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Prefoce

In this monograph we shall deal primarily with the Cauchy problem for singular or
degenerate equations of the form (v' = u, = 3u/3t)

(1.1 Altlu,, + B(thu, + Clthu =g

where u(*) is a function of ¢, taking values in a separated locally convex space E,
while A(t), B(t), and C(t) are families of linear or nonlinear differential type opera-
tors acting in £, some of which become zero or infinite at ¢t = 0. Appropriate initial
data «{0} and u, (0} will be prescribed at ¢ =0, and g is a suitable £-valued function.
Similarly some equations of the form

(1.2) (A(~)ud, + (BC)u) + C(r)u =g

will be considered. Problems of the type (1.1) for example will be called singular if
at least one of the operator coefficients tends to infinity in some sense as ¢t = 0.
Such problems will be called degenerate if some operator coefficient tends to zero as
t— 0 in such a way as to change the type of the problem. Similar considerations
apply to (1.2). We shall treat only a subclass of the singular and degenerate problems
indicated and will concentrate on well-posed problems. If (1.1) or (1.2) can be
exhibited in a form where the highest order derivative appears with coefficient one,
then the problems treated will be of parabolic or hyperbolic type; if the highest
order derivative cannot be so isolated, the equation will be said to be of Sobolev
type. We have included a discussion of not necessarily singular or degenerate Sobolev
equations for completeness, since it is not available elsewhere. The distinction be-
tween singular and degenerate can occasionally be somewhat artificial when some of
the operators (or factors thereof) are invertible or when a suitable change of variable
can be introduced (see, e.g., Example 1.3); however, we shall not usually resort to
such artifices. In practice £ frequently will be a space of functions or distributions in
aregion @ CIR" and 0 <t < b < oo,

The study of singular and degenerate Cauchy problems is partially motivated by
problems in physics, geometry, applied mathematics, etc., many examples of which
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are given in the text, and there is an extensive literature. We have tried to give a
fairly complete bibliography and apologize for any omissions. The material is aimed
basically at analysts, and standard theorems from functional analysis will be assumed
(cf. Bourbaki [1; 2], Carroll [14], Horvath [1], Kothe [1], Schaeffer [1], Treves
[1]); in particular Schwartz distributions will be used with the standard notations
(cf. Schwartz [1]). There is also some material involving the abstract theory of Lie
groups which is assumed but clearly indicated, with references, in Chapter 2; and
there are enough concrete examples worked out in the text to illustrate the matter
completely for the reader unfamiliar with Lie theory. The chapters are essentially
independent; Chapters 1 and 3 begin with introductory material outlining content,
motivation, and objectives, whereas Chapters 2 and 4 are organized somewhat dif-
ferently.

Some remarks on notation should perhaps be made here. If, in a given chapter,
there appears a reference to formula (x.y) it means (x.y) of that chapter. If a
reference (x.y. z) appears, it means formula (y. z) of Chapter x. Theorems, Lemmas,
Examples, Remarks, etc. will be labeled consecutively; thus one might have in order:
Lemma x.y, Theorem x.y +1, Remark x.y +2, Lemma x.y + 3, etc. in a given
section.

The first author (R.W.C.) would like to acknowledge a professional debt to A.
Weinstein, who initiated systematic work on Euler-Poisson-Darboux (EPD) equa-
tions (cf. Weinstein [1; 2]) and whose further contributions to this theory have been
essential to its development; his encouragement motivated this author’s early work
in the area. He was also instrumental in the undertaking of the present monograph.
Thus this book is dedicated to Alexander Weinstein.

The authors would like to acknowledge the aid of the National Science Founda-
tion from time to time in supporting some of the research presented here.

viili



Chapter 1
Singular Partial Differential
Equations of EPD Type

1.1 Examples. Let us first give some typical examples of
singular and related degenerate problems; their solutions, in
various spaces via diverse techniques, will appear in the course
of the book, usually as special cases of more general results.
Further examples of degenerate problems will appear in Chapter 3.

Example 1.1 The singular Cauchy problem for EPD equations.

Let t 2 0 and x ¢ 12"; we consider the»prob]em

(1.1) m 2m + 1

u? =AU
(1.2) u"(x,0) = f(x); u?(x,o) = 0

where the parameter m € € is arbitrary for the moment, AX de-
notes the Laplace operator in R", and classically f and u" were
numerical functions (note that the Teft hand side of (1.1) de-
notes the radial form of a Laplace operator in R"ifom+ 1=

n - 1). These equations, for integral m, provide a model for
some very interesting scales of canonical singular Cauchy prob-
lems with their natural origins in Lie theory (see Chapter 2).
They also arise in physics as is indicated in Example 1.3 and of
course for m = -1/2 we have the wave equation; their connection
with mean values is indicated in Section 2 and in Chapter 2. 1In
various forms one can trace their origins back to Euler [1],

Poisson [1], and Darboux [1]. In this chapter we will present
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five general techniques for the solution of these problems and of
similar abstract singular problems; more general singularities in
the Uy term and some nonlinear terms will be treated. The first
is based on a Fourier method in distribution spaces developed by
one of the authors (cf. Carroll [2; 3; 4; 5; 63 8; 105 11; 14]).
The second involves a spectral technique in a Hilbert space re-
lated to the Fourier method (cf. Carroll, loc. cit.) while the
third is based on transmutation methods in various spaces (cf.
Carroll [24], Carroll-Donaldson [20], Delsarte [1], Delsarte-
Lions [2; 3] Donaldson [1; 33 5], Hersh [2], Lions [1; 2; 3; 4;
5], Thyssen [1; 2]). The fourth involves the idea of related dif-
ferential equations (cf. Bragg [2; 3; 4; 5; 9], Bragg-Dettman [1;
6; 7; 8], Carroll [24], Carroll-Donaldson [20], Dettman [1],
Donaldson [1; 3; 5], Donaldson-Hersh [6], Hersh [1; 2; 3]). There
are certain relations between the method of transmutation and that
of related equations and this is brought out in Carroll [24],
Carroll-Donaldson [20], and Hersh [2] (cf. also Carroll [18; 19;
25], Donaldson [4; 7], and Hersh [1; 2]). The fifth technique
involves “"energy" methods following Lions [5] and yields some re-

sults of Lions indicated in Carroll [8].

Remark 1.2 There are many additional papers devoted to prob-
lems of the form (1.1) - (1.2) and we will list some of them here;
further references can be found in the bibliographies to these
articles. Some of this material will appear in this or other

chapters. In giving such references we have tried to avoid
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repetition of the citations above and there will be considerable
relevant material and further references in the work on the Cauchy
problem for abstract Tricomi type problems to be treated later in
Chapter 3 (cf. Example 1.3), in Remark 2.4 on mean values, and in
Chapter 4. Thus, let us cite here Agmon [2], Babenko [1],
Baouendi-Goulaouic [1], Baranovskij [1; 2; 3; 4; 5; 63 71,
Barantsev [1], Berezanskij [1], Berezin [1], Bers [1; 2], Bitsadze
[1; 2], Blumkina [1], Bresters [1], Bureau [1; 2], Carroll [7; 9;
13; 18; 19; 21; 22], Carrol1-Silver [15; 163 17], Carroll-Wang
[12], Chi [1; 2], Cibrario [1; 2; 3], Cinquini-Cibrario [1;2],
Conti [13 23 3], Copson [1], Copson-Erdelyi [2], Courant-Hilbert
[1]1, Delache-Leray [1], Diaz [5; 6], Diaz-Kiwan [7], Diaz-Ludford
[3; 4], Diaz-Martin [9], Diaz-Weinberger [2], Diaz-Young [1; 8],
Ferrari-Tricomi [1], Filipov [1], Fox [1], Frank'l [1], Fried-
lander~Heins [1], B, Friedman [1], Fusaro [2; 3; 4; 5; 6], Gara-
bedian [1], Germain [1], Germain-Bader [2; 3], Gilbert [1],
Gordeev [1], Gunther [2; 3], Haack-Hellwig [1], Hariullina [1; 2;
3], Hairullina-Nikolenko [1], Hellwig [1; 2; 3], Kapi]evig [1; 2;
3; 4; 5; 6], Karapetyan [1], Karimov-Baikuziev [1; 2], Karmanov
[1], Karol [1; 2], Kononenko [1], Krasnov [1; 2; 3], Krivenko

[1; 2], LadyZenskaya [1], Lavrentiev-Bitsadze [1], Lieberstein

[1; 2], Makarov [1; 2], Makusina [1], Martin [1], Mikhlin [1],
Miles-Williams [1], Miles~Young [2; 3], Morawetz [1; 2], Nersesyan
[1], Nevostruev [1], Nosov [1], Olevskij [2], Ossicini [1; 2],
Ovsyanikov [1], Payne [1], Payne-Sather [2], Protter [2; 3; 4; 5;
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6], Protter-Weinberger [1], Rosenbloom [1; 2; 3], Sather-Sather
[4], Silver [1], Smirnov [1; 2; 3; 4], Solomon [1; 2], Sun [1],
Suschowk [1], Tersenov [1; 2; 3; 4], Tong [1], Travis [1], Tri-
comi [1], Volkodarov [1], Walker [1; 2; 3], Walter [1], Wang [1;
2], Weinstein [13 2; 33 4; 5; 65 73 8; 95 103 11; 13; 14; 15; 16;
175 18; 19; 20], Williams [1], Young [1; 25 3; 4; 5; 63 7; 8;

9; 105 111, Zitomirskij [1]1.

Example 1.3 The degenerate Cauchy problem for the Tricomi

equation, The original Tricomi equation is of the form

(1.3) u tu = 0

tt T “Uxx
and we will be primarily concerned with the Cauchy problem for

abstract versions of the more general equation

(1.4) Ugy + a(x,t)ut + b(x,t)ux + ¢(x,t)u - K(x,t)uXx = 0

in the hyperbolic region t > 0 where it is assumed that tK(x,t) >

0 for t ¥ 0 while K(x,0) = 0; suitable initial data u(x,0) and

ut(x,O) will be prescribed on the parabolic line t = 0. This ex-
ample will be treated as a degenerate problem in Chapter 3 but is
displayed here because of the connection of (1.3) to a (singular)
EPD equation of index 2m + 1 = 1/3 under the change of variable

T=2/3 t3/2 for t > 0 which yields
(1.5) Upg F 3 Up = Uy

Similarly in the region t < 0 the change of variable 'r==2/3(-t)3/2



1. SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE

+ L u_+u,, =0 which is a singular

transforms (1.3) into u, 37 Ut 7 Uxx

elliptic equation of the type studied by Weinstein and others in
the context of generalized axially symmetric potential theory
(GASPT); cf. Remark 1.2 for some references to this, The refer-
ences above in Remark 1.2 also deal with mixed problems where
suitable data is prescribed on various types of curves in the el-
liptic (t < 0) and hyperbolic (t > 0) regions; such problems occur
for example in transonic gas dynamics. We will not deal with the
elliptic region in general but some other types of singular hyper-
bolic problems for EPD equations will be discussed briefly in

Chapter 4.

1.2 Mean values in R". We refer now to the EPD problem
(1.1) - (1.2) for x ¢ R" and 2m + 1 = n - 1 which is a pivotal
case in the theory. Let <T,¢> denote the action in R" of a dis-

] ]
tribution Te D = DX on a “"test function" ¢ € D = DX; the same

] )
bracket notation will also be used for pairings E - E, S -S,
etc. One defines a surface (or spherical) mean value operator

ux(t) (t fixed for the moment) by the rule

@2.1) ()0 = gh— [ e(xdo,

towy |x|=t
n

where ¢ € E, |x[2 =) x?, w = 2nn/2/F(n/2) is the surface area
1

of the n-dimensional unit ball, and do_ = -1

dQn represents the
surface area measure on the ball of radius |x| = t. The surface
mean value measure ux(t) averages ¢ over a sphere of radius t cen-

tered at the origin. Similarly one defines a solid mean value



SINGULAR AND DEGENERATE CAUCHY PROBLEMS

)
operator Ax(t) € E (t still fixed) by the rule

. _n
(2.2) <A (1), ¢> o J|x3t¢(X)dx

which averages ¢ € E over the entire ball |x| < t. Now we observe
that <ux(t), o{x)> = <uy(1),¢(ty)> and, allowing t to vary, the
following calculations are easily checked (v denotes the exterior

normal)

d _ 1 d
23w, = jngz sk d

S— J D p— A
= — = — $dx
t" ]wn |x]=t VTN ]wn Jlxlft

t -
ﬁ' <AX(t)’ A¢> -

S|et

<AAX(t), ¢>
(2.4) 4 < (t) ¢> = —,—'"2 f $(x)dx
dt X tn+ wn lxlft

n

n
[V

t n

+

Jl 000, = Bt - A0,
|-

Note in (2.3) that if y € D with y = 1 in a neighborhood of
|x| €t then the E-E' pairing <Ax(t), Ap>p = <Ax(t),A(¢w)>D in a
D-D' pairing so that <Ax(t),A(¢np)>D = <AAX(t),q>1p>D = <AAX(t), >
1 '
(i.e., AAx(t) e E is computed in D ),
By Lemma 2.3 below, (2.3) and (2.4) imply that the functions
t > px(t) and t » Ax(t) belong to C”(E;) for t > 0 with

(2.5)  pu(t) = & ar (1)
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(2.6) S A (£) = Hu, (t) - A (1))

]
Theorem 2.1 Let T e DX be arbitrary. Then uT(t)
ux(t) * T satisfies the EPD equation (1.1) with 2m + 1 =n - 1
(i.e., m= %-- 1) and the initial conditions uT(o) = T with

d m
dt ux(

o) = 0.

)
Proof: We recall that (S, T) > S *T: E xD -~ DI
is separately continuous so equation (1.1) results immediately by

differentiating (2.5) and using (2.5) - (2.6). Evidently

ux(t) + & (Dirac measure at x = 0) when t -~ 0 and we note that

d t

SO (0) * 1) = S aA (£) * T = (H[as * A (t) * T] =

(£) (A (t) * aT) > 0as t » 0. QED

For information about distributions and the differentiation
of vector valued functions let us refer to Carroll [14], A.
Friedman [2], Garsoux [1], Gelfand-Silov [5; 63 7], Horvath [1],
Nachbin [1], Schwartz [1; 2], Treves [1].

Definition 2.2 A function f:R ~» E, E a general locally

[ " %
convex space, has a scalar derivative fs(t) e (E) if

g{<f('), e = <f;('), e>foralle ek (F* denotes the alge-
braic dual of F). On the other hand if %% = fl(t) e E in the
topology of E then fI is called the strong derivative of f.

The following lemma is a special case of results in Carroll

[2; 5; 14] and Schwartz [2].
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[} [}
Lemma 2.3 If f:R - E has a scalar derivative fS then f is
[}

]
strongly differentiable with f = f_.
F(t)-F(t,) o
_—Trfsz;‘“. In discussing
limits as t >~ t_ it suffices to consider sequences tot since

Proof: Fix t, and set g(t) =

any t0 has a countable fundamental system of neighborhoods. By
]
hypothesis g(tn) > fs(to) weakly. Using the fact that E is a
Montel space and a version of the Banach-Steinhaus theorem (cf.
] 1
Carroll [14]) it follows that g(tn) > fs(to) strongly in E so
1 1
that f(t ) = f (¢ ). QED

Remark 2.4 A great deal of information is available relating
"spherical” mean values and differential equations, both in R"
and on certain Riemannian manifolds. In addition to references
included in the Introduction, Example 1.1, Remark 1.2, and work
on GASPT, relative to such mean values, let us mention Asgeirsson
[1], Carroll [1], Fusaro [1], Ghermanesco [1; 2], Giinther [1],
Helgason [1; 2; 3; 4; 5; 63 73 83 9; 10; 111, John [1], Olevskij
[1], Poritsky [1], Walter [2], Weinstein [12], Willmore [1] and
their bibliographies. This will be discussed further in a Lie
group context in Chapter 2. For some references to complex func-
tion theory and various mean values and measures related to dif-
ferential equations see Zalcman [1; 2] and the bibliographies

there,

1.3 The Fourier method. We will work with a more general

equation than (1.1) which includes (1.1) as a special case. Thus
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%n

let D 2 (l<k<n),D = ()] (D)
9X = = > To 1 v n

k
(3.1) A = Jap

..-.| —

Ko , and

where the a, are constant {and real) and the sum in (3.1) is over
a finite set of multi-indices a = (a], . e e an). The Fourier

A 1 )
transform F:T >~ T = FT:S -+ S 1is a topological isomorphism (cf.

Schwartz [1]) and for ¢ € S for example we use the form F¢p =

A oo n

¢ = J ¢(x) exp - i<x,y>dx where <x,y> = } X;¥;. Hence in par-
- 1

ticular F(Dk¢) = ¥ Fo = Y, 6. We recall also that AXT =AS*T

. _ . . _ _ o _ 1
with F§ = 1 and will write A(y) = F(AXG) =3 ay = ) ayy . .-

[0
ynn. It will be assumed that A(y) satisfies

Condition 3.1 A(y) =} aaya is real with A(y) > a > 0 for

Iyl > R,

22
i Dk

) Di so that F(-A8) = ) yi = |y|2. It can also hold for certain

In particular Condition 3.1 holds when A = -A = -y
hypoelliptic operators A since then |A(y)| + = as |y| + = (cf.
Hormander [1]) or even nonhypoelliptic operators (e.g., A(y) =
a + yg + .., .+ ys). One might also envision a parallel theory
when Re A(y) > a > 0 for |y| > R, but we will not investigate
this here. Let us first consider the problem for w'(+) € CZ(S;)

on 0 £t <b< e {barbitrary)

m 2m + 1 m _
(3.2) Weo ¥ Wt Axwm = 0

(3.3)  w"o)=Tes ; Wi(o) = 0
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where m > -1/2 is real (complex m with Re m > -1/2 can also be
treated by the methods of this section). Taking Fourier trans-

forms in x one obtains

“m 2m + -l Am Am _
(3.4) Wiy + Y +Aly) w = 0

(3.5)  w"(o) =T; w"o) = 0

and when T = & we denote the solution of (3.2) - (3.3) by R"(t)
so that R™(t) satisfies (3.4) - (3.5) with T = 1. The expressions

Rm(t) and ﬁm(t) will be called resolvants and one notes that if
1 Py
R"(t) e 0. (i.e., R"(t) € 0,), with suitable differentiability in

Oc> then R"(t) * T = w™(t) satisfies (3.2) - (3.3) (see Theorem

3.4). We recall here that 0
n

M is the space of ¢* functions f on

R such that Daf is bounded by a polynomial (depending perhaps

on a) while f_, - 0 in OM whenever gDab -+ 0 uniformly in R" for

B B
1 - [
any a and any g € S. 0C = F 1OM < S and is given the topology

C

FTB >0 in OM). It is known that Oé is the space of distributions

] 1
mapping S -+ S under convolution and the map (S,T) ~ S * T:

1
transported by the Fourier transform (i.e., TB + 0 in 0. <

] 1 1
0C x § =+ S s hypocontinuous.
Now the solution of (3.4) - (3.5) when ? = 1 is given by
(R™(t) = R™(-,t))

(3.6)  R™(y.t) =2"r (m1)2™ (2)

©o

k
) F(mﬂ)kzo (;1!) (%')Zk I‘(klmﬂ)

10
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where z = t /A(y] (cf. B. Friedman [1] and Rosenbloom [1]). One
observes that ﬁm(y,t) is in fact a function of z2 so that it is
not necessary to define the square root vA{y); evidently ﬁm(-,t)
is an entire function of the Y for Y € € (and hence of y ¢ ¢n

by Hartog's theorem - cf. Hdrmander [2]).

Lemma 3.2 The function t ~ R™(+,t):[0,b] ~ OM is continuous

(m>-1/2).

