x, t)v)

)
dx

=

∫
B(t)

∂

∂t
F (x, t)dx +

∫
∂B(t)

F (x, t)v · ndS .

The rate of change of the integral of F along a moving volume is the integral of the rate
of change of F plus the integral of flux of F over the boundary of that volume.

Let the region Ω be deformed with displacement u(t) = x(t)−X as above. The velocity
is v(t) = ∂u

∂t
, and the momentum of the particles with density ρ in the moving body B(t)

with velocity v(x, t) is given by
∫

B(t)
ρv(x, t) dx . It’s rate of change has i-th component

in any one of the forms

(2.7)
d

dt

∫
B(t)

ρvi(x, t) dx =

∫
B(t)

(
D

Dt
ρvi(x, t) + ρvi(x, t)∇ · v

)
dx

=

∫
B(t)

(
∂

∂t
ρvi(x, t) + ∇ · (ρvi(x, t)v)

)
dx

=

∫
B(t)

∂

∂t
ρvi(x, t)dx +

∫
∂B(t)

ρvi(x, t)v · ndS.

2.3. Force and Stress. Forces acting on a body are divided into two categories, point
forces and traction forces. Point forces depend on the location at which they are applied,
and they are usually distributed with respect to mass or volume. A force density f(x)
distributed over Ω denotes the force applied at the point x. Thus, the total body force
applied to a region B ⊂ Ω is given by the volume integral

∫
B

f(x) dx. Gravity and
magnetism are examples of this type. Traction forces act on surface elements at the
point, so they depend not only on the location but also on the orientation of the surface
element on which they act, i.e., its orientation. Fluid pressure is the simplest example,
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since it acts normal to the surface to which it is applied. If the fluid is viscous and in
motion, then its action also has a force component tangential to the surface.

A deformation or change of shape of a body from its equilibrium position changes the
array of forces which represent the local action on each small part of the body of the
complement of that part by way of its boundary. These internal forces are characterized
by the stress functional, and this concept can be visualized as follows. Let x be a point in
the body and S be a small element of surface located at x. The stress gives the traction
force distribution acting on one side of S which represents the effect of the body from
the opposite side of S, so it is a function of x and also of the orientation of S, i.e., the
unit normal n to S. Denote the force of the body on the positive side of S by Σ(S) and

consider the ratio Σ(S)
|S| . The limit of this ratio as the measure |S| → 0 depends on the

point x and the vector n, and it defines the stress,

σ(x,n) ≡ lim
|S|→0

(
Σ(S)

|S|

)
.

If the deformation is time dependent, so also is the resulting stress field, σ(x, t,n).
Stress is characterized by a symmetric matrix σij(x) for which the ith component of the

traction force on S at x is given by σ(x,n)i = σij(x) nj. The total of all traction forces
acting on B ⊂ Ω is given by the surface integral

∫
∂B

σij nj dS. Here n = (n1, n2, n3)
is the unit outward normal vector on the boundary ∂B. Finally, we should note that
stress is defined to be positive with tension, i.e., negative with compression. By contrast,
pressure is a special form of stress which acts only in the normal direction to a surface,
and it is taken to be positive in compression, so it has the form σ(x,n)i = −p(x) ni, that
is, σij(x) = −δij p(x) with a scalar-valued function, p(x).

Let the region Ω be deformed with displacement u(t) as before. The velocity is
v(t) = u′(t), and the momentum of the particles with density ρ in the moving body
B(t) with velocity v(x, t) is given by

∫
B(t)

ρv(x, t) dx . The forces acting on the body

B(t) consist of the traction forces applied by the complement of B(t) across its boundary∫
∂B(t)

σij(x, t) nj dS and the volume-distributed exterior forces
∫

B(t)
f(x, t) dx . Thus we

obtain the equation of balance of momentum

d

dt

∫
B(t)

ρv(x, t) dx =

∫
∂B(t)

σ(·, t,n) dS +

∫
B(t)

f(x, t) dx

for each such B(t), and with (2.7) this gives the system of partial differential equations

(2.8) ρ
∂vi(x, t)

∂t
+ ∇ · (v(x, t) ρ vi(x, t))− ∂jσij(x, t) = fi(x, t) , 1 ≤ i ≤ 3 ,

where v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) is the (small) displacement rate at the position
x ∈ Ω, and components of f(x, t) are indicated similarly. The boundary conditions on ∂Ω
will involve the displacement or the tractions σij(x, t)nj on ∂Ω. For example, we could
impose

ui = 0 on Γ0 , σij(x, t)nj = gi on Γ1 , 1 ≤ i ≤ 3,
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where Γ0 and Γ1 are complementary parts of the boundary ∂Ω. The traction forces can
be further resolved

σn ≡ σijninj ,

σt ≡ {σit} = σ − σn n ,

σit ≡ σijnj − σnni ,

as indicated into their normal and tangential components.