Proof: Clearly t -~ R"(-,t):[0,b] ~ Ey is continuous and one
knows that on bounded sets in OM the topo]ogy of OM coincides with

that induced by E (see Schwartz [2] and recall that a set BC OM
is bounded if Daf is bounded by the same polynomial, depending
perhaps on o, for all f € B). Consequently one need only show
that each Daam(y,t) is bounded by a polynomial in y, independent
of t for t € [o,b]. We choose here a straightforward method of
doing this and refer to subsequent material for another, much

more general, technique (cf. Carroll [5; 8]). Thus, one knows

that for m > =1/2 (cf. Watson [1])

]
1-m_~ 5 /2
- 2 m 2 . 2m
(3.7) 2™ (2) = P J cos (z cos 8) sin~'6 do
m r{m+ —2-) o]

(the case m = =1/2 is trivial since z]/ZJ_]/Z(z) = (2/11)]/2 cos Z).

Writing la| =a, +. . . +a and ¢ = 2r(m+1)/v/m T'(m + %) we

have from (3.7)

11
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5lafgm /2
(3.8) L___JE_LXL_l| mlJﬂ (_1)|a|
azlal 0
cos {z cos8)

.« | 1 cos|®lg sin“Made| <
sin (z cos8)

e
_n

Now for |y| > R, we write

(3.9) gi-lzﬁ‘"w,t) - (+% ‘ ’/zm—r) 2 R"(y,t)

and since A(y) 2 a with aA(y)/ayk = Bk(y) a polynomial we have
from (3.8) - (3.9)

(3.10) |——(L—l| J_lB(yI—clB(yI 1+ cPB(y)

A similar argument obviously applies to majorize any Daﬁm(y,t) for
ly| > R, by a polynomial in y not depending on t. For |y| < R,
the power series in (3.6) may be used, since (y,t) - Daﬁm(y,t) is
continuous on the compact set {|y| < RO} x [0,b], to obtain a
bound IDaﬁm(y,t,)l < Ma. Consequently |Da§m(y,t)| < Wx + poly-

nomial = polynomial in y, for all y, independent of t £ [0,b].

QED

Lemma 3.3 The function t ~ R™(-,t) belongs to Cw(OM) for
t e [o,b] {(m2 -1/2) and

30 3Ryt = ZE Ay 0)

(3.12) B R"y,t) = R N(v.t) - RM(y,0)]

12
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Proof: The formulas (3.11) - (3.12) are easily seen to hold
in Ey by using well-known recursion formulas for Bessel functions
(cf. Watson [1], Carroll [5]). Further we know by Schwartz [3;
4] that if t > R"(+,t) e ¢°(0,) A C'(E) with t > RI(+,t)  c°(0,)

then t - ﬁm(-,t) € C1

(OM). Using (3.11) and Lemma 3.2 however we
see that t » RY(+,t) e °(0y) and in particular (3.11) - (3.12)
hold in OM. By iteration of this argument it is seen that t -

R™(-,t) belongs to c”(oM). QED

Theorem 3.4 Let Te S and R™(t) = FTIR™(«,t) with R7(y,t)
given by (3.6). Then R™(t)e oé and w"(t) = R™(t) * T satisfies
(3.2) - (3.3).

Proof: We know t - ﬁm(-,t)?:[o,b] > SI is continuous since
the map (§,?) -> g?:OM x S' -> SI is hypocontinuous (cf. Schwartz
[1]). Using (3.11), t » g-"—'Ei—lﬁ';:'(-,t)?:[o,b] > SI is also con-
tinuous. From (3.4) in E we see (using (3.11) again) that t -
Rpg(+st) = ACIISTrmR™ (+,t) - R™(-,1)] belongs to €°(0,)
which shows explicitly that t » ﬁm(-,t)\e CZ(OM) on [o,b] (cf.
Lemma 3.3) and that t - ﬁm(-,t)? satisfies (3.4) in S'. Conse-
quently (3.2) holds in s’ and w?(o) = 0 since by (3.11) &?(y,o) =

0. QED

To deal with uniqueness we make first a few formal calcula-
tions following Carroll [8; 11]; this technique is somewhat dif-
ferent than that used in Carroll [5] but by contrast it can be

generalized., Thus for o < 1St < b < o Jet Rm(y,t,r) and

13



SINGULAR AND DEGENERATE CAUCHY PROBLEMS

Sm(y,t,r) be two linearly independent solutions of (3.4) with
Ry, 5 = 1, RE(y, 0 = 0, Sy, 7,1 = 0, and S}y, T, 1) = 1.
Such (unique) numerical solutions exist since the problem is non-

singular on [1,b] for t > 0. Let

. R"(y,t, 1 S"(y,t,
(3-]3) G (yat’T) = ~m "m
Rt(y’t’T) St(y’t’T)

so that G" is a fundamental matrix for the first order system
corresponding to (3.4) written in the form

0 -1

(3.14) V™ + MW" = 0; M(y,t) = s V-

t

= > =)

&+ 3

As in Schwartz [3] it is easily shown that
(3.15) = dy,t,m) = &"(y,t, D My, 1)

from which follows in particular

(3.16)  RMy,t.) = Aly) S"(y.t, 1)

(3.7)  SMy.ten) = R(y,t,0) + BTSNyt 0)

Given that ﬁm and gm have suitable properties (stated and veri-
fied below) it follows that if w" is a solution of (3.4) in S
with &m(r) -7 and &?(1) = 0 then using (3.16) - (3.17) the for-
mulas (3.18) - (3.20) below make sense.

t A ~ t . ~
AL I RO N O ML RO CE

PaY ~, ~ tA N,
= W) - Ay, 0T - J Ryt NE) de
T

14
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ta ~ ta ~
@19 [ty odee - - [ Shneniee
t. ~ ~
(3200 0= [ Syt 0)[(e) + 2L e + AW ToE

t . ~m
- - J [Sp(y.t.6) - 2';;'” S"(y,t,E) + R"(y,t, €)W (£)de
T

+ Qm(t) = /lim(.Y9t9T)? = ;lm(t) - /lim(.Y9t9T)T

From (3.20) it then follows formally that any solution w" of
(3.4) in'S with w"(t) = T and Wi(t) = 0 (t > 0) must be of the
form Qm(t) = ﬁm(y,t,T)%. We will now proceed to justify this and
to attend to the case T = 0 as well. We remark also that if one

considers

“m 2m+1
Wit T Y

]
—h >

(3.21)

with initial conditions given at t = T as above(%(-)eco(sl)) then
the procedure of (3.20) formally yields the unique solution as
(3.22)  W'(t) = R"(y,t, )T + jt§m(y,t,s)?(s)ds
T

We will develop a procedure now which can also be used in
other situations {see Section 1.5). It is helpful to have an ex-
plicit example of the technique however and hence we introduce it
here; in particular this will make the considerable details more
easily visible and shorten the development later. Thus for m 2 -
1/2 let P(t) = exp (—Jbﬁ?ﬂﬁﬂ)-dg) = (t/b)2m+] so that P(T)/P(t) =
(1/£) 21 t

consider equation (3.4) for R" (y,t,T) with initial data at

Sl1for0st<sts<sbandP(t)-0as t~+0. Letus

15
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t=1>0as in (3.13) and then, multiplying by P(t), we obtain
d om N
(3.23) at (PRt) + PAR" =0

This leads to the integral equation (1t £ £ £ o £ t), equivalent

to (3.4), with initial conditions at t

T as indicated,

t

N g A
(3.24)  R"y.t,7) = 1 - j oy j P(E)A(Y)R™(y, £, 7)dEdo

T

A

=1-Mﬂjj(ﬁ“‘%yaﬂ®m= L

and evidently T = 0 is permitted in (3.24). A solution to (3.24)
is given formally by the series

o«

(3.25)  R™My,t,1) = § (-nkK .

(cf. Hille [1]) where Jk denotes the kth iterate of the operation

m,0

J and J° is the identity. Writing R™*~ = 1 and

(3.26)  RMP =1 - grmel o B okgkoL
k=0
we have &m,p - &m,p—] = (-1)pJp 1 and ifyeKc ¢", with K

compact, then |A(y)|C < cy and in particular
(3.27)  [R™T RO u e < A J Jc(g)2m+1d£dc
< CKF(t,T) < cKF(t,o) = cKF(t)

where F(t, 1) is the double integral in (3.27) and F(t;) < F(t) <
2

F(b) for 0 < t, st < b (note that F(t) = —T___T) Continuing we

have, using (3.27),

16
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(3.28)  |R™Z - R™T| = ORTR™O)),

teo
<c j j )2 1r (£)dgdo
T
t g
<& [ F@) | &7 geas

T T
so that |§m,2 - ﬁm’]|c < cin(t)/Z! since if F(t) =
t o £y 2mt] p ! s
J F(o) J (a) dédo then F = F F with F(o) = F{o) = 0. By
0 0
iteration one obtains
P-p

~ ~ c, FF(b)

m,p m,p-1 = p K
(3.29)  [R™P - R™ lc""‘”ch
Hence the series (3.25) converges absolutely and uniformly on
[0S 1St sb] x Kand since the terms P « 1 are continuous
in (y,t,t) and analytic in y the same is true of R"(y,t,t). It
is clear that ﬁm given by (3.25) satisfies (3.24) and we can

state

Lemma 3.5 The series (3.25) represents a solution of (3.24)
with R"y,7,7) = 1 and RN{y,7,0) =0 (0 St <t <bandm>-1/2),
The maps (y,t,t) - ﬁm(y,t,r) and (y,t,r) » ﬁ?(y,t,r) are contin-
uous numerical functions while ﬁm(-,t,r) and ﬁ?(-,t,r) are anal-

ytic.

Proof: Everything has been proved for R" and the statements

for ﬁ? follow immediately upon differentiating (3.24) in t. QED

We examine now (cf. (3.24))

17
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A t A
(3.30) Ry, e0) = -0 [EP™Ry,0) e
T

For T > 0 there is obviously no problem in proving continuity and

analyticity as in Lemma 3.5 so we consider T ~ 0, ILet

t
_ 2mt] gy2m+l . _ 2m + 1 Ty2(m+1)
(3.31)  H(t,7) T Jr(fa ¢ = syl - () ]

Clearly (t,t) > H(t,T) is not continuous as (t,t) + (0,0) so

there is no hope that (y,t,r) - g%ﬂR?(y,t,T) will be continuous

on [0 ststgb] xK (cf. Lemma 3,5). We write H(t,o0) = H(t) =
%?ﬁzT} and then clearly, from (3.30) - (3.31), (y,t) >
2m1 Rm(y,t,o) is continuous on [o0,b] x K with Timit as (y,t) >

t t
(yo,o) equal to -A(yo)%%ﬁzT}u Further from (3.30) y ~

2m:1 R?(y,t,r) is analytic for 0 < T £ t < b. These properties

are transported to R?t(y,t,T) after differentiating (3.24) twice
in t and equation (3.4) is satisfied for 0 < T < t < b. Summar-

izing we have

Lemma 3.6 For [0 < 1 <t £ b] the maps (y,t) ~ ﬁ?t(y,t,T)

and (y,t) - Zm%l-ﬁﬁ(y,t,T) are continuous while y » R?t(y,t,T)
and y ~ 2m:1 ﬁ?(y,t,r) are analytic. The numerical function

A,

R™(y,t,7) satisfies (3.4) with R"(y,7,7) = 1 and RY(y,T,7) = O.
Next we will derive some bounds for Rm, assuming that y is

real. If we multiply (3.23) (with t replaced by £) by
-1, \om

P (€)R€(y,€,T) and integrate by parts it follows that
A t ~
(3-32) IRg(y’t’T)lz + 2(2m+1) { _;' IRm(y,E,T)|2d€
T

+ AW Ry, t0) |2 = ALY

18
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since ——-|Rm|2 = 28" R and T IR | = 2" (cf. also Section

ttt
1.4). In particular if |y| > R we can say that |R'E(y,t,r)|2 <

Aly) and |Rm(y,t,T)|2 < 1. Since |Rm(y,t,T)| and |R?(y,t,r)|

can be bounded on [0 s T <t <b] x {os< |y| s RO} by continuity
2
)

IA

(cf. Lemma 3.5) it follows that [Rm(y,t,r ¢, and

lﬁ?(y,t,r)|2 < ¢, + Aly) for 0 s T <t <bandally. To bound

the term 2m:1 (y t,t) we refer to (3.30) - (3.31) to obtain
(3.33)  EL Ry, t,0)] < JAW) |ey/? Ht,D) € cglAW) |

For |y| > R > |A(y)| = Ay) and for |y]| < Ro’ |A(y)| is bounded;

this leads to

Lemma 3.7 The function R™ satisfies Iﬁm(y,t,r)l2 < ¢

2m+]

|§¥(y,t,r)|2 < c, + A(y), and |R ,£,7)] S cp*Cy Aly) for

0st<tg<bandallye Rn,

A
Let us examine now some similar properties of ™. If we

differentiate (3.24) in T there results (since R™(y,t,t) = 1)

. ot
(3.34) RM=-0 R+ JT g%%%-A(y) do
= 2d - A"+ A(y)U(t,T)

T

where for m > -1/2, U(t,1) = é%{] - (%)Zm] js continuous in (t,T)

for 0 <7<t <b (note that U(t,t) > -t log (t/t) as m -~ 0).
From (3.16) we have then

A

(3.35)  S™ = u(t,x) -J ¢ ST
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(except perhaps where A(y) = 0). A solution of (3.35) is given

by
(3.36) M= T (D)5 .y

k=0
and the terms k.o in (3.36) are continuous in {y,t,t) and
analytic in y with |U(t,T)| S c. It follows by our previous
analysis (cf. (3.26) - (3.29)) that the series in (3.36) con-
verges absolutely and uniformly on [0 € T < t < b] x K (K¢ ¢"

being compact). Defining now gm by this series (whether or not

A(y) = 0) there results

Lemma 3.8 For m 2 -1/2 the expression gm(y,t,r) defined
by (3.36) satisfies (3.35) and 3.4); it is continuous in (y,t,T)
and analytic in y for [0 € T € t < b] along with g? (y,t,T) for
A(y)S™ (i.e., (3.16)) and, for T >

0<t<ts<b., One has ﬁf
0, (3.17) holds while S™(y,t,t) = O with s@(y,r,r) = 1; finally
s™y,t,0) = 0 for m > ~1/2.

Proof: One notes first that the series obtained by term-
wise differentiation of (3.25) in 1 is the same as A(y)gm(y,t,r)
where S™ is given by (3.36). Since Jk eU=0att=1fork?2
1 with U(t,) = 0 it follows that S™(y,t,7) = 0. On the other
hand S"(y,t,0) = 0 for m > -1/2 since U(t,0) = O while (3.17)

holds for T > 0 since S" clearly satisfies (3.35) and hence

. m _ am d_ . am _ _ 1. am
(since S (y,1,t) = 0) ST =U. - Je S = UT J ST. But
UT(t,T) = 2T+1 U(t,t) - 1 and hence for T > 0
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(3.37) Sm = }‘ ('])ka 2m+1 gm - Em
T k=-0 T
which is (3.17). Further, since Ut = (%)2m+1’

t
- f (%)2m+]A(y)§m(y,£,r)d€

(3.38)  ST(y,t,) = (D)

(from (3.35) and the definition of J), from which follows
S?(y,r,t) =1 for T > 0 and the continuity and analyticity prop-

om

erties of St To check (3.4) one can use (3.17) to obtain for

>0
(3.3 $(y,t,0) = j (2™ tn)dn
which leads to (3.4) upon differentiation in t. QED

Now S? is determined by (3.17) and as T + 0 a priori

Tim S? may not exist. However let us look first at

m

a0 Eyeo = 0N Lot
k=

|-

where %—U(g,r) = %ﬁ{l - (%)zm] < %ﬁ form>0and 0 <1< E¢<

t < b. Hence, as in (3.26) - (3.29), the series in (3.40) con-
verges uniformly and absolutely for 0 <t s t<bandye KC
€". There is little hope that (y,t,t) -+ S™(y,t,7) will be
continuous on [0 £ 7 € t £ b] since e.qg., %~ (t,T) is not so
continuous (nor is J « % U(+,t), etc.). We can however let T -

0 in (3.40) for m > 0 to obtain for t > 0
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k

« 1= —RMy,t,0)

s~

Tim 1 2m 21w k
(3.41) o7 S (¥ste1) = 5 kzo(-n J

Consequently from (3.17) for t > 0 and m > 0

(3.42)  SN(y,ts0) = 110 ST (y,t,1) = (ZPEL-1)R"(y,t,0)
_ 1 pm
- 'z—mR (y,t,o)

Lemma 3.9 For m > 0 and m = -1/2 the function {y,t) -
gT(y,t,o) = %ﬁ-am(y,t,o) is continuous for 0 < t < b and y € K
while y + gT(y,t,o) is analytic. Further, gm(y,t,?) is absolute-
1y continuous for m 2 -1/2 with gm(y,t,B) - gm(y,t,a) =
JB gT(y,t,T)dT and for 0 S T < t<sbandmz2 -1/2 the expres-
s?on TgT(y,t,T) is continuous in (y,t,T) and analytic in y.

Proof: The continuity and analyticity indicated for
gT(y,t,o) and TgT(y,t,T) follow immediately from (3.42) and
(3.17). For 0 <a £ B =t < b the formula gm(y,t,s) -
gm(y,t,a) = JBgT(y,t,T)dT is obvious and by continuity one can
take limits ag a ~> 0. In the cases -1/2 < m £ 0 we note that
gT will have an integrable singularity at t = 0 since %—U(t,T) ~

2™ for -1/2 <m < 0 and ~ logr for m = 0. QED

In order to obtain some bounds for S™ when ye R" we

multiply (3.17) (with 1 replaced by. £) by Sm(y,t,g) and since

ag1sm|2 = nggg one obtains upon integration
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A t, A
(3.43)  3SMy,t,012 4 2m) | H,0) 17 e
T

t/\ N
= f R™(y,t,6) S™(y,t,E) d&
T

Since ]ﬁmgml < %—(lﬁmlz + |§m|2) this leads to (cf. Lemma 3.7)

ot

¢

(3.44) |'s\'"|2 Scb o+ J |'s\'"|2 de

T
By Gronwall's lemma (cf. Section 5 and Carroll [14]) there re-

sults |Sm(y,t,r)|2 < for0<t<t<bandye R". Conse-

c
5
quently by (3.17) and Lemma 3.7|TS?(y,t,T)| < c6 on the same
domain. Finally from (3.38) we have |S$| <1+ bc;/2|A(y)| <

¢y * c8A(y).

Lemma 3.10 For y ¢ R" and 0 S 1t S t < b one has

SM(y,t.,t) |2 < c. and |TS™(y,t,t)] < ¢, while |S™(y,t,t)] <
T 6 t

5
¢y + csA(y).

Lema 3.11 The function t » R™+,t,7) € Cz(Ey) for 0 S 1 <
t < b while (t,t) > Em(',t,T) and (t,t) » ﬁ?(-,t,r) :
[0<T<t<b]~> Ey are continuous. Similarly £ » gm(-,t,g) €
C(E,)s £ E57(,1,6) € CO(E), &+ S"(+,t,6) & C2(E,), (t.8) >
M t,E) € C°(E,), and £ R™(-,t,E) € c‘(Ey) for0sE£<tsb
while € » S™(+,t,€) € c‘(Ey) and (t,€) > S7(+,t,) ¢ C°(E,) for
0<E SEStSbD.

Proof: We will indicate the proof for some sample cases

and the rest follows in a similar manner, To show (t,t) -
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RM(-,t,7) and (t,T) ~ M ( t,t) continuous with values in Ey
while t ~ R™(+,t,7) ¢ C (Ey) for instance let y ¢ K€ R" and
enclose K in the interior of a compact polydisc K C ", Ifa-=

o o
. o _ 1 n
(a], s an) write Dy (B/Byl) . o (a/ayn) and let
= 9K be the distinguished boundary of K. We have a Cauchy

integral formula (cf. Gunning-Rossi [1]) which leads to
oM opm
(3.45) DyR (y,t,T) - DyR (y,to,ro)

Mo ! [R™(z,t,7) - R (c tysTy)]
= g,

. 1
(2n1)n T kK

By uniform continuity in (z,t,t) on K x [0 1< tgb]if

(t,T) » (to,ro) then Rm(c t,T) > Rm(c,to,ro) uniformly on I and
consequently DaRm(y,t T) »> DaAm(y t ,TO) uniformly for y € K. 1
follows that (t,T) - R (+,t,T) € C°(E ). A similar argument car
obviously be applied to R etc, For d1fferentiabi1ity in t of
R (+,t,T) ¢ E for example one wants to show that ARm/At =
[Rm(-,t,r) - Rm( ,T)]/At > R" ( . O,T) in Ey as At =t - to ->
This means that we must prove that Dy(ARm/At) - D?R?(y,to,r)

uniformly for y € K R". This may be written (assuming t > tc

for convenience)

m t
o AR om _ |} 0,
(3.46) Dy - Dth = I h D [Rt(y £,T) - Rt(y t,»7)1de
0

Byt by the continuity of £ » R?(',E,T) we can make
|0 Rt(y £,7) - Dsz(y,to,T)| < e for IE-tOI <8{e), uniformly fo:

Y € K, and hence t » Rm(-,t,r) £ C](Ey). A similar argument
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. om om
may be applied to ARt/At - Ri¢» etc. QED

Lemma 3.12 For 0 St 2t <b the formula (3.22) holds
pointwise or in Ey if Qm is replaced by any numerical function ;
of argument (y,t,t) satisfying (3.21) with ? € C°(Ey) where t -
;(-,t,r) € C2(Ey) while initial conditions ;(‘,T,T) = ?(-) €
Ey and ;t(-,r,r) = 0 are stipulated. Such a function ; is neces-

sarily unique by (3.20).

Proof: Pointwise for (y,t,t) fixed everything is trivial
since our lemmas concerning properties of ﬁm and gm make all
calculations in (3.18) - (3.20) legitimate for t > 0 and one
can Tet T = 0 in the resulting formulas {cf, Lemmas 3.5, 3.6,

3.8, 3.9 and note that terms %—Sm(y,t,g)¢(y,g,r) are continuous
1
£
in Ey we recall that {(S,T) -+ ST : Ey X Ey > Ey is separately

since ¢ satisfies (3.21) with = ¢{y,£,T) continuous). To work
continuous with Ey a Frechet space and hence this map is con-
tinuous (see Bourbaki [2] and for vector valued integration see
Bourbaki [3; 4], Carroll [14]). Hence all of the operations in
(3.18) - (3.20) and (3.22) make sense in Ey. QED

Lemma 3,13 For 0 < T <t < bwe have (t,t) » ﬁm(-,t,r) £
(o) (t,1) » REC,ta1) € C2(0y)s t > R™(+,t,7) € €2(0y), T »

S"(+,t,1) € €2(0,), T TST(~,t,T) € C°(0M), and T + ﬁm(°,t,T) €

W

¢'(0) while, for 0 < 75t sb, v S"~,t,1) € C'(0y).

Proof: Again we will prove this for some sample cases to

25



SINGULAR AND DEGENERATE CAUCHY PROBLEMS

indicate a procedure which can then be applied in general. We
recall that on bounded sets in 0M the topology of Oy coincides
with that induced by E and that if t > p(+,t) € C°(0y) M C'(E)
with t >y, (-,t) € C%(0,) then t » y(+,t) e C'(Q,) (cf. Schwartz
[2; 3; 4] and Lemma 3.3). In order to study Dzﬁm for example

we replace W by R™ in (3.4) and differentiate in y to obtain

onm 2m+1 , aom oom
(3.47) (DyR )tt + ——t—(DyR )t + A(y)DyR

= ] P_(y)DYR"
ly|<fa-1 Y 7Y

where the PY(y) are polynomials and |a| = ] o. The initial
conditions are Dsz(y,T,T) = D;RT(y,T,T) = (0 and by Lemma 3.12

the unique solution of (3.47) is given by (3.22) in the form

~ t . ~
(3.48)  OR(.t.) = | SM0.t.6) TP IOIRM.E07) d

T
where the D;Rm may be regarded as known functions (by an in-
duction procedure). Now, referring to Lemmas 3.7 and 3.10, we

know |§m(y,t,£)|2 < ¢ and by induction the D;ﬁm(y,E,T) for

5
Y] € ]a] - 1 will be bounded by polynomials in y independent
of (£,7). Consequently all D;ﬁm(y,t,T) will be bounded by poly-
nomials in y depending only on o so that ﬁm(',t,T) is bounded in
0M for 0 €St €t < b and hence from Lemma 3.11 we can say that

(t,t) ~ R™(+,t,7) e C°(0 Further if one differentiates (3.48)

M)'
in t there results

A, t/\ A,
adm < [em yom
(3.49)  oERY(y,t,0) stt(y,t,a) I P (DR y,E,7) de
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for T > 0, with ISQ(y,t,E)I Syt c8A(y) for0 <t s tsgh,
from which follows the desired polynomial bound for D?ﬁ? since
one can let T - 0 in the resulting inequality for ID;RQI.

Finally we have from (3.49) for t > 0

(3.50)  DJRT,(y,t.7) = I P (y)D)R"(y,t,7)

t A ~
' f ST (5t.6) T P (1)DYR(y,E,1) de

since ?(y t,t) = 1 while S?t is continuous in (y,t,t) for © >
S

0. But

(y)gm - 2m:1s$ and we need only check

t A
(3.51) %j|$WA¢naf(g+c¢wn(1-@
T

< ¢y * c8A(y)

Again the resulting estimate on |D§R$t| will hold as © + 0.
Hence D?R?t can be bounded by polynomials in y independent of
(t,T) for 0 < 7 £t < b and consequently t - RM(-,t,1) € CZ(OM).

The rest follows in a similar manner. QED

We can now prove uniqueness (and well posedness) for the
solution w'(t) = R™(t) * T of (3.2) - (3.3) given by Theorem 3.4.
As will be seen Tater there are quicker ways to prove uniqueness
when one is working in a Hilbert or Banach space but in order
to study the growth of solutions for example it is absolutely
necessary to work in "big" spaces such as Sl or D' and for this
a more elaborate uniqueness technique is required, such as we

have developed. It is sufficient now to deal with the solution
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Qm(t,T) = ﬁm(y,t,T)? of (3.4) with initial conditions of the
form (3.5) given at t = 1. We recall that the map (S,T) » ST :
OM x SI > S' is hypocontinuous and then, given any solution ;m
of (3.4) (with t replaced by &), multiply by gm(y,t,g) as in
(3.20) to conclude that Qm is necessarily of the form ﬁm(y,t,T)?.
The same uniqueness argument works for any solution Qm of (3.21)

)
so that (3.22) holds in S , Hence we have proved

Theorem 3.14 Assume m > -1/2 and that A(y) = F(AXG) satis-

fies Condition 3.1. Then the unique solution of the equation

m 2mtl m m _
(3.52) Wit + el Axw = f

)
with f(+) € €°(S ) and initial data w"(t) = T ¢ S' and w?(r) =0
(0 <t <t <b) is given by
m m tom
(3.59)  Wi(t,1) = e+ T [ STt * (e de
T

Definition 3.15 Following Schwartz [3] we will say that

m
t

uniformly well posed if the solution (3.53) depends continuously

(3.53) with £(+) € €°(S'), Ww"(t) = Te S , and wh(t) = 0 is

[}
inS on (t,t,T,f).

Theorem 3.16 The problem (3.52) with f(+) e ¢°(S ),
1 [}
wi(t) =TeS, and w?(r) = 0 is uniformly well posed in S

with solution (3.53).

Proof: This follows by hypocontinuity. QED
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Remark 3.17 The formulas of Lemma 3.3 can be composed with
A ]
Te S and after an inverse Fourier transformation we have

m t
(3.54) Wt(t) = - HHIT]TAX w

m+1(t)

(3.55)  wy(t) Z—'E[Wm'](t)-wm(t)]

These recursion formulas are generalizations of formulas first
developed by Weinstein [1; 3; 4; 6; 8; 9; 10; 11; 16; 18] when
Ax = -Ax. They were systematically exploited by Carroll [2; 5]
in a general existence-uniqueness theory and it turns out that

they have a group theoretic significance (see Chapter 2).

1.4 Connection formulas and properties of solutions for EPD
equations in Dl and S'. Let us return now to the case when
A, = -b, with A(y) = lyl2 =) yﬁ and look at the resolvant Em(y,t)
given by (3.6). We denote by supp S the support of a distribu-

tion S,

Lemma 4.1 The resolvant R"(y,t) = ZmF(m+1)z'me(z), z =

tly|, of (3.6) is an entire function of y € " of exponential
[}

type so that Rm(-,t) € Ex and supp Rm(-,t) is contained in a

fixed compact set [y | s B for 0 5t s b,

Proof: The order p of an entire function g(y) = § aaya,

y € ¢, is given by (cf. Fuks [1])

(4.1) o= olg) = lim sup |o] log |a]

|a| + o
-logla |
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where |a| =} a, and if p(g) = 1 with

(1.2) h?ﬂ|ég§ log yj(i)lc <y

where ||y||C =) |yk|C then g is said to be of exponential type

< y. Now looking at ﬁm(y,t) =7 aZkZZk as a function of one
variable z = t|y| we have by Stirling's formula (cf. Titchmarsh
[1]) that p = 1. This means that |§m(y,t)| <8 exp(3+s)|z|C for

any € > 0 where B is the type of R™ as a function of z. Since

- 2,1/2 2,1/2 _
Iyl = HE %) "Tle £ (3 1ylg) /2 < Iy lc = lyllg one has then
(4.3) Tim sup 129 IR0 ey syp t[R™(y>t) |
SBt<pBb =B

The conclusion of the Lemma now follows from the Paley-Wiener-

Schwartz theorem (see Schwartz [1]). QED

]
Theorem 4,2 If Ax = -Ax, m2>-1/2, 0<t<b,and TeD
[ ]
then w™(t) = R™(-,t) * T is a solution of (3.2) - (3.3) in D

[}
depending continuously in D on (t,T).

Proof: By Lemma 4,1 supp Rm(-,t) is contained in a fixed
compact set for 0 s t < b so that R"(.,t) * T makes sense for
Te DI. Furthermore the set {R"(+,t); 0 < t < b} is bounded in
E' (cf. Ehrenpreis [3], Schwartz [1]) and one knows by Schwartz
{1] that the map (S,T) > S * T : E' x DI > D' is hypocontinuous.
To check the differentiability of t » Rm(-,t) in EI we recall
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)
that on bounded sets in E the topology coincides with that in-
[}
duced by 0C {(cf. Schwartz [1], p. 274, where the Fourier trans-
]
form is shown to establish a topological isomorphism between E

and Exp 0,, and note that on sets B € Exp OM of bounded exponen-

M
tial type the topology is that induced by OM). The result fol-

Tows immediately. QED

For uniqueness in Theorem 4.2 we can go to a direct expres-
sion for Rm(y,t,r) derived in Carroll [2; 5] and then follow
the procedure involving (3.20). Thus one can write for m 2 -1/2

not an integer

. 3 (2) 3_ . (z)
(3.8)  Ry,t,r) =y (R el

m- Z;m-]
J_(z) d_..(z;)
+ 25 (T)Zm m_m m;l] 1 )
z z;

where z = t/A(Yy), 2y = w/A(y), and Yo = r(m1)r(-m)/2, while for

2 -1/2 an integer we have

(z,)
(4.5) R"(y,t,1) = 5L(F )2’" 22 (z)-————"';ll !
3

3, (2)
- N (2 -

where N denotes the Neumann function {cf. Courant-Hilbert [2],
Watson [1]). Some analysis of the Bessel and Neumann functions,

which we omit here (see Carroll [2; 5] for details), leads to

Lemma 4.3 Wnen A(y) = |y|2 the resolvants R™(y,t,t) are
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entire functions of bounded exponential type for 0 < T <t < b
with {R"(+,t,7)} a bounded set in E . Similarly ®(-,t,8))C E
is bounded for 0 < £ < t < b,

Using for example (3.39) we can say that given A(y) = |y|2,
s™-,tE) e E' is bounded for 0 < £ < t < b and certainly
Lemmas 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 remain valid,
Lemma 3.13 holds with Oy replaced by Exp 0, = FE € Oy and if
we take inverse Fourier transforms in (3.18) - (3.20) the result-

t
ing convolution formulas will be valid for T ¢ D ., Hence we have

Theorem 4.4 The solution w™(t) = R"(=,t) * T e D of (3.2)-
(3.3) when Ax = -b, and T ¢ DI, given by Theorem 4.2, is unique.
Similarly the problem (3.52) with f(¢) ¢ CO(D'), wm(r) =Teg D',
and w?(r) = 0 is uniformly well posed in D' with solution given
by (3.53).

Going back now to the resolvant ﬁm(y,t) in OM or Exp OM we
exploit the Sonine integral formula (cf. Rosenbloom [1], Watson

[1]) to obtain for m > p 2 -1/2

”~, ] ”~
(6) 0,0 = iy | Posenc® - e

-2m t
_ 2r(mtl)t p 2p+1,,2 _2\m-p-1
= ‘(j—)—(—)'r D+ 1) T (m-p JO R™(y,n)n™"" "(t°-n") dn

We note in passing that for m-p integral (4.6) is also a direct
consequence of the recursion relation (3.12) (cf. Carroll-Silver
[15; 163 17], Silver [1]) and this will be utilized in Chapter 2

where an explicit derivation is given; analogous formulas in
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other group situations will also be derived. We recall next

the formula (cf. Watson [1])

a.7) LR ) - P (2)

k-p
for p > 0 an integer. This leads to the formula

I‘(m+1)t_2m

; s PLe2MPIRTR(y 1))
2°T (m+p+1)

Am _ -I
(4.8)  R"(y,t) = T 5
provided m ¥ -1, -2, . . ., -p. We observe that (4.8) gives re-
solvants for values of m < -1/2 and it should be noted here that
i (z) = 2" (z) satisfies n + (-2m+1).' + j =0 so that (cf
Im ~-m Im z m ™ In y
(3.6)) R™M(y,t) = Z'mF(l-m)sz_m(z), for z = t/A(y) and any

nonintegral m 2 0, satisfies the equation RET + (:g%il)R;m +
A(y)R"™ = 0 with initial data R™(y,0) =1 and Rzm(y,o) = 0. Now

from (4.8) with nonintegral m < -1/2 we can choose an integer p

so that m + p 2 -1/2 and express ﬁm in terms of derivatives of
Rm+p’ whose properties are known from Section 1.3. In particular

(4.8) holds in Ey and also in 0M or Exp OM(cf. Lemma 3.13 and the

remarks before Theorem 4.4) so we can state, referring to (3.11),

Theorem 4.5 For nonintegral m < -1/2 resolvants Rm(y,t)
of the form (3.6) obey (4.8) and thus inherit the properties
of the R™ for m 2 -1/2. Also (4.6) holds in Oy Or Exp Oy

Taking inverse Fourier transforms in (4.6) and (4.8) and
[} ]
composing the result with Te S or T € D (when Ax = -Ax) we

obtain
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Theorem 4.6 For m > p 2 -1/2 the (unique) solution of (3.2)-

] ]
{(3.3) in S (or D ) for index m is given by

-2m t
+ -
(9 W = FlEEy [P AP WP ) an

] ]
where wP satisfies (3.2) - (3.3) in S {(or D ) for index p.
Similarly if w™'P is the (unique) solution of (3.2) - (3.3) in
[ ]
S (or D) for index m+ p 2 -1/2 {p an integer) then
m Pm)t™™ 1 3ypr.2(mep) mep
(4.10) w(t) = BRI (fg{) [t wo(t)]
2T (m+p+1)
[ [
is a solution of (3.2) - (3.3) in' S (or D ) for index m provided

m#$ -1, ..., -p.

Remark 4.7 Formulas of the form (4.9) - (4.10) were first
discovered by Weinstein {loc. cit.), in a classical setting,
using different methods. In particular Weinstein observed that
if w™ satisfies (3.2) with index -m then t » w"(t) = t—2mw-m(t)
satisfies (3.2) with index m. This fact, plus a version of
(3.54), Teads to (4.10) for example, MWeinstein's version of
(4.9) involves p = n - 1 and 1is obtained by a generalized method
of descent (see e.g., Weinstein [3]). We note also here that
there is no uniqueness theorem for solutions of (3.2) - (3.3)
when m < -1/2 since if m = -s (s>1/2) then t » u™(t) = t*SwS(t)
satisfies (3.2} for index m with um(o) = ug(o) = 0; here w° is

the solution of (3.2) - {3.3) for index s.

Remark 4.8 The exceptional cases m = -1, -2, . . . have
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been treated by Blum [1; 2], Diaz-Weinberger [2], Diaz-Martin
[10], B. Friedman [1], Martin [1], and Weinstein (loc. cit.) and
we refer to these papers for details. Here for m = -p with p 2

1 an integer we may take
RP = - T Zyp
(4.11) R(y,t) -7 (2) Np(Z)

{(cf. B. Friedman [1]). This resolvant RP satisfies (3.4) -

(3.5) for index m = -p with T = 1 and one may write

oo ©

¢, 22K + %P logz )} ¢z
k Lo K

2k

(4.12) 2PN (2)
P k=0

Consequently the 2pth derivative of RP in t will have a logarith-

mic singularity at t = 0. However, writing formally

(@.13)  wPt) = RP(,0) ¢ T = ] ¢ tX(as * )
k=0

+ t2PpPs * T F—](1og z c 22k)
X k=0 k

we see that the logarithmic term varnishes if AgT = 0, in which

event w P will depend smoothly on t.

Remark 4.9 We note that if one takes p = 1 in (4.8), with

m replaced by m - 1, the result is exactly (3.12).

We will now discuss some growth and convexity theorems for
solutions of {3.2) - (3.3) when Ax = -, Such results were
first discovered by Weinstein [9; 10; 15] in a classical setting
and subsequently generalized and improved in certain directions

by Carroll [1; 23 5] in a distribution framework; we will follow
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the latter approach. (Other kinds of growth and convexity
theorems for singular Cauchy problems were developed by Carroll
[18; 19; 25] and will be treated later.) Referring to (4.6),

the basic fact one requires for these theorems is that

Rp(-,n) > 0 for some p 2 -1/2 (i.e., RP(+,n) should be a positive
measure), in which case all Rm(-,t) 20 form 2 p. For general
AX not too much is known in this direction but when AX = -by it
follows from Section 2 that Rn/z'](-,n) = ux(n) > 0. Another
case of interest involves the metaharmonic operator AX = —AX -0

where Rm(-,n) 20 form> %—— 1. Indeed for m > %—- 1 and

r = (Zx?)”2 < t one has {(see Carroll [5] and cf. Ossicini [1])

) (m1)2" 7 (ia/EPor?)" /2 22

J o, (ia
Trn/2 t2m (ia)Zm-n m-n/?2

(4.14)  R™(-,t)

) F(m"’] )(AtZ_rZ)m-n/Z < [a2(t2_r2)1k 5
/2 ¢om k=0 278! T (m-Dekr1)

0
. m '
while R™(+,t) = 0 for [r| 2 t; in particular then R7(-,t) € E .

Now, general theorems of growth and convexity involving as-
sumptions of the form (-AX)kT > 0 were developed in Carroll [2;
5] using the notions of value and section of a distribution in-
troduced by Lojasiewicz [1]. This can be simplified somewhat in
dealing with AX = —AX since AT 2 0 implies that T is an almost
subharmonic function. (see Schwartz [1]) and hence T automatically
has a "value" almost everywhere (a.e.). We recall briefly some

notations and results of Lojasiewicz [1].
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Definition 4.10 A distribution T is said to have the value

. . + . =
c at x 1£_l1m Ty oag = Cas A0 (i.e., <Tx0+xx’¢>

+A
)
<T£;lﬁ ¢[-X_QJ> + ¢ for ¢ € D with [¢(x)dx =1); when T is a
A
positive measure the notion of value coincides with that of den-

sity. One may fix X, in a distribution Tx,t if 1im Tx0+kx,t =

1
St eD as A ~» 0+ and St is said to be the section Tx t of T.
0 ]

1 -X
Thus one must have <Tg,t’;ﬁ'¢(%x °]w(t)> + <S,y> when ¢ ¢ Dx’
/S Dt’ and [@(x)dx =1,

Remark 4.11 It is proved in Lojasiewicz [1] that if Zx ¢
is a measure then a.e. in x we may fix x =.x0 and the section

1
zxo,t is a measure in D,. Further if x may be fixed for Teot
then X, May be fixed for (a/at)Tx t and (a/at)Tx

|
,t xo,t
3/9tT .
xo,t

For the following theorems see Carroll [5].