3. Constitutive Laws

3.1. Linear Elasticity. The necessarily symmetric stress σ represents the internal forces
on surface elements resulting from deformations. The material is characterized by a
stress-strain law which relates the stress to the strain εij. Linearly elastic materials are
those characterized by the generalized Hooke’s law

σij(u) = aijkl εkl(u) .

The positive and symmetric elasticity aijkl provides a model for general anisotropic
materials. It satisfies the symmetry conditions

aijkl = aklij, aijkl = ajikl = aijlk .

Note that the sign of the elasticity is consistent with the convention that stress com-
ponents are positive in tension. The body is said to be homogeneus if the elasticity
is constant, and it is called non-homogeneus if the elasticity varies with the point x.
The quadratic form 1

2
aijklξijξkl is the elastic energy density, and it determines the strain

energy

E(u) ≡ 1

2

∫
Ω

(aijkl ∂jui ∂kul ) dx .

We shall consider only those elasticities which are coercive:

c |ξ|2 ≤ aijklξijξkl ≤ K |ξ|2 , ξ ∈ IR3

for some c > 0.
For the special case of an isotropic medium, the elasticity is given by

aijkl ≡ λδijδkl + µ(δikδjl + δilδjk)

with the positive Lamé constants λ and µ. These represent the dilation and shear moduli
of elasticity, respectively. The first accounts for compression and the second for distortion
of the medium. From the computations

δijδklεkl = δijεkk

δikδjlεkl = εij

δilδjkεkl = εij

we obtain the stress

σij(u) = aijklεkl(u) = λδijεkk(u) + 2µεij(u) .

The elastic energy density is given by

1

2
aijklξijξkl =

λ

2
(ξii)

2 + µξijξij ,
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and the corresponding strain energy functional is

E(u) ≡
∫

Ω

(
λ

2
(∂iui)

2 + µ∂jui∂jui

)
dx .

The Lamé constants λ and µ are convenient for the theory, but there are other con-
stants that have a more direct mechanical interpretation. We introduce them by three
experiments, which are illustrated below in Figure 2.. First, assume the material is loaded
vertically so σ3 = (0, 0, σ33). Then we have

0 = λεkk + 2µε11 , 0 = λεkk + 2µε22 , σ33 = λεkk + 2µε33 .

By summing these three and then using the last, we obtain

σ33 = (3λ + 2µ)εkk = Eε33

where the constant E is Young’s modulus,

E =
µ(3λ + 2µ)

λ + µ
.

This represents the resistance of the material under uniaxial loading. Also, by solving
for λεkk in the first two equations and then using the last, we get

ε11 = ε22 = −νε33

where

ν =
λ

2(λ + µ)

is the Poisson’s ratio. This is a measure of the ‘bulging’ of the material, a transfer of
its deformation to the direction perpendicular to the uniaxial load. These permit the
expression of strain in terms of stress through the inverse form of Hooke’s law as

ε11 =
1

E
(σ11 − ν(σ22 + σ33)) , ε12 =

1

2µ
σ12

ε22 =
1

E
(σ22 − ν(σ11 + σ33)) , ε13 =

1

2µ
σ13

ε33 =
1

E
(σ33 − ν(σ11 + σ22)) , ε23 =

1

2µ
σ23

In the second experiment, the material is loaded by a constant (decrease of) pressure,
that is,

σ11 = σ22 = σ33 = P .

Then we have from Hooke’s law

ε11 = ε22 = ε33 =
1

E
(P (1− 2ν))

so the expansion is given by

εkk =
P

K
where

K =
E

3(1− 2ν)
= λ +

2

3
µ
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Figure 2. Experiments

is the bulk modulus, a measure of the pressure required for a decrease of volume. Finally,
assume that the material is loaded by a ‘pure shear’ for which

σ11 = −σ22 , σ33 = 0 .

Then we obtain as before

ε11 =
σ11

2G
, ε22 =

σ22

2G
, ε33 = 0 ,

where G = E
2(1+ν)

= µ is the shear modulus.