]
Theorem 4.12 let w?(t) = Rm(-,t) *Te Dx be the solution

]
of (3.2) - (3.3) for A = -A withm2 % -land TeD satis-

fying AT 2 0. Then a.e. in x the section t + wg (t) is a non-

decreasing function of t with wg (t) 2 T, -
0 0

Proof: Letm > %-- 1 and set p = %—- 1 in (4.6) to obtain

1
(RZ " (+,t) = w (1)

1 n
(.15)  R(e,e) = BB [l 27y ey
f(?)F(m——2—+1) 0

Using (3.11) (transformed) and composing with T we have (cf.

(2.5) where Rn/z(-,t) = A (t))
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(4.16)  wi(t) = &(R"(-,t) * )

T(m1)t
r(—gﬂ)r(m-%n)

1
IR N CO ML

Now we may consider wm(t) as a distribution wg t in two variables
9

’ 1 1 1
(since Dt(Dx) = DX t algebraically and topologically with Et(Dx)

C D;(D;) - cf. Schwartz [5]) and here one may extend ux(t)

and Ax(t) as iven functions of t for t < 0, In D; one has

wm(t) -T= J WT(T)dT which, by (4.16) with AT > 0, is a positive
measure for t02 0. Writing ? =T x ]t in D;,t it follows that
wg,t - ; will be a positive measure in D; t for t > 0 and hence

we can fix x = X, a.e. in x for wg t and T together (cf. Remark

4,11 and recall that T is an almost subharmonic function). For

such Xy (B/Bt)wm = (w't':')X Y Remark 4.11, and, by (4.6),
o’ o’
(wt xgot 2 >0 for t 2 0, Hence t ~+ wX it XO(t) will be a

nondecreas1ng function for t 2 0 of bounded variation (cf.

> >
Xo’t 2 TX for t 2 0 and to

0
spell this out et ¢ € D, ¢ 2 0, f¢(x)dx =1 and set wk(g) =

Schwartz [1]). We conclude that W

E-X
A ¢[ ] {cf. Definition 4.10). Then from (4.16) the contin-
m =
uous function t - <w (t)’wk> = <w£’t,wx

(g£)> is nondecreasing for
5 . m
t 2 0. Consequently for t > 0 fixed <wg,t’wk(£) b4 <T£,wk(£)>

and letting X -~ ot we obtain wT t 2 TX . The result for m =
o’ )
% - 1 is now inmediate from (2.5) and the remarks above. QED

Let us now combine (4.8) with Lemma 3.3 when AX = -Ax in

order to obtain a formula for Rm(-,t) {m > -1/2) in terms of
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Rm+p(-,t) and Rm+p+](-,t), where the integer p is chosen so that
m+p2 g—- 1. Some simple but tedious calculations yield (see

Carroll [2; 5] for details)

Lemma 4.13 For -1/2 < m < n/2 - 1 the resolvant R"(-,t) for
(3.2) - (3.3) (i.e., T =6 in (3.3)) given by F~ applied to

(4.8) can be written

g-1
t2k

(4.17) R™(.,t) = (kZO oy (m) (Aa)k) * RMP (L t)

-1
+ (:ZO Bk(m)tZK(Aa)k) * _Rm+p+1(_,t)

where p is an integer chosen so that m + p 2 %— -1,q=1+

[Eilﬂ ([u] denotes the largest integer in u), a,
2 k

Bk(m) > 0, and ao(m) =1,

Theorem 4.14 For - 1/2 S m < %- 1 let the integer p be

chosen so that m + p 2 %— - 1. Let g
k

1+ [E%l] and assume

1
TeD satisfies (A)T 20 for 1 < k < q. If w'(t) denotes the

solution of (3.2) - (3.3) for Ax = -A(t 2 0) then a.e. in x the

section t » wT (t) is a nondecreasing function of t with
0
W' (t) 2 T, for t 0.

Proof: We convolute (4.17) with T to get w"(t) and dif-

ferentiate, using (3.11). Since Rm+p(-,t), Rm+p+](-,t), and

m+p+2(.

R ,t) are positive measures we have again that w?(t) 20

1
in Dx for t > 0. Hence, as in Theorem 4.12, we may fix x = Xo

m m _.m .
a.e. for Wyt € D and t > W ¢ T W, (t) will be a

X,t 0’ o
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nondecreasing function of bounded variation (t 2 0). Further
[
wm(t) = Rm+p(-,t) * T+ J(e,t) where J(+,t) 2 0 in DX fort 20

(we recall here that ao(m) = 1). From Theorem 4.12 we know that

Rm+p(-,t) * T = wm+p(t) satisfies w$+p(t) > TX a.e. in x when
0 0
AT 2 0 (which holds since q > 2). Hence, a.e. in x, wz (t) 2
0

m+p
w, "(t) 2T, .
%o %o

QED

Corollary 4.15 For -1/2 < m < 5 - 1 choose p as in

Theorem 4.14 and assume (A)kT 20forl1<k<qg-1. Given wm(t)

as in Theorem 4.14 then a.e. in x the section t » wg (t) satis-

m 0
fiesw_ (t) 2T for t20.
X0 X9

Proof: MWe note first that p 2 1 so thatgq -1 = [E%ll 2 1.
Then from (4.17) one writes again wm(t) = Rm+p(-,t) *T + )(e,t)
where J(+,t) 2 0 in D; for t 2 0 under our hypotheses. As in
the proof of Theorem 4.14 it follows that wT (t) = TX a.e. in x.

0 0
QED

3/3t; then as noted

Let us write now L; = 32/3t2 + gﬂzi_l

by Weinstein, for m # 0, L; = (2m)2t'2(2m+]) BZ/BZ(t-Zm)’ while
-2 .2,.2

form = 0, Lg = t7° 3/3%(1og t). Referring now to (3.2) with
AX = -A we have L:']wm = AW" and using (4.15), composed with T ¢
D', form > n/2 - 1 it follows that

1
"(t) = __Zzimill___Jo £™1(1-69)™2

F(%)F(m - g-ﬂ

t
(4.18) Ly/2-1%

- (u (gt) * AT) dg
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since LY = €28, This if AT 2 0 then LY _w™(t) is a posi-

tive measure for t 2 0. Similarly from %4.17) with - 1/2 <

]
m< 5 - 1we convolute with T ¢ Dx to obtain

-1
(4.19)  LEM(t) = % o (Mt (RMP(- 1) * ak*Tr)
k=0

g-1
IREICTA ORI

Hence if AKT > 0 for 1 < k < q then L;wm(t) is a positive mea-

]
sure in Dx for t 2 0.

Theorem 4.16  Let w"(t) denote the solution of (3.2) -

)
[}
(3.3) for Ax -A and let T g D satisfy AT 2 0 form 2 g- -1

while, for - 1/2sm< B -1, akT20for1sksq=1+
[B%lﬂ where the integer p is chosen so that m + p 2 %— - 1.
Then for t > 0, a.e. in x, the section t » W (t) is a convex

X

- _ 0

function of t2 N for m2 g' -1,0f t Zm for -1/2 sm< 75 -1
m

(m # 0), and of log t for m = 0.

Proof: By (4.18) - (4.19) we know that for t > O,
(azlarz)wm(t) 2 0 in D; under the hypotheses given, where T =
t“Mrormz B -1, 0=t for-128m< § -1 (mto0),
and ¢ = Tog t for m = 0. Now by Theorems 4.12 and 4.14 our

hypotheses insure that x = X, may be fixed a.e. in x for
m

Wy t(t 2 0) and by Definition 4.10 with Remark 4.11 it follows
]
that BZWT t/axz 20 in D, for t > 0. Hence by Schwartz [1]
0’
t > w$ (t) is a convex function of t. QED
0
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Remark 4.17 Of particular interest in the EPD frameword of
course is the wave equation when m = -1/2 and we see that in the
hypotheses of Corollary 4.15 -1/2 + p 2 %‘ - 1 means p 2 ﬂ%l.
Note here that in dimension n =1, -1/2 < m < -1/2 is impossible
so that we are in the situation of Theorem 4.12. Now gq - 1 =
[EilJ so that, given n even, p = n/2, while, for n odd (n = 3),

p = 21, thus for n even q - 1

[n+2] while for n odd g - 1 =
[n+1 . These results on the number of positive Laplacians of T
sufficient for a minimum (or maximum) principle improve
Weinstein's estimates and are comparable with results of D.
Sather [1; 2; 3]. Sather in [3] for example sets N = ﬂ%g for

n even and N = —Eg-for n odd with a = [N+2] = [n+2] for n even
while a= k—— ] fornodd; similarly he sets b = [N+]] [%] for

k

n even while b = [ ] for n odd. Then he requires that A°T 2 0

for 1 < k < a and ak W ]/2( )20 for 0 £k b in order that
w']/z(x,t) 2 T(x) for t 2 0, Thus our results seem at least

equivalent and certainly more concise than those of Sather. For
further information on maximum and minimum principles for Cauchy
type problems we refer to Protter-Weinberger [1] and the biblio-
graphy there; cf. also Agmon-Nirenberg-Protter [1], Bers [1],

Protter [7], Weinberger [1]. For growth and convexity properties

of solutions of parabolic equations with subharmonic initial data

see Pucci-Weinstein [1].

Remark 4.18 The existence of positive elementary solutions

(or resolvants) for second order hyperbolic equations is in
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general somewhat nontrivial and we mention in this regard Duff
[1; 2], in addition to Carroll [2], where the problem is dis-

cussed.

1.5 Spectral techniques and energy methods in Hilbert
space. First we will present some typical theorems of Lions for
EPD type equations, using "energy" methods, which were dis-
cussed in Carroll [8]. Lions proved these results in 1958 in
lectures at the University of Maryland (unpublished). There-
after follow some theorems in Hilbert space based on a spectral
technique developed by Carroll [4; 6; 8; 10; 11] (suggested by
Lions as a variation on Carroll's Fourier technique). The two
approaches (energy and spectral) are not directly connected and
lead to weak and strong solutions respectively.

Thus, regarding energy methods (cf. Carroll [14] and Lions
[5] for a more complete exposition), let (u,v) » a(t,u,v) :
VxV->Cbea family of continuous sesquilinear forms, V& H,
where V and H are Hilbert spaces with V dense in H having a
finer topology. One can define a linear operator A(t) such that
a(t,u,v) = (A(t)u,v)H for ue D(A(t))CVand ve V (i.e., u e
D(A(t)) if v~ a(t,u,v) : V> C is continuous in the topology of
H). Assume t - a(t,u,v) ¢ C][o,b] with a(t,u,v) = a(t,v,u) and

consider

Problem 5.1 Find u(+) ¢ C2(H) on [0,b], u(t) ¢ D(A(t)),
t > A(t)u(t) ¢ c°(H) on [0,b], and
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(5.1) Ups + kq(t)ut + A{t)u = f; uf{o) = ut(o) =0

where k € £, q(*) € C%(0,b] is real valued with q(t) + = as
t+0,and fe CO(H) on [0o,b]. Note here that if u(o) = T ¢
D(A(t)) for t € [o,b] then v{t) = u(t)- T satisfies (5.1)
with freplaced by f(+) - A(+)T (assuming the latter is continuous
on [o,b] with values in H - which holds if A(t) = A).

This can be transformed into a weak problem {which is more

tractable) as follows (%f'f I).

Problem 5.2 Find u ¢ L2(V) on [o,b], u(o) = 0, ul/ﬁ €
L2(H) on [o,b], such that given f//q ¢ L2(H)

b ] ] )
(5.2) j ta(t,u,h) +kalu',h), - (u'sh')y - (F.h) et = 0
0

for all h e L2(V) with h/g e L2(H), h /v e L2(H), and h(b) = O.

Theorem 5.3 Let t + a(t,u,v) ¢ C][o,b], a(t,u,v) = a(t,v,u)
qe Co(o,b], q>0,q(t) »oas t >0, Re k >0, and a{t,u,u) 2

alhjﬂs for a > 0. Then there exists a solution of Problem 5.2.
Proof: Set h = e'YtqaI for vy real (to be determined) and
b - t 1 1 - t ]
(53 Eue) = [ faltue™) ¢ k) "),
0

- (u (e ) )t

Let F be the space of functions u e L2(V), uvqe L2(H),
u(o) = 0, while G is the space of ¢ ¢ L2(V), ¢ € L2(V),
¢'/6 € LZ(H), ¢"//6 € LZ(H), ¢(0) = 0, and ¢I(b) = 0. Clearly

44



1. SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE

G € F and we put on G the induced topology of F defined by
Jb(lluns + qIIuW!ﬁ)dt = |[uH§ so that G is a prehilbert space.
Tgen if u € F satisfies EY(u,¢) = J:(f,e'Yt¢l)Hdt for all ¢ €

G it follows that u is a solution of Problem 5.2. Now EY(u,¢)
is a sesquilinear form on F x G with u ~» EY(u,¢) : F> ¢ con-
tinuous for ¢ ¢ G fixed. Further, a(t,¢,e_Yt¢). = at(t,¢,e-Yt¢)

+ 2a(t,0,e7Y%) - ya(t,6,e V) so that,
b - t ] - b
(5.4) mefummeY¢Mt=ﬂmMM¢wHeY
0
b b
- f a,(t,6,0)e Y tdt +YJ a(t,d,0)e Y tdt
0 t 0

b
2 (o) ol 2at
0

where lat(t,¢,¢)| < c||¢”$. Since 2Re (¢ ¢ ), = %€H¢||ﬁ we

have in addition

b 1 ] 1
(5.5)  -2Re [ (o'u(e7E) )t
0

b
-yt d 2 -yt ' 2
JO[ eVt Lol1Z + 2ve blo)18 Tat

b
1 2 - ]
lo" @11F + v e 611 8 at 2 0
0

Hence, for vy > ¢/a, lEY(¢’¢)l 2 s|hp”g (note the second term
in 2Re EY(¢,¢)) and by the Lions projection theorem (cf.
Carroll [14], Lions [5], Mazumdar [1; 2; 3; 4]) there exists

b '
u e F satisfying E_(u,¢) = J (f,e_Yt¢ )Hdt, since ¢ +
b . Y 0

J (f,e'Yt¢ )Hdt is a continuous semilinear form on G. QED
0

Remark 5.4 For an interesting generalization of the Lions
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projection theorem and applications see Mazumdar [1; 2; 3; 4].
We note that in Problem 5.2 q could become infinite at other
points on [0,b] provided the "weight" functions h are suitably
chosen; if q > 0 but g # « the problem can be solved directly as

in Lions [5].

Theorem 5.5 Let t = a(t,u,v) ¢ C][o,b], a(t,u,v) =
a(t,v,u), g e C](o,b],q >0, q(t) >~ as t >0, Re k > 0, and
a(t,u,u) 2 allu”% for o > 0. Then a solution of Problem 5.2 is

unique.

[}
Proof: Let h be given by h(t) = 0 for t > s with h - kgh
= u on [0,s); then some calculation shows that h is admissable
in Problem 5.2 and, as € » 0, 1im a(e,h(e),h(e)) = 6% 2 0.

Taking real parts in (5.2), with f = 0, one obtains with this h,

s
(5.6) 92 + ||u(5)||ﬁ + 2Re k J q a(t,h,h)dt
)
S
+ a,(t,h,h)dt =0
J, %

where a(t,h,h) = 2Re a(t,h,h') + at(t,h,h). Consequently

s 2
(5.7) Jo (2aq Re k - c)||h]|ydt s O
and since q(t) - « as t -~ 0 one may choose So small enough so
that 20q Re k - ¢ > 0 in [o,so] which will imply that h = 0 and
u=20in [o,so]. In this step only g ¢ Co(o,so] is needed; to
extend the result u = 0 to [so,b] one can resort to standard

methods (cf. Lions [5]) where q ¢ C][so,b] is used. QED
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Remark 5.6 There are also versions of Theorems 5.3 and 5.5
due to Lions when a(t,v,v) + A||vHﬁ 2 a|LVH5 (cf. Carroll [8])
but we will omit the details here. We note that no restrictions
have been placed on the growth of q(t) as t -~ 0; however the
solution given by Theorem 5.3 is a weak solution and not neces-

sarily a solution of (5.1).

We consider now the operator

2
(5.8) L =25+ (at) + 8(t)3 + v(t)
ot
0 - b
for 0 <1<t <pb< =, where a € C (0,b] with J Re a(g) dg » =
T

as T+ 0, B¢ Co[o,b], and vy € Co[o,b]. Let A be a self adjoint
(densely defined) operator in a separable Hilbert space H with

(Ausu)y + GHullﬁ > 0 and consider for Q e C°[o,b]

Problem 5.7 Find w e C2(H) on [t,b] (0 s TSt <b<w),

w(t) € D(A), and t » Aw(t) € CO(H) on [1,b], such that

H
o

(5.9) (L +Q(t)A)w =0; w(t) =T e H; Wt(‘f)

It is to be noted that one may always assume A > 0 since a
change of variables X = A+ 3§ and ; = vy - 8Q can be made. Now
from the von Neumann spectral decomposition theorem (cf. Dixmier
[1], Carroll [14]) it follows that there is a measure v, a v-
measurable family of Hilbert sapces A - H(A) (cf. Chapter 3), and
an isometric isomorphism 8 : H > H = ICL(A)dv(A), such that A

is transformed into the diagonalizable operator of multiplication
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by A. Here 6T € H means J:HGTHz(X)dv <w® (”eT”H(A) =
||eT(x)|[H(x)) and T € D(A) if and only if in addition

fw AZHGTHz(X)dv < o where 6T is the image of T € H in H; we
wgite here 6T for the family (6T)(A) determined up to a set of
v-measure zero. For various other applications to differential
equations see e.g., Berezanskij [2], Brauer [1], Garding [1],
Lions [6], Maurin [1; 2; 3]. Now by use of the map 6 (5.9) is

transformed into the equivalent problem
(5.10) (L +2Q)ow = 0; ow(t) = 6T ¢ H; ewt(r) =0

with t = 8w(t) ¢ C2(H) and t > A8w(t) e C°(H) on [0,b] (note that
OAw = BAB-]ew = A0w). This essentially reduces Problem 5.7 to a
numerical problem, as in the case of the Fourier transform, and
we will construct suitable "resolvants" Z(A,t,t) and Y(A,t,t)

analogous to the Rm(y,t,r) and gm(y,t,r) respectively of Section

3 so that for example
(5.11) (L+2Q)Z =03 Z(r,t,t) =13 Zt(x,"c,"c) =0

in which event 6w = Z{Xx,t,t)8T will be a solution of (5.10).
Many of the techniques of Section 3 will be employed and this

will enable us to shorten somewhat the exposition here.