The stationary elasticity system is given by the equations of equilibrium

−∂jaijkl εkl(u) = fi in Ω , 1 ≤ i ≤ 3,

ui = 0 on Γ0 , aijkl εkl(u)nj = gi on Γ1 ,

where u(x) = (u1(x), u2(x), u3(x)) is the (small) displacement from the position x ∈ Ω,
and εkl(u) ≡ 1

2
(∂kul + ∂luk) is the (linearized) strain, which provides a measure of the

local deformation of the body. We shall seek a weak solution u in the complex Sobolev
product space

V1 ≡ {v ∈ H1(Ω)3 : v = 0 on Γ0} .

Multiply the system equations by the complex conjugates of the respective components
of a v ∈ H1(Ω)3 and use Greens theorem to integrate by parts and obtain∫

Ω

aijklεkl(u)∂jvi dx =

∫
Ω

fivi dx +

∫
Γ

aijklεkl(u)njvi ds .

From the symmetry aijkl = ajikl and boundary condition vi = 0 on Γ0 we obtain the
weak formulation of the problem,

u ∈ V1 :

∫
Ω

aijklεkl(u)εij(v) dx =

∫
Ω

fivi dx +

∫
Γ1

givi ds ∀v ∈ V1 .

This is of the form
u ∈ V1 : e(u,v) = f0(v) ∀v ∈ V1

with the appropriate definitions of the sesquilinear form e(·, ·) and the conjugate-linear
functional f0(·) on the Hilbert space V1. Hereafter we denote the resulting elasticity
operator above by E(u) = f0. That is, E : V1 → V′

1 is the linear operator determined
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by the sesquilinear form e(·, ·) on V1, E(u)(v) = e(u,v), v ∈ V1 , so it is the Gateaux
derivative of the strain energy, E = E ′. It follows from Korn’s inequality that this form
is coercive, and so E is an isomorphism. See Ciarlet for regularity results on E .

We return to the elasticity system posed in terms of the Lamé constants. The weak
form of the isotropic elasticity system is given by

u ∈ V1 :

∫
Ω

(λ(∇ · u) (∇ · v) + 2µ εij(u) εij(v)) dx

=

∫
Ω

f · v dx +

∫
Γ1

g · v ds ∀v ∈ V1 .

If we write out in components the corresponding partial differential equations, we have

−∂j(λδij∇ · u + µ(∂iuj + ∂jui)) = fi

or
−(λ + µ)∂i(∇ · u)− µ∆ui = fi .

The boundary conditions are

ui = 0 on Γ0 , λ(∇ · u)ni + 2µ εij(u)nj = gi on Γ1 , 1 ≤ i ≤ 3 .

This boundary-value problem in vector form is given by

−(λ + µ)∇(∇ · u)− µ∆u = f in Ω ,

u = 0 on Γ0 , σ(u,n) = g on Γ1 ,

where the boundary traction is given by

σ(u,n) = λ(∇ · u)n + 2µ ε(u,n) , ε(u,n)i ≡ εij(u)nj, 1 ≤ i ≤ 3 .

The operator form of this boundary-value problem is

u ∈ V1 : E(u) = f0 in V′
1 .

For the fully dynamic case of a general linearly elastic body with small displacement
rates, the momentum equation (2.8) takes the form of the initial-boundary value problem
for the hyperbolic system

ρ
∂2ui(x, t)

∂t2
− ∂jaijkl εkl(u(x, t)) = fi(x, t) in Ω , 1 ≤ i ≤ 3 ,

ui = 0 on Γ0 , aijkl εkl(u)nj = gi on Γ1 .

In the isotropic case this elasticity system is given by

ρ
∂2ui(x, t)

∂t2
− ∂j(λδij∇ · u + µ(∂iuj + ∂jui)) = fi(x, t) in Ω , 1 ≤ i ≤ 3 ,

ui = 0 on Γ0 , λ(∇ · u)ni + 2µ εij(u)nj = gi on Γ1 ,

and in vector form we have the wave equation

ρü− (λ + µ)∇(∇ · u)− µ∆u = f in Ω ,

u = 0 on Γ0 , λ(∇ · u)n + 2µ ε(u,n) = g on Γ1 .

The operator form of this evolution equation is

ρü + E(u) = f0.
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Note that the compression component of the stress satisfies σkk(u) = (3λ + 2µ)εkk(u).
The limiting case of 3λ+2µ →∞ leads to the situation in which εkk(u) = 0, that is, the
material is incompressible. Thus, when the dilational modulus of elasticity λ → +∞, the
system of partial differential equations becomes a pair of complementary equations

ρü− µ∆u + ∇p = f , ∇ · u = 0 in Ω ,

u = 0 on Γ0 , −pn + 2µ ε(u,n) = g on Γ1 ,

in which the limiting variable p = − limλ→∞ λ∇ · u is an unknown function which we
identify formally as a pressure.