Let us assume Re o 2 0 for 0 < t £ s and consider P(t) =
b

exp (-J (a(€) + B(E))dE) (cf. (3.23)). Then P(t) - 0 as t =+ 0
t

and
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0]
(5.12)  |P(£)/P(a)]| = exp -[g Re[a(n) + B(n)Tdn) <

for 0 < & <o <£b, (In the terminology of Feller [2] t = 0 is
an entrance boundary.) As in (3.23) - (3.24) we obtain from
(5.11) (PZt)t + P(y+AQ)Z = 0 and

t o
(5.13)  Z(r,t,1) =1 - JT 1G) JTP(E)[Y(E)HQ(E)]Z(A,E,T)dgdc
which we write again in the form Z = 1 - J « Z, Setting F(t,t) =
It I |P(£)/P(c)|dEdo (cf. (3.27)) we have F(t,T) < « with
F(t,t) € F(t.0) = F(t) < F(}) < F(b) for t < § < b. The solution

e o)

f (5.13) is given again formally by Z(x,t,t) = ) (—l)kJk
k=0
(cf. (3.25)) and one may proceed as in Section 1.3 to prove

e o)

Lemma 5.8 Given Re o 2 0 on (0,s] the series } (-l)kJk o1
converges absolutely and uniformly on {0 < T < t < giox r, r &<
¢ compact (A € T'), and represents a continuous function Z(A,t,t)
of (A,t,t), analytic in A, which satisfies (5.13). Similarly

Zt(k,t,r) is continuous in (A,t,t) and analytic in A.

Proof: The statements for Zt(A,t,T) follow upon differen-
tiating (5.13) in t (cf Lemma 3. 5) We note also that if

t o ) ~
F(t) = J F(o) J | [dgdc then F = FF with F = F2/2 as in
)

Section 3. QED

Now, as in (3.30), we must examine the behavior of

a(t)Zt(A,t,o) as t ~ 0, Thus (cf. (3.31)) we set
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a(t) Jt(P(g)/P(t))dg = H(t,t) with H(t) = H(t,0). Let us assume
now th;t a € C](o,b] with ¢ = onl/on2 e C%lo,s], || < kRe a on
[0,8], and |a(t)/a(g)| SN for 0 S & <t <s. If lim H(t) =
H(o) exists as t -~ 0 then clearly (cf. (5.13) upon differentia-
tion) lim oft) Zt(x,t,o) = -H{o)[y(o) + AQ{0)]. Now consider
a(t) ft exp (-Jton(n) dn) d& = H(t,T) with H(t) = H(t,0). Since
B e COEo,b] it is easily seen that Iﬁ(t) - H(t)| can be made
arbitrarily small for t sufficiently small. Indeed if B(t,£) =
exp (-j:B(n) dn) then, by continuity, given € there exists &(¢c)
such that |B(t,g) - 1| S e for t £ 8(e). Hence for t <
min(s,8(e)) one has

—ngeon(n)dn

~ t
(5.14)  [A()-H(E)| < |alt)] f I - B(t.g)] e de
0

IA

t
t -S Rea{n)dn
e [ 1Ll Jatere e

0

t -f;Rea(n)dn
ekN J

IA

Rea(&)e
0

de = ekN

To find now H(o) = 1im H(t) as t > 0 we integrate the definition

of H(t,t) by parts to obtain
~ at t
(5.]5) H(t,T) =1 - a—(—;}exp ('I Ot(n)dn)

T

t t
. L UL a(£)o(e) exp (-Jga(n)dn)di

Letting T -~ 0 we have

~ t
(5.16)  H(t) =1+ j £(t,£)0(£)de
0
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t ~ t
where f(t,£) = a(t) exp (—J a(n)dn). But H(t) = J f(t,g)dg
~ t
so (5.16) can be written asgh(t) =1 = J f(t,E)(]-g(E))dE. Evi-

~ 0
dently h(+) is continuous as t > 0 and choosing t small enough

so that |¢(g)-¢(0)| < e for 0 < & < t one has (cf. (5.14))
~ t
(5.17)  [h(t) - (1-0(0)) J £(t,E)dE|
(0]

t
N J [F(t,8) ] |¢(0)-¢(E)|dE < eNk
0

~

Hence (1-¢(0))H(t) > 1 as t >~ 0 and if ¢(0) ¥ 1 this means

1im H(t) = 1im H(t) = H(o) = 1/(1-¢(0)) as t > 0 from which

follows that t -~ a(t)Z,(A,t,0) is continuous in t as t - 0 with
)

1im a(t)Zt(A,t,o) = 1196157591%1. It may then also be shown

easily that a(t)Zt(A,t,T) is continuous in (x,t) for T 2 0
fixed and analytic in X for (t,t) fixed (0 S 7 < t < b); simi-
lar properties are then transported to Ztt(x,t,r) by (5.11).

Consequently

1
Lemma 5.9 Let o € C (0,b] with ¢ = o /o2 € €To,51,
la| £ kRea on [o0,s], and |o(t)/o(E)] S N for 0 < €< t<s.
Then Z(A,+.7) ¢ C2[o,b] and satisfies (5.11) for 0 S £ S t < b

while o(t)Z,(),t,T) and Ztt(x,t,r) are continuous in (A,t)

t
and analytic in A.

Proof: It remains to prove that ¢(o) ¥ 1 and we suppose

the contrary. Then Re ¢ -~ 1 and Im ¢ > 0 and we can make

[Regp(t) - 1] S e for t € 8(e). Now on_(%)_' E(:]F)_=
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I o(E}dE (T < t) w1th Tim —7—7- 0 as T > 0 since Rea(t) + =,
Hence 1/a{t) = J ¢(£)dt and for t < min(s,8(c)) and € < 1 we
can write °

1 t
(5.18)  Re Ll = -t + jou-nw(s))ds < -(1-e)t < 0

which violates the fact that Reo(t) > 0 for t small. QED

We can now derive some bounds for the resolvant Z as in
Section 3 (cf. (3.32) - (3.33) and Lemma 3.7). Here one mul-
tiplies (PZE)E + P(ytAQ)Z = 0 by P-](E)ié(X,E,T) and integrates

from T to t to obtain

2 [t t 2
(5.19)  |z,(r.t,0) | -J T e + L(aﬂ;)lzgl de

t
+ [z = 0
. :

Assume now that Q ¢ ¢! [o,b] with Q real and 0 < q £ Q(t).
Adding (5.19) to its comp]ex conjugate and noting that

2Re(Z, |Z,|? with 2Re 7Z, - g—g 12|12 we have

L) = e £

t t
(5.20)  |z,0,t,1)% + 2 J Re(ar+8) |7, 2 + z[ Re(vZZ, )
T T

t,
£ 20(8) |20 1|2 = AQr) + AJ Q |2)%dE
T

It is convenient now to write a + B = o + o, where o = o on
(0,s], s < s, aq = 0 on [s,b], and ap = al[{s-t)/(s=s)] on [s,s].

Then a € Co(o,b] with 1a]| < kg Rea; on (o,s] and |a1(t)/a (£)] <

52



1. SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE

Ny for 0 £ £<t<b, Then from (5.20) we obtain

(5.21) |z

|2 + AQ(t)IZI2 < 2rt|Re ||z 12de + AQ(x)
t - JT ol 1L

t t B
+>\J 10 [12|2de + 2J IRe (yZZ.) | dE
T T g

We note that |Re(y27é)| < |y27é| < %—|y|(|Z|2 + |Z£|2) and set

¢y = 2 sup |Rea2|, C, = sup |v|, and C; = Sup |QI| (on [o,b]).

It may be assumed that A 2 1/q since this can always be assured

by adding if necessary a constant multiple of Q to y (e.g., set
'

] 1
A =A+1/qaedy =y - (%)Q so that y + A'Q = y + AQ with

]
A 2 1/q). Then from (5.21) we have

(5.22)  |z,]% + Aq(t)]z|? < re)[ 1212
X . o(t)]212 < xq(x) + (regte, JT|z| de

b LY.
e legrep)] 12178 <2000 + Oiegrey)] 71708

rt 2 2
+ c4JT{|z£| +AQ(g) |Z|“}dg

where c4 = c] + Coe Now Tet us state a version of Gronwall's

Temma which will be useful (see Carroll [14] or Sansone-Conti

[1] for proof).

1

Lemma 5.10 Let u e CO, 2 e L with £ 2 0, and ¢ absolutely

t
continuous. Assume u(t) < ¢(t) + J 2(n)u{n)dn. Then
t

t t ©
(5.23) u(t) < Jt ¢ (E) exp (ng(e)de) dg
0
t
+¢{t,) exp (J 2(0)de)
t0
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Applying Lemma 5.10 to (5.22) with 2 = 4, =1, u{t) =
12,12 + 2(1)[Z]2, and o(t) = AQ(x) + (rcyte, j |z| dE it fol-
lows that

2 2 .
(5.24) |z, + 2Q(t)[Z]" < AQ(x) exp c,(t-1)

t
+ J (>\c3+cz)IZ|2 exp cy(t-£)dt
T

<c AQ(T) + cg(Acgtc, j |z|
where Cg = exp c4b. In particular

cQ(r) ¢ C t
P s 2 ey D) [ 127
T

5.25 z
( ) | q q

Since A Z 1/q we have X%' < 1 and using Lemma 5.10 again there

results from (5.25)

c:Q(1)
(5.26) |Z|2 <2 g expc b=c

6 7
‘s
where c, = —a(c3+c2) Putting this in (5.24) we obtain
(5.27)  ]Z.]° Sch * ¢
* t' T 8 9

Lemma 5.11 Assume Q ¢ C1[o,b] with Q real and 0<q < Q{t)
while |a| < kRea on [0,s], ¢ = a /a2 e €°o,s], and
|a(t)/a(g)] < N on [0,s]. Then Z given by Lemma 5.8 satisfies

(5.26) - (5.27) for 0 < 7 < b while |a(t)Z | < A+ C

“10 1

Proof: There remains only the last statement. Let Cip =

sup |Q| on [o,b], Ci3 = Sup |a2| on [o,b] {recall that o + 8 =
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t
ap + az), and Ciq = SUP exp (-JTRe az(n)dn) for 0 £g£<t<b.
Then differentiate (5.13) in t and for t < s we have (cf.

(5.12))

(5.28)  [(w8)Z,] < (cpthcy,)ic; M [!ZIda

t t
+ Nk JTRea](E) exp (-JgRea](n)dn)‘ZldE}
<
Sepgh + g
where (5.26) has been used. : QED

Remark 5.12 Under certain mild additional hypotheses the
assumption ¢ € c°[o,s] is sufficient to insure that
la(t)/a(t)] s N for 0 St <t<s (cf. Lemmas 5.9 and 5.11).

In part1cu1ar this holds if ¢(o) $ 0 or if ¢/|¢]| e C Lo, s] for

some s < s (see Carroll [8] for details).

We construct an "associate" resolvant Y(\,t,Tr), corres-
ponding to Sm(y,t,r) in Section 3, by the same technique to ob-
tain (cf. (3.16) - (3.17))

(5.29)  Z_(x,t,7) = [y(r)+AQ(7)] Y(A,t,7)

(5.30) Yt(A,t,T)

-Z(x,t,t) + [alt)+8(T)] Y(A,t,1)

Then given Rea 2 0 on (0,s], (5.12) holds and one can differen-
tiate (5.13) in t to obtain Y(X,t,t) = U(t,T) - (J = Y)(X,t,T)

t
where U 1is given as in (3.34) by U(t,7) = f (P(1)/P(0))do =
T
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Jtl(o,r)do and J is defined by (5.13). The formal solution is
a;ain Y = E (-1)kJk « U (cf. (3.36)) and to show that U(t,t)

is continugag in (t,t) we need only consider the critical point
1 = 0, Thus defining evidently U(t,0) = 0 for t 2 0 (note that
our assumptions preclude a case where g(t) = 0 as when m = -1/2
in Section 3) one has |[I(o,7)| <M for 0 <1< o< b(cf.(5.12))
and we write U(t,t) = f E(o,r)do where E(o,r) =0 for o < 1.

Now let (t,t) - (to,o) gor t0 > 0; then E(c,r) + 0 for any 0 ¥ 0
as T > 0 with l}(o,r)l < M and we may invoke the Lebesque
bounded convergence theorem (cf. Bourbaki [3]) to conclude that
U(t,t) - 0. Hence the terms gk . U will be continuous in (A,t,T)
and analytic in A with |U(t,T)| < Mb. By previous analysis (cf.

Lemmas 3.8 and 5.8) we have

Lemma 5.13 Given Reo, 2 0 on (o0,s] the series Y =
§ (-1)kJk « U converges absolutely and uniformly on {0 £ T £
t- b} x I', re ¢ compact (A € T'), and represents a continuous
function Y{x,t,t) of (A,t,1), analytic in A, which satisfies Y =
U-J «Y (Jgiven as in (5.13)). One has (5.29) and for T > 0
(5.30) holds. Moreover Y(X,7,T) = 0, Y(A,t,0) = 0, and, for

T >0, Yt(k,r,r) = 1.

Proof: This goes as in the proof of Lemma 3.8 (note here
that Ut = P(1)/P(t), UT = -1 + (a+B)U, and from (5.30), cf.

(3.39), Y(r,t,1) = J Z(r,t,n)(P()/P(n) )dn). QeD
T
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Now Y_ is defined by (5.30) and does not necessarily tend
to infinity as T > 0 (cf. (3.42)). We need only examine

a(t)Y(A,t,T), or a (T)Y(A,t,T)}, as T > 0. As in (3.40)

ol

ap (DY(,t,1) = 3 (-1)X0K « o (1)U(+,7) s0 we Took first at
k=0

a](T)U(t,T). For T > 0 one has

g

t
(5.31) a](T)U(t,T) = a1(r) J Bz(o,r) exp (-j a1(n)dn) do
T T

1 B|(t )a1(T) ( Jt (n)dn)
= - s T ex -1 o
2 o () P 2 njan

t B;(O,T) (—f0a1(n)dn)

_ ’ T
rag(0) | Ty - Bylos0e (@) do
L} aBz(O,T) ! 2 .
where Bz(o,r) = e ani ¢ = a1/a1 = ¢ for suff;c1ent1y
small arguments (e.g., t < s); here Bz(o,r) = exp (—J az(n)dn)
o T
is C in (o,t) with |BZ(0,E)£ S Cyy (cf. Lemma 5.11). We examine
o, (T t

first the term A(t.1) = " exp (-J a1(n)dn) as T >~ 0 and one

1

1 t

. ) T 2m + 1
can compare here with Section 3 where a(t) = T

ACt,t) = (t/t)2™ > 0 as T > for m > 0 (B,(t,T) B 1 in Section 3).

and

Thus assume A(t,t) > 0 as T ~ 0 in which event, from (5.31)

there results (since B,/B, = -%,(9))

of
\ t o, (0) (£ 5y (m)en)
(5.32} a.l('r) LBZ(O,T)['I + m + ¢(o)]e do + 1

as T -~ 0, independently of t. But az(o)/a1(o) +~0as o ~ 0 and

. onz(o)
taking t small enough so that 1+ &;TET + ¢(0o)

1+ ¢(o) (and Bz(o,r) 2 1) we have

: \ _ ]
(5'33) llno] a'l (T_’U(t,T) = W—a)—
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provided ¢(o) ¥ -1. This checks with Section 1.3 (for m > Q)

zgm+ 1 or 2m : 1 u(t,t) » gmﬁﬁfl-. Thus when

A(t,t) ~ 0 as t ~ O with ¢(o) ¥ -1 we have by (5.30) as T ~ 0

where 1/(1+¢(0)) =

YT(A,t,o) = =(¢(0)/(1+4(0))Z(1,t,0) (cf. (3.42) and the defini-
tion of Z in Lemma 5.8).

In general we cannot expect of course that A(t,T) -~ 0 as
T >~ 0 or that ¢(o) ¥ -1 (cf. Section 1.3). However, as with
gm(y,t,r), we can show that YT(A,t,T) € L] in T (with Y(A,t,.)
absolutely continuous) and we follow again Carroll [8]. Thus

©o

consider a](T)Y(A,t,T) Z 1) a T)Jk « U(+,t) and define

for some upper limit t s s

~

t
(5.3) K = J ag(1) 3" - U, T)de

0
where J" « U(s,7) = (J" - U)(E,T) (note here that (J" « U)(t,T) =
0 by definition if T > t). We set again |B,(o,7)| < cyq and
Ia](r)l < kjRea, (1) so that

t t -/ Rea;(n)dn
(5.35) |K0| < c]4k] J Rea](r) JT e dodt

ct? O

JO -ngea](n)dn

c]4k] J Rea](r)e dtdo < c]4k]b

IA

o

0

(for Fubini-Tonelli theorems see McShane [1]). Similarly, set-

ting |A|~ £ R and (c, + Rc,,)} = c, we have (cf. (5.13) for J)
C~ ¢ 12
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(5.36) K| < J g (1) 1(0 = U)(E,7) de
0

t t (o
P
¢pakic j Rea; (1) J J [aG%
0 T T

JE -ngea](s)ds
e
T

A

dndgdoor <

~

t o £ -/MRea; (s)ds
P T o1
L JO Jo |ﬁ%%%- Jo JOREG](T)e dtdndgdo

IA

c]4k]ch(t) < c]4k]ch(b)

Upon iteration we obtain (cf. Section 3)

n.n
CF

b
(5.37) K | S cqpkyb i

-~

<) o t ~

and thus J (-1)" = 7§ (-1)" J a, (1) (A" - U)(t,t)dr converges
n=0 n=0 0 1

uniformly and absolutely. An elementary argument (cf. Carroll

[81) then shows that a (+)¥Y(},t,-) e L' with

-~

t - e
(5.38) Joa](T)v(x,t,T)dT nzo(-1)"Kn

Lema 5.14 If |a| < kjRex; on [0,5] then T > Y _(A,t,7) =

1
=Z(A,t,1) + (o8)(1)Y{Ast,1) e L) for 0 < T <t < b and Y(A,t,e)
is absolutely continuous with Y{),t,t) = JTYg(A,t,g)dg. If
¢ = a|/a2 £ Co[o,s] and ¢(o) % -1 with A(t?T) =
() (x)/oy (1)) exp (-jta](g)dg) +0as T+ 0 then Y_(At,e) is

T

continuous with YT(A,t,o) = -(¢o(0)/{(1+4(0)))Z(Ar,t,0).
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Proof: The absolute continuity follows as in Lemma 3.9

and we recall that Y(A,t,0) = 0 by Lemma 5.13. QED

Bounds for Y can be obtained as for Z. We simply multiply
(5.30), with t replaced by £, by Y(\,t,£), add this to its com-
plex conjugate, and integrate in £ from t to t, using the re-
lation %E |Y|2 = 2Re(YgV), to obtain (recall that o + B = a]-+a2)

t

(5.39) %~|Y(X,t,T)|2 + J Rea](E)lle(X,t,E)dE

T

t 2
$ <[ Reay(@) Y1200, t.6)d
T

rt
+]§ | (z1% + V20,60 de
T

Recalling that ¢ = 2 sup |Rea2| we have, assuming Lemma 5.11,

t t
(5.40)  [¥[% < (cq+1) J [v]%de + J 2|2
T T

t
Seps (e [ v10ute)de
T

Lemma 5.15 Under the hypotheses of Lemma 5.11 we have

V120, t,t) Scfor 0t s tsbandi >0,

Proof: One applies Gronwall's lemma (Lemma 5.10) to (5.40).

QED

Now let us go to the solution of the Cauchy problem (5.9) -

(5.10), recalling that A can always be made larger than zero.
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Let LS(E,F) be the space of continuous linear maps E >~ F with
the topology of simple convergence, i.e., Av > 0 in LS(E,F) if
Ae > 0 in F for each % e E. We write LS(E) for LS(E,E) and
recall that 6H = H = J H(A)dv(x). Now Z(.,t,t) and Y(+,t,T)
belong to Ls(eD(A),H), LS(H), and, Ls(eD(A)) since they are
bounded by Lemmas 5.11 and 5.15 (on 8D(A) we put the norm

et || = fo ||6T||f2{(>\)dv+E>\2||6T||ﬁ(>\)dv, where [[6T (], ) de-
notes ||eT(A)I|H(A))' If now 6T ¢ 6D(A) consider for example
a(ew) () = [Z(x,t,T) - Z(x,to,r)](eT)(x) = (AZ)(6T)(x). To show
t > Z(-,t,t)6T : [0,b] » 6D(A) is "strongly" continuous, and
hence that t ~ Z(-,t,t) : [0,b] » Ls(eD(A)) is "simply" contin-
uous, one must show that as t > t |la(ew) ||, ~ O and

||AA(ew)||H ~ 0. But, for example, ||A(ew)||H ~ 0 means
HA(equ)||§(X) + 0 in L](v) and since A(Bw)(A) >~ 0 v almost
everywhere (cf. Lemma 5.8) with HA(ew)(A)HE(X) < 2C7”6T”§(X) €
L](v) (cf. (5.26) in Lemma 5.11) one can apply the Lebesgque
dominated convergence theorem (cf. Bourbaki [3]) to conclude
that HA(ew)HH > 0ast~>t (note that ”eTHE(X) is finite v
almost everywhere). A similar argument applies to HAA(ew)HH
since x2||eT||ﬁ(X) € L](v); thus one has shown that t > Z(-,t,7) €
CO(LS(eD(A))) on [o,b]. Analogous reasoning, using (5.29) with
Lemmas 5.8, 5.11, 5.13, and 5.15, leads to (cf. also Remark
5.22)

Lemma 5.16 Under the hypotheses of Lemma 5.11 we have, for

0stTstsb,t>Z(s,t,1) e CO(LS(eD(A)) or CO(L_(H)) (and

S
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CO(L((8D(A),H)) trivially); T + Y(+,t,7) and T > Z(+,t,1) €
C°(Lg(H)) or CO(LS(8D(A)))5 while t > Z,(,t,T), t ~
a(t)Z,(+,t,1), and T > Z (-,t,7) e CO(Lg(8D(A),H)).

We wish to show now that in fact 3/5t(ow) = 3/3t(Z6T) =
ZtiT in H., For fixed (A,T) one has evidently AZ/At - Zt(A,tOT) =
(J [Zn(A,n,T) - Zn(A,tO,T)]dn)/At. Hence in H{\) we have, v
a1$85t everywhere, in an obvious notation, ZA = (A(ow)/At) -
Zt(A,tO,T)eT(A) = [(1/At)JZ Aann]eT(A) and consequently
0

~ 2l [t 2 2
(5’41) ”A}‘” - ['A—t ¢ IAandn] ”eT(}\)”H(}‘)
o
Now ||eTllH(A) ||6T(A)||H(A) is finite v almost everywhere and
for (A,T) fixed we can make (by Lemma 5.8) lAan < e for
In-ty| < 8(e). Hence, for |t-t | < &(c), |Ia,]|% < €¥]loT(x) I
A H{A)
so that HA | ~0wv almost everywhere as t >t . Also by (5.27)
2 1 2 2

we know that [|a, |2 < [(2/At)(J (cgh + cg)/2anTlleTIIG ) <

NTY . 1
(c17A + CIB)HGT(A)”H(A)' Ther8fore HAAH + 0 in L (v) and
a/dt(ew) = ZteT in H. Similarly one checks Bz/atz(ew), using
estimates for a(t)Zt(A,t,T) and AZ{X,t,t) indicated above (cf.

also Lemma 5.9), to establish

Theorem 5.17 Under the hypotheses of Lemma 5.11, t -
Z(,t,T) € C2(Ls(eD(A)),H) and there exists a solution of the
Cauchy problem 5.9 (Problem 5.7) given by w(t) =
6~ 1[Z(+,t,7)8T(+)] for T e D(A) (0 S 1 S t < b)e
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One notes also that by (5.30), and Lemma 5.16 with refer-
ences thereto, T > (1/a(t))Y_(=,t,1) e CO(L (H)) or (L (8D(n))
for T small with T > Y(*,t,7) € C'(L_(H)) or C'(L (6D(A)) for
T > 0. Now we note that if F is barreled then any separately
continuous bilinear map E x F + G is hypocontinuous relative to
bounded sets in E (see Bourbaki [2]). But a Hilbert space is
barreled so the map u : (A,h) - Ah : LS(F,G) x F~ G is contin-
uous on bounded sets Bc LS(F,G). Since 0 ST $E<t<bis
compact and the continuous image of a compact set is bounded
we may state for example that £ - Y(+,t,£)ow(E), £ +
Y(-,t,8)ow (£), &~ (ag) + B(ENY(-,t,E)ow (E), € ~
Yg(°,t,£)6wg(£), and £ ~ Y(-,t,g)ewgg(g) are continuous (note
that Y. 0w, = (1/a(£))Yg o Ow

£°¢g g
Theorem 5.17). The following formulas are then easily verified

and ow(&) = ow(&,t) is given by

using Lemma 5.14 (cf. (3.18) - (3.20) and see Carroll [8] for

details).

+ Y. 6w, }dE = 0

t
(5.42) JT {Yewgg oW

t
(5.43)  ow(t) = Z(\,t,7)0T + J (20w, + (Y#\Q)Yow}dE
T

g

where 6w satisfies (5.9). Hence multiplying (5.10) by Y we have

t
(5.44) ow(t) - Z(A,t,T)6T = j {Yg - (o+B)Y + Z}ow
T

gdg =0

(cf. (5.30)). Hence ow(t) is necessarily of the form Z(x,t,t)oT

and we have proved
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Theorem 5.18 The solution of Problem 5.7 given by Theorem

5.17 is unique.

As before (cf. (3.22) and Theorem 3.14) we have (cf.
Carroll [8] for details and cf. also Remark 5.22).

Theorem 5.19 The unique solution of (L+Q(t)A)w = f ¢
CO(D(A)), w(f) =T ¢ D(A), wt(r) = 0 is given (under the hypo-
theses of Lemma 5.11) by w(t) = 6'1[2(-,t,r)eT(-)] +
Jt 071V (-,t,£)0f(E)dE (0 < T <t <b).

T

As in Definition 3.15 we will say that the problem
(LHQ(t)M)w = f, w(T) = T ¢ D(A), wt(T) =0, and f ¢ CO(D(A))
is uniformly well posed if w depends continuously in H on
(t,7,T,f). By hypocontinuity and Lemmas 5.8 and 5.13 we can

state

Theorem 5.20 The problem (L+Q(t)A)w = f e C°(D(A)),
w(t) =T e D(A), and wi(t) = 0 is uniformly well posed under

the hypotheses of Lemma 5.11 (0 <t St € b).

Remark 5.21 We can generalize some of the results of Sec-

tion 1.3 to the case of L = 32/3t2 + (a(t)+B(t)) 3/5t + y(t) in

2m+1
<)

Thus one considers for 0O

place of 32/3t2 + 3/0t; the details are in Carroll [8].

A

T<t<be.g., Lw + Q(t)Ax *w =0,
w(t) =Te S, and wt(r) = 0 with Condition 3.1 on A(y) ful-
filled. It is in this problem that the analyticity of Z, Y,

etc. in A is utilized (cf. Lemmas 5.8, 5.9, and 5.13).
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One proves that the unique solution w ¢ C2(S ) of this general
problem is given by w(t) = Z(t,t) * T where Z(t;) = F 1Z(A(y),t,7)

and the problem is uniformly well posed.

Remark 5.22 In Carroll [10; 11] some semilinear versions
of the singular Cauchy problem were treated by spectral methods.
Let L be as above and construct, under the hypotheses of Lemma
5.11, resolvants Z(x,t,t) and Y(A,t,t) as above. Then consider

in H
(5.45) (L+Q(t)A)w + f(t,w) = 0; w(t) = T e D(A); Wt(T) =0

(02 T<t<b)., Following Theorem 5.19 this leads to the inte-
gral equation {where Z(t,t) = 6'1Z(~,t,1)e and Y(t,t) =
e'1Y(-,t,r)e belong to L (H))

t
(5.46)  w(t) = 2(t,0)T - J V(t,£) F(Em(E))dE = Tw

T
Now parts of Lemma 5.16 can be somewhat improved by using esti-
mates already established plus some stronger variations; for

example one can show that (t,£) - V(t,&) € CO(LS(H,D(AV2

1/2

))) and
t > Z(t,1) € C1(LS(D(A Y,H) (cf. (5.27) for Z and for V one
can produce an estimate |Y|2(A,t,1) < E/A for A >0 and 0 €

T <t £b, stronger than that of Lemma 5.15 - cf., also Chapter
3). One Tooks for fixed points of T using some modifications of
a technique of Foias-Gussi-Poenaru [1; 2]. For example if we

assume £ - ;(g,v) = Al/zf(E,A—] v e C°(H) for v ¢ C°(H) with
1F(6.v) = F(E) || € ky(Edwy ([lv-ull) where k; e L' and w, is an
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Osgood function (i.e., Je dp/w](p) = o for ¢ > 0) while
”;(E,V)” E_kz(i)wz(leH? where k, € L' and w, is a Wintner
function (i.e., j: dp/wz(p) = o for € > 0), then there
exists a unique solution w ¢ C°(D(A)) of (5.46) on [0o,b]. Fur-
thermore, this solution satisfies (5.45) withw ¢ CZ(H), w e
c'(0(a1/2)), and w e €°(D(n)) while (5.45) is uniformly well
posed. The improved estimate on Y also leads to a stronger ver-

sion of Theorem 5.19 where only f ¢ CO(D(A]/2

1/2

)) is required while
We CZ(H), We C](D(A )), and w € ¢°(D(A)). One can also add
a nonlinear term to f{t,w) in (5.45) which generates a compact

operator in H and obtain another existence result for (5.45).

1.6 EPD equations in general spaces. We go now to a
technique of Hersh [1; 2] in Banach spaces which was generalized
by Carroll [18; 19; 24; 25] to more general locally convex spaces
(cf. also Bragg [10], Carroll-Donaldson [20], Donaldson [1; 5],
Donaldson-Hersh [6], Hersh [3]). Thus let E be a complete
separated locally convex space and A a closed densely defined
Tinear operator in E which generates a locally equicontinuous
group T(+) in E {cf. remarks after Definition 6.3). This means
that T(t) € L(E) for t e R, T(t) T(s) = T(t + s), T(o) = I, t »
T(t)e € CO(E) for e € E, and given any {continuous) seminorm
p on E there exists a {continuous) seminorm q such that p(T(t)e)
< qfe) for |t] < t, < = (any to); also 1im (T(t) - I)e/t = Ae as
t - 0 for e € D(A) (dense). We refer here to Komura [1] and

Dembart [1] for locally equicontinuous semigroups or groups and
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remark that it is absolutely necessary to consider such groups in
"large" spaces E in order to deal for example with growth proper-
ties of the solutions of certain differential equations (see also
for example Babalola [1], Komatsu [1], Lions [7], Miyadera [1],
Oucii [1], Schwartz [6], Waelbroeck [1], Yosida [1], etc. for
other "general" semigroups - for strongly continuous semigroups
in Banach spaces see Hille-Phillips [2]).

Let us consider now the problem

(6.1) th + 2¥+1 wT = Azwm; wh(0) = esD(Az); wh(0) = 0

for WECZ(E). Following Hersh [1] one replaces A by 3/3x and

looks at

mo, 2m+1

tt t

o RN(=,0) = & R{(-,0) =0

(6.2) R t

m _
Rt—R

which is a resolvant equation as in Section 3 whose solution

~

R™ = FR™ is given by (3.6) with z = ty. We recall the Sonine
integral formula (4.6) and pick p = -1/2, which corresponds to
2p+1=0=n-1, as the pivotal index (note p = % -1 as in
Theorem 4.12). Clearly the unique solution of (6.2) withm =
-1/2 is R-1/2(-,t) = u (t) = 1/72[6(x+t) + &(x-t)] so that, from

X
(4.6), for m > -1/2

1 1
(6.3) A1) = EEL [ (L) 7y (cyae
r(1/2)r(m ? E) 0

1 1
- cmf (1-£2)™ 2 s(x-£t)de
-1

T'(m+1)

where ¢y = T(T72)T(m+172) (note that &(xz&t) could be used in the
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last expression in (6.3) because of symmetry involved in My - cf.

(6.6)). Now one writes formally
(6.4)  wW'(t) = <RM(-,t), T(-)e>

as the solution of (6.1) where for t fixed <, > denotes a pairing
between the distribution Rm(-,t) € E; of order zero and T{-)e

e C°(E). Note here that for e e D(A?), T(+)e e C(E) with 5
T(x)e = AT(x)e = T(x)Ae, and of course t -~ R™(s,t) ¢ Cm(E;) from
Section 1.3. If we write out (6.4) in terms of {6.3) there

results
m 1 2 m-l
(6.5) w (t) = cmj (1-g%)" 2 < &(x-£t), T{x)e > dg
-1
1 2 m-l
= cmj 1(1-& )72 T(&t)edg

which coincides with the formula established by Donaldson [1]

using a different technique. We can also use the formula
m 1 2 m-l-
(6.6) w(t) = 2cm j (1-8%)" 2 cosh{Att)edg
0

where cosh A&t = 1/2[T(&t) + T(-&t)] with <ux(€t), T(x)e > =
cosh (Att)e. To verify that (6.4) represents a solution of (6.1)
one can of course work directly with the vector integrals (6.5)
or (6.6) but we follow Hersh (11 and Carroll ([18; 19; 24; 25} in
treating (6.4) as a certain distribution pairing. Thus Rm(-,t),
R?(-,t), and RQX(-,t) = AXRm(-,t) are all of order less than or

1]
equal to two in E with supports contained in a fixed compact
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set K= {x; {x] < x;} for 0 5 t<b<wandwe let K = {x; [x] £
X, t B} for any g > 0. If S e EI is of order less than or equal
to two with supp S € K we can think of S e CZ(E)' (cf. Schwartz
{(11). Recall further that on R,CZ(E) = 2 é%E (see e.g., Treves
[11) where the e topology on C2 ® E is the topology of uniform
2)' '

convergence on products of equicontinuous sets in (C xE. It

is easy to show (see Carroll {18] for details)

A0
Lemma 6.1 The composition S ~» <S,$>: CZ(K) +~ E is con-

tinuous for 3 e CZ(E) fixed. The map A® 1 : CZ(E) =¢° ée E

(defined by (A x 1) § 9, @e; = )} A9, da'ei) is continuous.

Let us indicate first the formal calculations necessary
to show that (6.4) is a solution of (6.1), while establishing at
the same time some recursion relations. Their validity is
essentially obvious upon-suitable interpretation (cf. below).

Thus, from (6.4) and (3.11) transformed,

(6.7) Wit) = <RT(-,t), T(+)e> = 7(7?1—+T)' <R™T(

o, t), T(e)e>
t

_ m+1 (
~ 2(m+

T <R o, t), AT(+)e>

= gy R
tc 1 1

_ mt1 2\t 2

= 2Tm+] [—](]-g ) 2 T(Et)A edt

. ,t), T(-)A%e>

- A2t m+1(

gy v ()

Similarly from (6.4) and (3.12) transformed

69



SINGULAR AND DEGENERATE CAUCHY PROBLEMS

[<R™1(+,t), T(-)e>

(6.8) Wp(t) = <Ri(e,t), T(+)e>

- R™e,t), T(+)es] = 28 W™ (t) - Wh(t)]

Then differentiating (6.7) and using (6.7) - (6.8) we
obtain (6.1). The calculations under the bracket <, > can be
justified using Lemma 6.1 and in order to transport A around in
(6.7) one can think of <, > as a distribution pairing over the
interior of k (cf. Carroll [18]). This proves, given A, T(t),
and E as above (e ¢ D(A2))

Theorem 6.2 The equivalent formulas (6.4) - (6.6) give a
solution to (6.1) for m 2 - 1/2 and the recursion relations in-
dicated by (6.7) - (6.8) are valid.

The question of uniqueness for (6.1) had seemed to be
rather more complicated than that of existence but a new
theorem of Carroll (26] (Theorem 6.5) gives a satisfactory re-
sponse. There are several types of theorems available (cf.
Carroll [18; 24; 25; 26], Carroll-Donaldson (20], Donaldson [1],
Donaldson-Goldstein [2], Hersh [1]). The first one we discuss
(for completeness) is based on a variation of the classical
"adjoint" method and simplifies somewhat the presentation in

Carroll [18]; it is not as strong however, as Theorem 6.5.

Definition 6.3 The space E (as above) will be called A-

adapted if E 1is complete and D(A*) is dense.

When E is A-adapted (A being the generator of a locally
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equicontinuous group in E) it follows (cf. Komura [1]) that A*
generates a locally equicontinuous group T*(t) in EI. The re-
quirement of completeness is a luxury which we permit ourselves
for simplicity. Indeed, for the discussion of locally equi-
continuous semigroups sequential completeness is sufficient (in
view of the Riemann type integrals employed for example). Thus,
in particular, if E is reflexive (not necessarily complete)
then it is quasicomplete (cf. Schaeffer [1]), hence sequentially
complete, as is the reflexive space E', and A* will generate a
locally equicontinuous group T*(t) in E| with D(A*) dense (cf.
Komura [1]). We remark also that if E is bornological then E
is in fact complete (cf. Schaeffer [1]). We use completeness
basically only in asserting that C2(E) =C 452 E but a version
of this is probably true for E sequentially complete; the in-
crease in detail and explanation throughout our discussion does
not seem to justify the refinement however.

We consider now the resolvants Rm(',t,T) and Sm(',t,T) of

2 with Ax =-A = -32/3x2 (cf. also

Section 3 when A(y) = ¥
Section 4). We recall (cf. Lemma 4.3) that R™(,t,t) and
s™(-,t,t) belong to E;, with suitable orders (exercise), and
Lemma 3.13 holds with 0M replaced by Exp 0M =F E'. Thus let
wh(t) satisfy (6.1) with w"(0) = w?(o) = 0 and consider (for an

A-adapted E)

(6.9)  u"(t,E) = <S"(-,t,E), T (+)e >
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! *
where e ¢ D((A )2) (dense); W s any solution of (6.1), not

necessarily arising from (6.4). Then from (3.17)

(6.10) ug(t,g) = <SP(.t.8), T (+)e >

<(-R"(e,t,5) + 2L ML 4 E)), T (-)e >

2m+1
g

-vM(t,E) + u"(t,€)

where vm(t,g) = <Rm(-,t,g), T*(-)e >. Further, from (3.16),

(6.11) vg(t,g) = —<aS"(e,t,E), T (*)e > =
- <S"(e,t,E), AT (+)e > = -(A)? uM(t,E)

Now take (E, EI) brackets <, >E with um(t,g) in (6.1), where t
has been replaced by £ and w" is any solution of (6.1) with zero
jinitial data; then integrate in & from 0 to t (cf. (3.18) -
(3.20)). We note first that

t t
6.12) [l e), wM(t.6)>pde = -[ e, ul(t.E)>le

0 0 2
t t *
6.13) [ 4WM(e), W(t.e)pee = [ ale), WHAM(E.E)>pde
0 0
t '
= [ M), Vleegds = - (e, e

t
S ICHCRAGERT

Consequently, using (6.10), <wW(t), e > = 0 for any e ¢
D((A*)Z) (dense) - which implies that w"(t) = 0 - since we will

have from (6.1), (6.12), and (6.13)
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t

(6.14) 0= [ i), -uf(e.e) + 2L "(e,6) - V(00>
o £ £
+ <w'“(t),e'>E = <w’"(t),e'>E

Theorem 6.4 If E is A-adapted then the solution to (6.1),
given by Theorem 6.2, is unique.

This uniqueness theorem has been included primarily to
illustrate the adjoint method. If can be supplanted by the
following recent result of Carroll [26] which was motivated by
(and improves) a result in Carroll [18] based partially on a

technique of Fattorini [1].

Theorem 6.5 For Rem > - 1/2 let w" be any solution of (6.1)
with zero initial data and let A generate a locally equicontinuous

group T(x) in E as above. Then wm(t) = 0.