Remark 3.1. The incompressible elastic solids are those which are capable of sustaining
substantial deformations without a change in volume. For such a material the stress is
not determined solely by the deformation! To the stress of an incompressible solid may be
added any multiple of the type of stress associated with a pure volume change or dilation
without modifying the deformation of the body, i.e., a pressure. Thus, the addition of a
pressure p to an incompressible solid body will change the stress to

σij(u) = −pδij + 2µεij(u)

but it will not affect the strain.

3.2. Visco-elasticity. Consider a medium in which there are additional internal forces

generated by the strain rate,
∂εij(u)

∂t
= εij(v), where v ≡ ∂u

∂t
is the displacement velocity.

Thus, we have a dissipation functional of the form

F(v) ≡ 1

2

∫
Ω

(bijkl ∂jvi ∂kvl ) dx ,

and the corresponding stress is given by the derivatives

σij ≡
∂E
∂u

+
∂F
∂v

= aijkl∂kul + bijkl∂kvl ,

with the positive and symmetric viscosity bijkl. The momentum equations take the form

ρüi = ∂j(bijkl∂ku̇l) + ∂j(aijkl∂kul) + fi .

For the special case of an isotropic medium, the viscosity is given by

bijkl ≡ λ1δijδkl + µ1(δikδjl + δilδjk)

with the positive Lamé constants λ1 and µ1 which denote the dilational viscosity and
shear viscosity, respectively. Then the vector form of the momentum equation is given
by the strongly-damped wave equation

ρü− (λ1 + µ1)∇(∇ · u̇)− µ1∆u̇− (λ + µ)∇(∇ · u)− µ∆u = f in Ω

and the boundary conditions are

u = 0 on Γ0 , λ1(∇ · u̇)n + 2µ1 ε(u̇,n) + λ(∇ · u)n + 2µ ε(u,n) = g on Γ1 .

The operator form of this evolution equation is given by

ρü + F(u̇) + E(u) = f0 ,
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where F denotes the operator representing the viscous friction. In order to obtain the
case of an incompressible material, we let λ →∞ to obtain the system of complementary
equations and boundary conditions

ρü− µ1∆u̇− µ∆u + ∇p = f , ∇ · u = 0 in Ω ,

u = 0 on Γ0 , −pn + 2µ1 ε(u̇,n) + 2µ ε(u,n) = g on Γ1 ,

where p is a formal pressure variable.

Remark 3.2. Orientation One can formally obtain a viscous fluid by eliminating the
elastic forces in the preceding discussion. That is, the fluid is regarded as an isotropic
medium for which internal forces arise only from the strain rate, i.e., from the motion.
In terms of the velocity, v = u̇, this leads to a strongly-parabolic system of the form

ρv̇ − (λ1 + µ1)∇(∇ · v)− µ1∆v = f in Ω ,

v = 0 on Γ0 , λ1(∇ · v)n + 2µ1 ε(v,n) = g on Γ1 ,

and in the incompressible case we obtain the Stokes system

ρv̇ − µ1∆v + ∇p = f , ∇ · v = 0 in Ω ,

v = 0 on Γ0 , −pn + 2µ1 ε(v,n) = g on Γ1 ,

with p being the (unknown) pressure. However, in the first compressible case, this is
inconsistent with the assumption that the density is a prescribed autonomous function. A
non-zero mass flux across the boundary of a small region will change with time the fluid
density within that region. Thus the density becomes an additional unknown variable and
requires a corresponding additional equation to complete the system.

Remark 3.3. The material derivative of velocity has been approximated here by the
acceleration. For the calculation of the acceleration of a fluid element, the displacement
of that element along with the points must be considered. The momentum of the small
subdomain B ⊂ Ω travelling with the fluid is

∫
B

ρv(x + u(x, t), t) dx , and its derivative
is given by the Chain rule as∫

B

ρ

(
∂v(x + u(x, t), t)

∂t
+ ∂jv(x + u(x, t), t) vj(x + u(x, t), t)

)
dx .

Thus, the momentum equation for the fluid includes the additional term (v ·∇)v = vj∂jv,
and the corresponding system is the Navier-Stokes system

ρv̇ − µ1∆v + (v · ∇)v + ∇p = f , ∇ · v = 0 in Ω ,

v = 0 on Γ0 , −pn + 2µ1 ε(v,n) = g on Γ1 ,

for a viscous incompressible fluid. Note that the quadratic nonlinearity arises from the
geometry of the motion, and it is not based on any independent assumptions.
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