Proof: We note first that our existence-uniqueness cal-
culations in Sections 3-4 are valid for suitable complex m
(Rem 2 - 1/2), as indicated partially in Section 5, but we will
not spell out the details. Thus our demonstration is strictly
justified only for real m 2 - 1/2. We use Rm(-,t, s) and
sM(«, t, s) with AX =-4 =- 32/3x2 as in the proof of Theorem

6.4. Define, with brackets as in (6.4),

(6.15)  R(t,s) = <R™(,t,s), T(+) W"(s)>

(6.16) S(t,s)

<s"(,t,5), T(+) wi(s)>
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Then evidently (cf. {3.16) - (3.17) and the calculations leading

to Theorem 6.4)
(617) R (t,s) = - <s™(-,t,5), T(+) ABW(s)>
+ <R"(-,t,5), T(-)wg(s)>
(6.18) - S (t,s) = <=-R"(+,t,s) + 2L SM(e t,5), T(-)l(s)>
+ <s™(e,t,5), T()wg(s)>
(6.19)  (R#S){tss) = ¢ (t.s) = 0
= <SM(e,t,s), T( )M+ 2T Q2

Consequently ¢(t,0)} = ¢(t,t) and recalling that Sm(-,t,t) = 0 with
R™(-,t,t) = & we have #{t,0) = 0 = ¢(t,t) = wm(t). QED

We sketch here in passing some relations of (4.6) and (4.10)
to the Riemann-Liouville (R-L) integral (cf. Carroll [18; 19],
Donaldson [1], and Rosenbloom [1]); questions of uniqueness for
(6.1) in E can be treated in this context but Theorem 6.5 in-
cludes everything known. The relation of EPD equations to R-L
integrals was of course known by Diaz, Weinberger, Weinstein,
etc. many years ago and some facts are of obvious general inter-
est. We recall first (cf. Riesz [1]) that the R-L integral of

fe 0 or "suitable" f e L] is defined for Re a > O by

t
(6.20)  (1%)(t) = 77k J (t-5)% V¢ (s)ds
0
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One can obviously deal with f ¢ C°(E) for example in the same
manner and we will assume f is E valued in what follows. For

Re a > -p (p > 1 an integer) the "continuation" of I% is given by

p-1 (k) a+k
6.21) (") = T iy e a* PP

for £ e CP(E) or f e cPV(E) with £P)(+) & L1(E) "suitably".
One knows that I°‘IB = IG+B, except possibly when B is a negative

~p, where 17Pf = £{P) in which case f(o) = . . . =

integer B
f(p'])(o) = 0 is required in order that I*17P = 1*7P jn general,
and 1° is defined to be the identity. Evidently (d/dt)(I%f) =

Ia_]f for any a. We record now some easily established facts.

n+]

Lemma 6.6 If f € C' "(E) with -n < Rea £ -n+ 1 and a

nonintegral then

. -1 .
(6.22)  (1%f) (t) = (1%7'f)(t) = fXE%%gy- + (1% )(t)

n+]

If f(o) = 0or o= -nwith f e C' '(E) then

|
—
Q
—+
—
Q
]
-

(6.23)  (1%) =

(when Re o > 0 (6.22) - (6.23) hold for f e C'(E)). If fe C"(E)
with-n <Rea<-n+1ora=-n(orfeCP(E) when Re a > 0)

then
(6.24)  t(I1%)(t) = (I%sF))(t) + a(1%*1F) (L)

Proof: Routine computation yields (6.22) - (6.23) and

(6.24) follows by an induction argument. QED
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Now, referring to the Sonine integral formula (4.6) (cf

also (6.3) and (6.6)), we can write, after a change of variables,
m, 1/2 -m (T mz "z '% 1/2
(6.25) R"(-,t'/?) = ¢ j(r-s) s 2R 2(. 1246
0

= T(m+1)
where n T1/2) T+ 172) as before. Let then

1/2
(6.26) W'(t) = IL%%éﬁTj—l

1/2 1/2

with wm(t ) = <R(+,t" %), T(+)e>; it follows from (6.25) that
for Rem > -1/2

1 1
Moy -5
2w 2

(6.27)  W"(t) = (1 )(t)

Setting wh(t) = wm(t]/z) it is easy to show (note that a/at]/2 =
2t1/2(3/5t))

. m m m . s
Lemma 6.7 Given w , wm, and W~ as above, where w satisfies

the differential equation in (6.1), one has for W" ¢ CZ(E)
- . o~

(6.28)  4tuy, + 4(m+1)wy = A"
m m _ ,2,,m

(6.29) 4tNtt - 4(m—1)Nt = AW

Remark 6.8 A previous uniqueness argument (cf. Carroll
[18; 19]) for not necessarily A-adapted E proceeded from wh any

solution. of (6.1) with zero initial data to W" determined by

-1/2

1
(6.26) and defined W 1"™72 W", together with the corres-

-1/2.

ponding w Then, using Lemma 6.6, given suitable (but ex-

cessive) hypotheses of differentiability and "regularity" on wm,
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wl/2 was shown to satisfy (6.29) with index -1/2, and a unique-
~-1/2

ness theorem for the corresponding w was established (weaker
than Theorem 6.5). This led to uniqueness for w" under suitable
hypotheses. One feature of the technique involved embedding W

in a "Weinstein complex" determined by (cf. (4.10)
(6.30)  WP(t) = (a/at)P (1™ (t) = (1%Pu™)(t)

where p is an integer (0 < ps &) and Re o > 0 or o =0 (£ and

a are chosen so that -1/2 = m + a - £ which means that if k +

T<Rem<k+3, k=-1,0,1,2, ..., thena=k+3-muwith
=k + 2). (4.10) propagates initial values and (6.7) - (6.8)

hold. wm+a-p(0) and w?*“‘p(o) (mta-p > l) are critical in (6.30)

and to study this one notes from (6.28) - (6.29) that W™ cor-

responds to some wm (for any index m) which we write in the form

1/2

(6.31)  W'(t) = w ™t/ 2)r(nt1)

for some w'"(-) satisfying the differential equation in (6.1)
with index -n. The connection is somewhat interesting and it is
sufficient to indicate this for the crucial index 1/2 (note

1/2 1/2

=W 1/2 and in (6.26) w '/ “(0) = 0 does not automatically

insure W ]/2(0) = 0). Thus differentiating (6.31) with index 1/2

and noting the obvious difference between ft(t]/z) and f(t”z)t =
(d/dt)f(t'/2) we obtain (cf. (6.26))
(6.32) %t-l/zwl/z(tl/z) + t1/2w1/2(t1/2) - w—1/2(t1/2)t
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whereas from (6.8) with index 1/2 we have (since B/Bt]/2 =
26V/2(3/5t))

(6.33) 2t1/2w1/2(t1/2)t - t-1/2[w-1/2(t1/2) - w1/2(t1/2)]

Consequently from (6.32) - (6.33) we have

and thus given w']/z(o) = 0 there results
t1/2
(6.35) w-1/2(t1/2)t =%t-l/zj wé”z(g)dg
0
Therefore w—]/z(t]/Z)t >0 as t > 0 since w%]/Z(E) > 0 which

1/2
t

In any event we have existence and uniqueness determined

means by (6.31) that W,”“(t) = w']/z(t) +~0as t > 0, as desired.
by Theorems 6.2 and 6.5 and some new growth and convexity theo-
rems will follow, with realistic examples, of a type first de-
veloped by Carroll [18; 19; 25]. Thus, referring to (6.6) -
(6.7), and taking now m real so that n >0 form> -1/2 we

have under the hypotheses of Theorem 6.2

Theorem 6.9 Let E be a space of functions or equivalence
classes of functions and assume e € D(AZ) with cosh (At)Aze 2

0 (m > -1/2). Then w™(+) is a nondecreasing function of t.

Proof: From (6.6) - (6.7) we have for m 2 -1/2

2
(6.36)  wi(t) = z—t(—ﬁT]yme(t) ]

tc 1 m+ =
! J (1-62) 2 cosh(Act)A% de 2 0
o]

QeD
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Next we recall that (from Section 4) L;

2m : 1 5/3t = (2m)2t_2(2m+]) 32/32(t-2m) for m $ 0 while L; =

t'2 32/32(109 t). The differential equation in (6.1) can be

= 3%/3t% +

written as L;wm = A2wm so we have from (6.6) with m > -1/2 real

1 m-%

6.3 LW'() = 2c, [ (1-6) 7 cosnlneeinle ag

)
Theorem 6.10 Under the hypotheses of Theorem 6.9, wm(-) is

a convex function of t-2" for m $ 0 and of log t for m = O.

Proof: The result for m = -1/2 is obvious since w'1/2(t) =

cosh(At)e and the rest follows from (6.37). QED

Example 6.11 Let E = CO(BU with the topology of uniform
convergence on compact sets. The operator A = d/dx generates a
locally equicontinuous group (T(t)f)(x) = f(x+t) which is not
equicontinuous. If f 2 0 then evidently T(t)f > 0 for t € R so
to fulfill the hypotheses of Theorems 6.9 - 6.10 we need only
find e = f such that A2f = f" 2 0; such functions are abundant,
but of course they increase as t ~ « and we do indeed want to

work in "large" enough spaces E to permit such growth.

Example 6.12 Let E = C°(R?) x C°(R3)where C°(R3) has
the Schwartz topology and recall the mean value operators ux(t)
and Ax(t) defined in Section 2 which we extend as even functions

for t negative. Define

(6.38) A =
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where A is the three-dimensional Laplacian. Then A generates a
locally equicontinuous group T(t) in E acting by convolution

(i.e., T(t)F = T(t) * ¥) determined by

2
u () + t—3-AAx(t) tu (t)
(6.39) T(t) = tz
tap (t) n, (t) + =5 AR (t)
2.2
= (1) + At (1) + B (1)

One notes again that T(t) is not equicontinuous. From (6.39) it

follows that

(6.40) cosh At

I
i =
—

-+
NS
+
wl
>
>
—
+
NS

2¥ > 0. Given ¥ =

so that cosh At 2 0 provided F>0andA
f

(f]) this means that f; 2 0 with Afi > 0, Thus in order to apply
2

Theorems 6.9 - 6.10 we want ? such that Az? 2 0 and A4

Af; 2 0 and Azfi > 0) which is possible e.g., when fi(x) =

F20 (i.e.,

exp ZY;Xj- Again the necessity of using "large" spaces E is ap-
parent. We note also from (6.39) that T(t) and T(-t) behave
quite differently relative to the preservation of positivity.
Analogues of these growth and convexity theorems for other
"canonical" singular Cauchy problems appear in Carroll [18; 19;

25] (cf. also Chapter 2).

1.7 Transmutation. The idea of transmutation of operators
goes back to Delsarte and Lions (cf. Delsarte [1], Delsarte-

Lions [2; 3], Lions [1; 2; 3; 4; 5]) with subsequent contributions
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by Carrol1-Donaldson [20], Hersh [3], Thyssen [1; 2], etc. The
subject has many yet unexplored ramifications and is connected
with the question of related differential equations (cf. Bragg-
Dettman, loc. cit., Carroll-Donaldson [20], Hersh [3]); we expect
to examine this more extensively in Carroll [24]. This section
therefore will be partially heuristic and the word "suitable"
will be used occasionally when convenient with precise domains

of definition unspecified at times.

One forumlation goes as follows. Let Dx = 3/3x and Dt =
3/3t and consider polynomial differential operators P = P(D) and
Q = qQ(b) (D = Dx or Dt)' One says that an operator B transmutes
P into Q if (formally) QB = BP. B will usually be an integral
operator with a function or distribution kernel and in fact one
often assumes this a priori, although it is perhaps too restric-
tive (cf. Remark 7.3). One picks a space of functions f (the

choice is very important) and considers the problem
(7.1) P(D,)o(x,t) = Q(Dy)o(x,t)
(7.2)  (x,0) = F(x);  DEo(x,0) =0 x,t 20

where 1 < k < m - 1 with m= order Q. In order to define B we
put ¢(o,t) = (Bf)(t) and writing p(x,t) = P(DX)¢(x,t) there re-

sults

(7.3)  (P(D,) = QD)) = P(D)(P(D,) - Q(D,))¢ = O
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1]
o

(7.8)  DXp(x,0) = P(D )DK6(x,0) = { PRAT K
. P(x,0) = #(x,0) =

t Xt . Tsk<m-1
One may wish to extend f and P(D)f appropriately for x < 0 when

desirable or necessary. There results formally
(7.5) wlo,t) = (BP(D,)F)(t) = P(D )e(x,t)]
= Q(Dt)¢(o,t) = [Q(p,)Bf](t)

and evidently it is not necessary to suppose that P(D) or Q(D)
have constant coefficients. It is however necessary to suppose
that (7.1) - (7.2) have a unique solution in order to well define
B; the same uniqueness criterion applies to (7.3) - (7.4) but

this will often be trivial if f is chosen in the right space.

Theorem 7.1 Suppose the problem (7.1) - (7.2) (resp. (7.3) -
(7.4)) has a unique solution ¢ (resp. ¥) with f in a suitable
space so that (7.5) makes sense and define generically (Bf)(t) =
$#(o,t). Then B transmutes P(D) into Q(D).

2

Let us indicate some simple applications. Let P(D) =D

and Q(D) = D so that (7.1) - (7.2) become

(7.6) 6, = 0(x,0) = f(x) x,t 20

XX

We prolong f as an even function and take partial Fourier trans-
forms x s (Ff = f) to obtain ¢y = —52¢ with ¢(s,0) = f(s).

The solution is ¢(s,t) = f(s) exp (-szt) and if
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-1/2

2
(7.7) R(x,t) = %K(x,t) = %(vrt) exp(- 7%

it is known that FXR(x,t) = exp (-szt) (cf. Titchmarsh [2]).
Hence (R(+,t) * f(+))(x) = ¢({x,t) and recalling that f is even
there results

(7.8)  olost) = BA(E) = j: HEIK(E, )de

(cf. Carroll-Donaldson [20]). An easy calculation shows that
(7.5) will hold provided fl(o) = 0 and of course f, f|, and f'l
must have suitable growth at infinity.

Now there is no difficulty in extending the transmutation
idea to vector functions f with values in a complete separated
locally convex space E. For example suppose that A is a suitable
(closed, densely defined) operator in E with g(A) a reasonable
operator function and let P(D)w = g{A)w where w takes values in
E (actually in D(g{A)) since A may not be everywhere defined).

If B transmutes P into Q then formally Q(D)Bw = BP{D)w = Bg(A)w =
g{A)Bw provided that w satisfies the conditions necessary for the
transmutation and that Bw £ D{(g(A)). In this event u = Bw will
satisfy Q(D)u = g(A)u and there arises the general question of
when this situation can prevail. If B is an integral operator of
Riemann type with a function kernel then g(A) can be passed under
the integral sign and this part of the question is trivial up

to the point where initial or boundary values arise. As an ex-

ample let us consider the case (cf. Carroll-Donaldson [20])
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(7.9) P(D)w = D%w = A%w;  w(o) = u_; w,(0) = 0

(7.10) Q(D)u = Du = Azu; u(o) = u

If A2 = A these are of course wave and heat equations and the
connecting formula is well known, but we will derive it via trans-
mutation. First formally we use (7.8) transmuting 02 into D to
obtain
(7.11) u=Bw = me(g)K(g,t)dg

0
and we note that wt(o) = 0, corresponding to f'(o) = 0, as re-

quired in (7.8). Suitable growth of w, Wy, and Wy will be as-

t
sumed. Further AZBw = BA2w for t > 0 while for t = 0 one must

require u € D(AZ). Consequently

Theorem 7.2 Given w a solution of (7.9) it follows that u

given by (7.11) satisfies (7.10), provided U, € D(Az) while w,

Wys and Wiy Qrow suitably at infinity.

Such results are not new of course, at least in more classi-
cal forms, and we refer to Bragg-Dettman, loc. cit., Carroll-

Donaldson [20], Hersh [3], Lions, loc. cit., and references there.

Remark 7.3 One can relax (7.2) and study not well posed
Cauchy problems (or other problems) which lead to a unique solu-
tion ¢ (cf. Carroll-Donaldson [20]); for example growth condi-
tions on ¢ and f could be imposed (see here Carroll [24]). Lions

in his extensive investigations, chooses spaces of functions f
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where the transmutation is an isomorphism in the sense that
there is an inverse transmutation B'1 sending Q(D) into P(D) (i.e.

-1, B-1Q) but this seems to be an unnecessary luxury in gen-

PB
eral, although obviously of great interest (cf. Section 4.3).
The choice of spaces for f is in any event of paramount importance
for the transmutation method to work. If B is an integral opera-
tor with a function or distribution kernel one can begin with
this as a stipulation and then discover the differential problem
which the kernel must satisfy (not necessarily a simple Cauchy
problem), and we refer to Carroll [24; 25], Carroll-Donaldson
[20], Hersh [3], Lions, loc. cit., etc. for further information
(cf. also (7.25)).

We will conclude this section with a version of Lions trans-

2 . _nl 2t
into Lm =D + B

mutation method sending P(D) = D D (cf.
also Section 4.3). Thus we look for a function ¢(x,t) satisfy-
ing
(7.12) 6, = opp + L0 5 0(x00) = F(X)3 0,(x,0) = 0

) XX tt t t’ ’ ’ t' e
and again we extend f to be even with fl(o) = 0. This is of
course the one dimensional EPD equation whose solution is given
by (6.3) as (cf. Theorem 4.2)

1 1
- 2\M-7%
(7.13) olxit) = ¢ | 018" 72 (8xett) * )

t 1
(Bf)(t) = 2cmt‘2m J (t2-2)" " 2 f(1)dr
0

(7.14) ¢(0,t)
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which agrees with Lions [1; 2; 3; 5]. Consequently

t
(7.15) u = Bw = 2cmt-2m J (t
0

]
m_-—
212y 2 y(1)dt

is the vector version of {7.14) and we have

Theorem 7.4 If w satisfies (7.9) with u, € D(AZ) then u

given by (7.15) satisfies Lu = A2u with u(o) = ug and ut(o) = 0.

Proof: Evidently (Bw){o) = w(o) and (Bw)'(o) = 0 (cf. Lions
[1] where an explicit verification of (7.5) is also given - the
condition wt(o) corresponding to fl(o) = 0 is crucial here as in
(7.8) and (7.11)). Again A2 can be passed under the integral
sign in (7.15) as before in (7.11). 0OED

Remark 7.5 Changing variables in (7.15) we obtain (6.6)
when w(t) is written as w(t) = cosh Aruo.

Actually in this case there is also an inverse transmutation
operator B'] but we will not go into details here {see Lions,
loc. cit. for an exhaustive study of the matter). In Lions [3]

it is also shown how to transmute P(D) = D2 into Q(D) = Mm =

2 . 2m+1
+'—t—'—'

some of the calculations here (p and q are assumed to be con-

D D + p(t)D + q(t) and vice versa, and we will sketch

tinuous) (cf. also Hersh [3]). Thus let ¢(x,t) be the solution

of

(7.16) ¢, =M o= 0 + 2"‘t+ 1 b +p(t)e, * alt)e

(7.17) ¢(X:0) = f(x); ¢t(x!0) =0 (x,t 2 0)
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where f is extended as an even function with f'(o) = 0. Then
again the transmutation operator B is determined by (Bf)(t) =
¢{(o,t) and satisfies formally the transmutation relation MmB =
BDz, while to construct B Lions uses the following ingenious

"trick." He sets
(7.18) B(cos xs)(t) = 8(s,t)

and from the transmutation relation plus the fact that (Bf)(o) =

f(o) we obtain
(7.19) M oe(s,t) + s6(s,t) = 0

with 6{(s,0) = 1, while et(s,o) = 0 automatically {for unique
solutions 6(s,t) see Section 5). Assuming now (we omit verifi-
cation) that B is defined by a (distribution) kernel b(t,x) with
support in the region |[x| < t, which is legitimate here but is
in part incidental to the transmutation concept, one obtains,
since f(x) = cos xs is even, and b{t,) will be even (verifica-
tion follows from (7.25) for example)

t
(7.20) B(s,t) = 2 J b(t,x) cos xs dx = 2 fmb(t,x) cos xs dx
0 0

from which follows, by Fourier inversion in a distribution sense,

(7.21) b(t,x) = %- jw 8{s,t) cos xs ds
0

Theorem 7.6 The transmutation of D2 into Mm is determined

by an operator B with kernel defined by (7.21), where 6 is known.
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Further properties are developed by Lions [3; 5] and a gen-
eral transmutation theory will be developed in Carroll [24].
Hersh's technique (cf. Hersh [3]) is based on special functions
and kernels and leads formally to the same result as that of
Theorem 7.6. Let us sketch this for completeness. Thus let

w(t,A) be the solution of

2

(7.22) me +A%w = 0; w(o,r) = 1; w,(o,A) =0

£
while u satisfies (cf. (7.10))

(7.23)  0%u+2%u=0; uo,A) =1; u (0,1) = 0

THen u(t,A) = cos At and Hersh proposes a formula

(7.24) w(t,\) = f” b(t,x)u(x,A)dx = Jw b(t,x) cos Ax dx

00

Since (7.22) holds we have, provided b(t,+) has compact support

with reasonable smoothness,

(7.25) M b(t,x) = b  (t,x)

This shows symmetry of b(t,x) in x and (7.24) becomes (cf. (7.20))
(7.26) wit,A) = 2 fx b(t,x) cos Ax dx
0

Again (7.25) can be solved, as can (7.19), by the methods of
Section 1.5. Defining now B by (Bf)(t) = [” b(t,x) f(x) dx we
have formally from (7.25) MmB = BDZ. The idea then is to replace

G by suitable operator functions -g(A).
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Chapter 2

Canonical Sequences of Singular
Cauchy Problems
2.1 The rank one situation. In this chapter we will
develop the group theoretic version of the EPD equations studied
in Chapter 1. This leads to many new classes of equations and
results parallel to those of Chapter 1 as well as to some in-
teresting new situations. Moreover it exhibits the main results
of Chapter 1 in their natural group theoretic context. The
ideas of spherical symmetry, radial mean values and Laplacians,
etc. inherent in EPD theory have natural counterparts in terms
of geodesic coordinates and one can obtain recursion relations,
Sonine formulas, etc. group theoretically, The results are
based on Carroll [21; 22] in the semisimple case and were anti-
cipated in part by earlier work of Carroll [18; 19], Carroll-
Silver [15; 16; 17] and Silver [1] for some semisimple and
Euclidean cases. The group theory is "routine" at the present
time and relies heavily on Helgason's work (cf. Helgason [1; 2;
3; 4, 5; 65 7; 8; 9; 10]) but one must of course refer to basic
material of Harish-Chandra (cf. Warner [1; 2] for a summary) as
well as lecture notes by Varadarajan, Ranga Rao, etc.); other
specific references to Bargmann [1], Bargmann-Wigner [2],
Bhanu-Munti [1], Carroll [27; 28], Coifman-Weiss [1], Ehrenpreis-
Mautner [1], Flensted-Jensen [1], Furstenberg [1], Gangolli [1],
Gelbart [1], Gelfand et al. [1; 2; 3; 4], Godement [1], Hermann
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[1], Jacquet-Langlands [1], Jehle-Parke [1], Kamber-Tondeur [1],
Karpelevié¢ [1], Knapp-Stein [1], Kostant [1], Kunze-Stein [1; 2],
Lyubarskij [1], Maurin [1], McKerrell [1], Miller [1; 2],
Naimark [1], Pukansky [1], Ruh1 [1], Sally [1; 2], Simms [1],
Smoke [1], Stein [1], Takahashi [1], Talman [1], Tinkham [1],
Vilenkin [1], Wallach [1], Wigner [1], etc., as well as the fun-
damental work of E. Cartan and H. Weyl, are to be taken for
granted, even if not mentioned explicitly. The basic Lie theory
is developed somewhat concisely in this section; for a rather
more leisurely treatment we refer to Bourbaki [5], Carroll [23],
Hausner-Schwartz [1], Helgason [1; 2; 3], Hochschild [1],
Jacobson [1], Loos [1], Serre [1; 2], Tondeur [1], %é]obenko
[1], etc.

We will start out with the full machinery for the rank one
semisimple case, following Carroll [21; 22], and later will give
extremely detailed examples for special cases. This avoids
some repetition and presents a "clean" theory immediately; the
reader unfamiliar with Lie theory might look at the examples
first where many details and definitions are covered. We delib-
erately omit the treatment of invariant differential operators
acting in sheaves or in sections of vector bundles even though
this is one of the more important subjects in modern work (some
references are mentioned above). The preliminary material will
be expository and specific theorems will not be proved here.

The Euclidean group cases have been covered in Carroll-Silver

[15; 165 17] and especially Silver [1] so that we will only give
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2. CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS

a few remarks later about this at the end of the chapter; the
basic results are in any event included in Chapter 1. Thus
let G be a real connected noncompact semisimple Lie group with
finite center and K a maximal compact subgroup so that V = G/K
is a symmetric space of noncompact type. Let 5 = E + p be a
Cartan decomposition, a < p a maximal abelian subspace, and we

will suppose until further notice that dim a = rank V =

1.
One sets A = exp a, K = exp E, and N = exp ; where ;
ng for A > 0 where the g, are the standard root spaces corres-
ponding to positive roots o and possibly 2o in the rank one case.
One sets p = %-ZmAA for » > 0 where m, = dim g, and we pick an
element H0 € a such that a(Ho) =1, Thus p = (%-ma + m2a)a and
we can identify a Weyl chamber as a connected component a, C
alc: a with (0,%) in writing a(tHo) = t where 1 € R corresponds
to ue a* by u(tHo) = ut. The Iwasawa decomposition of G is G =
KAN which we write in the form g = k(g) exp H(g) n(g) where the
notation a, = exp tH0 is used. Let M (resp. Ml) denote the
centralizer (resp. normalizer) of A in K so that the Weyl group
is W = M'/M and the maximal boundary of V is B = K/M (thus M =
{k e K; AdkH = H for He a} and M = {k € K; Adka c a} - see
the examples for specific details). There are natural polar
coordinates in a dense submanifold of V arising from the decom-
position G = KK;K (A+ = exp a+) provided by the diffeomorphism
(kM,a) + kaK : B % AL>V (one could also work with the decom-

position G = KAK). Thus the polar coordinates of n(g) =
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ﬂ(k1ak2) e V are (k1M,a) where T : G =~ V is the natural map.
Now given v = gk ¢ V and b = kM € B one writes A(v,b) =
2

-H(g'1k) and the Fourier transform of f e L V) is defined by

Ff = f where (using Warner's notation)
~ (
(1.1) f(u,b) = J f(v) exp (iu+tp)A(v,b)dv
v

*
foruea and b € B. All measures are suitably normalized in
this treatment. This sets up an isometric isomorphism f <— f
2
(

between L"(V) and the space L2(a: x B) (cf. here below for a:)

with inversion formula
(i2) £ = 5[ Fub)exp(-iurp)A(v.b) T e | auad
a*xB

Here the 1/2 comes from the order of the Weyl group (which is

two) and c(u) is the standard Harish-Chandra function. For a

general expression of c(u) we can write (cf. also (3.14))

c(p) = I(iu)/I(p) where (cf. Gindikin-Karpelevic [1], Helgason

[3; 8], Warner [1; 2])

+ (V ’0‘).)

- 1 1
Iv) = T B(2 Mo 7 /2 50

o>0
Here B(x,y) = T'(x)T'(y)/T(x+y) is the Beta function and one
defines (v,a) in this context in terms of the Killing form
* . 13
B(+,+) as B(Hv’Ha) where for A € ag, HA e a; is determined by
*
A(h) = B(ﬂvH) for H € a (note here that ap is the space of R

Tinear maps of a into ¢ while ac is the complexification of a

which is formally the set of all sums A + iu for A,u e a). Then
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*

a, is the preimage of a, under the map A - HA and is a Weyl

chamber in a*. Specific examples of c{nr) will be written down
* *

later. Now a /W ~ a_ (recall W = {1,s} where sH = -H for He a

or equivalently sap = a_, = aE1) and one can write

-t

2 _ -2
UORCR| o f 1o

a

where, for ¢ ¢ L%(B),
(1.4)  H, = G, = [ Texp (-fusp)A(v,0) o(b)db)
B

The quasiregular representation L of G on LZ(V), defined by

L(g)f(v) = f(g-1v) decomposes in the form
f -2

(.5 L= Lo a
a /W

where Lu acts in Hu by the same rule as L. Lu is in fact ir-
reducible and unitary and is equivalent to the so-called class
one principal series representation induced from the parabolic
subgroup MAN by means of the character man - aiu = exp iu log a.
We recall here also the definition of the mean value of a
function ¢ over the orbit of gn(h) = gu under the isotropy

1

subgroup I = gkg™' at v = w(g). Thus writing Mh¢ = MYs we have

(recalling that w(h) = u)
(1.6) (M) (v) = j s(gkm(h))dk = o(u,v)
K

The so-called Darboux equation is

(1.7) D2 =D = M40 ¢) (v)
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(cf. Helgason [1]) when D € D{G/K). The symbol D(G/K) denotes
the left invariant differential operators on G/K which are
defined as follows. If ¢ : G > G is a diffeomorphism and f is
a function on G one sets fw(g) = (f o w'1)(g) while if D is a
linear differential operator we write p¥ s f > (wa-l)w. Thus
(0¥} (1) = (D (F(¥(x))) * IOE DFWOD| _ y,, and 0
particular we have (D 9f)(h) = Dxf(gx)IX=9_1h where TgY = gv on
G or on V= G/K. Writing 09 = gk for g € G and k € K, the
space of differential operators on G such that DTg = D and Dok =
D is denoted by D{(G/K); this is identical with the space of
linear differential operators on G/K (called left invariant)
such that DTg = D (the condition Dok = D is automatic on G/K -

proof obvious). Now the zonal spherical functions on G are

*
defined by the formula {(n € a )
(1.8)  5,(9) = | exp(iu-p)H(gh)ak
K

and we can write by invariant integration ;u(g) = ¢u(gK) (ac-
tually the ;u(g) are K biinvariant in the sense that 5u(g) =
¢u(kgk)) and K is unimodular - cf. Helgason [1], Maurin [1],
Nachbin [2], Wallach [1], or Weil [1] - and thus J f(EkE)dk =

J f(k'1)dk = J f(k)dk. It is known further that ¥ ;u(g) =
$fu(g'1) (cf. ﬁarish-Chandra [2] or Warner [1; 2]) while the
¢u € C”(G/K), and are characterized by their eigenvalues XD =
AD(¢U) for D € D(G/K)}, with ¢u(ﬂ(e)) = 1, plus the biinvariance
of ;u' We now demonstrate a lemma which has some interesting

conseqguences.
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2. CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS

hoMe B (W) (u=

Lemma 1.1 The Fourier transform of M
n(h)) is given by FM" = ¢ (h) and if h = kak with a ¢ A, then
(MUF)(v) = (M3F)(v) so that (Muf)(v) depends only on the radial

component a in the polar decomposition (EM,a) of u = w(h).

[}
n or MY as a distribution in E (V) is

Proof: The action of M
determined by (cf. (1.6)) <Mh,¢> = (Mh¢)(w) where w = m(e) (e
being the identity in G). Thus in (1.6} take ¢ = exp (iu + p)
A(w,b) where b = EM. Since A(eth,EM) = -H((kh)-]E) one has by

the unimodularity of K (cf. (1.8) and comments thereafter)

(1.9) (M) (w) = jK exp [-(iuwto)H(h™ K TR)dk

~ . _'I
J exp [-(iu+p)H(h'1kk)dk = J o~ (iutp)H(h k)dk
K K

h

- e
6., (h71) = o (n) = F

h

One notes here that M" = MY works on functions in V such as

exp (iutp)A(v,b) = ¢ and <Mh,¢> is precisely (1.1) with f re-
placed by MY = Mh and ¢ = exp (iu+p)A(w,b); no integration over
V is involved since v = w in ¢, only a distribution evaluation

kak as above

is of concern here. Finally we note that with h

there follows from (1.6)

(1.10) (M) (v) = JK f(gkkaK)dk = JKf(gkaK)dk (Mf)(v)  QED

This leads to a symmetric space version of theorem of

Zalcman [1], generalizing an old formula of Pizzetti; here G/K
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is of arbitrary rank and we refer to Helgason [1; 2] or Warner

[1; 2] for general information on higher rank situations.

Theorem 1.2 (Pizzetti-Zalcman). Suppose the operators
Ak with eigenvalues Ak generate D(G/K) as an algebra; then lo-

cally

(1.01) (W) (v) = (8, (us 8, )F) (V)

where ¢u(u) =1+ 7 Pn(u,Ak(¢u)) is expressed in terms of its
n=1

eigenvalues as ¢u(u,Ak).

Zalcman [1], in an R" context, has generalized this kind

of theorem considerably.

Proof: One notes from Helgason [1] that (Mh¢A)(v) =

J 6, (gkn(h))dk = J %, (gkh)dk = ;A(g);x(h) and the local expres-
K ] K o

sion (M'F)(v) = ([1 + ] P (u,,)1F)(v) holds. Consequently

n=1 ~
applying this local expression to $, we obtain ¢A(h) =
1+ 7 P (U’Ak(¢x)) = ¢, (u) and (1.11) follows. One should
n=1 "

remark also that the polynomials Pn are without constant terms.

QED

2.2 Resolvants. The objects of interest in a generalized
EPD theory are the radial components of a basis for the Hu spaces
of (1.4}, multiplied by a suitable weight function, the result
of which we will denote by R™(t,u) (cf. Carroll [21; 221, Carroll-

Silver [15; 163 17], Silver [1]) and we mention that m can denote
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a multiindex here. First we remark that V is endowed with the
Riemannian structure induced by the Killing form B(*,*) (but

the Riemannian structure does not play an important role here,
e.g., %B(-,-) could serve - see Example 3.2) and for rank V =

1, D(G/K) is generated by a single Laplacian A, determined by

the standard Casimir operator C in the enveloping algebra of a
(cf. Remark 3.15 about C). We look at the radial component A, of

R

A, passing this from the coordinate t in a, € A to w(A) in an

t

a A~ ~
obvious manner, and setting My =M t with RO(t,u) = FMt = ¢u(at)
one obtains an eigenvalue equation (cf. Helgason [5])

2 -
(2.1) [Dt + (ma+m cotht Dt + mzatanht Dt]cbu

2a)

2 1 247
+ 08+ oy )l =0

The solution of (2.1), analytic at t = 0, is e.qg.,
(2.2)  R(t,u) = ¢ (exp tH)) = F(8,8,y, - sh’t)

where evidently Ro(o,u) =1 and Rg(o,u) =0 (8§ = (ma+2m2a+ 2iu)/4,

B = (ma+2m -2iu)/4, and v =(ma+m2a+1)/2). The general EPD

20
~
. . . . 0 . .
situation involves embedding R~ in a "canonical" sequence of

"resolvants” R (t,u), for m > 0 a positive integer or a multi-

m
(
index, such that the resolvant initial conditions

(2.3 R0 =15 Rilow) =0

are satisfied. There will also be “"canonical" recursion relations
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between the ﬁm of indices differing by %1 or +2 which will arise
group theoretically from considering a full set of basis elements
in the Hu spaces.

Thus we must first determine a basis for L2(B) and this is
well known (thanks are due here to R. Ranga Rao for some helpful
information). We let {nT,VT} with dim VT = dT be a complete set
of inequivalent irreducible unitary representations of K and let
VT CIVT be the set of elements fixed by M. One knows by a re-
sult of Kostant [1] that dim V? = 1 or 0 in the rank one case
(cf. also Helgason [5]) and for the set v € T where dim VT = ]
we let w% be a basis vector for VT with w?(] <ig dT) an ortho-
normal basis for VT under a scalar product < , > Then for
example the collection of functions (t € T)kM » <w§,nT(k)w¥>T is
4

known to be a basis for L“(B) and we define (cf. (1.4) with v =

a;K and b = kM)
. -1
~ (iu-p)H(a; k)
J = t T T
(2.4) & (2,0 jB e W om (K)W> db

: -1

(iu-p)H(a; k)

J e T (k)T dk
K T J

-1
t

T. s . T
E],T(B t-ipza )wj

where B' ¢ HomM(VT,¢) is determined by the rule BTwz =8

1,8
T -1t _ .1 T, -
(Kronecker symbol) so that B nT(k) Wy = <wj,1TT(k)w]>T
< (k)']wT,wT> (note that o(k)dk = (| ¢(km)dm)db and
T 7 K B M
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H(g']km) = H(g-]k) with nT(km) = nT(k)nT(m)). The E]’T above
are Eisenstein integrals as defined in Wallach [1] and the
gi’T(atK) are the radial components of basis elements in Hu

(cf. below). It is possible to obtain an explicit evaluation of
these functions, using results of Helgason [5; 11] as follows.

One defines (cf. Helgason [5])

. -1
A - 41/2 (-ix-p)H(g k) _ T T
(2.5) fT,J.(x) dT JK e <wJ. ,ﬂT(k)w.l>T dk

for x = gk. Then it is proved in Helgason [5; 11] (to whom we

gratefully acknowledge some conversation on the matter) that

1/2

ATy T oy.T
(2.6) fT,j(kaK) = dT < W, nT(k)w] > . WA,T(aK)

J
where ¥, T(x) is defined by

(2.7) % (0 = fK

Thus recalling the polar decomposition (kM,a) - EaK we have

. -1
-ix-p)H
e( iA-p)H(g" k) < w¥, nT(k)w¥ > dk

Theorem 2.1 General basis elements in Hu are

(iu—p)H(aE]E']k)

N - T T
(2.8) & (k) JK e Whm (> dk
) V- VR N ¥ o\ T
d fr,j(katK) <wJ.,nT(k)w]>T W-u,r(atK)
. ~J N -
In particular one has ¢U’T(atK) ¢u,r(atK) = W—u,r(atK)
. = T T . " n 3
since Gl,j <wj,nT(1)w]>T (this "collapse" was observed in

special cases by Silver [1]).
Now Tet K = {r_,V_} for T (i.e., dim V"' = 1) and follow-
0 T T T

ing Helgason [5] we use a parametrization due to Johnson and
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Wallach (see Helgason [5] for references and cf. also Kostant

i

1p. If Mog = 0, K0 = {(p,q)} with p ¢ Z, and q = 0; if M

1, K, = {(p,a)} with (p,q) e Z, x Z where p + q € 2Z,; if m,

3or7, K = {(p,q)} with (p,q) € Z,_ x Z_where p £ g e 2Z_. One
sets & = (iu+p)(H0) and then (cf. Helgason [5; 11])

Theorem 2.2 The radial components of basis elements in Hu

are given by
(2.9) T_U’T(atK) =

L+p-g+1-m m +m, +1
- C-u’ thpt ch™ tF(Spr+q . 2a’p_+ 0. 22a ’ch

t)

- 2+p-q+1-m m_+m, +1
L4p+
r(2Ba)r (———— 2 (22

T T+1 -m, ma+m2a+1
P (221 (p + 2 2% )

(2.10)

“H,T

where th = tanh, ch = cosh, and F is the standard hypergeometric

function.

Note here that our 2 is the negative of the £ in Helgason
[5; 11] where & = (ik—p)(Ho) = (—iu—p)(Ho) (cf. here our notation
in (1.1)) and recall that a(Ho) = 1 with a, = exp tH . If one
now sets dZa = -4q(q+m2a-1) and d = -p(p+m m, -1) + q(q+m -1)
it is shown in Helgason [5] that ¥(t) = -u T(atK) also satisfies

the differential equation
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(2.11) Yop * (maﬂnza)coth ty, + My, tanh t‘l’t

2

- 2
+ [dash t+d

- 2 2 ¢ =
2qSh "2t + p(H))® + u(H )"]¥ = 0

where sh = sinh, and we have used the identity coth 2t =
%{coth t + tanh t). Recalling that p ~(%ma+m2a) one sees that
the trivial representation 1 € T, corresponding to p = q =0,

gives rise to (2.1), so that {since ¢ 1= 1) we should have
~ -2 2+1-Héa ma+m2a+1 2 )
W_u’1(atK) = ¢(at) = ch "t F(%/2, T , th“t). This

is borne out by the Kummer relation F(a,b,c,z) = (1-z) 3F(a,c-b,

c,z/z=1) with z = —sh2

t,a=6 =2/2,b =28, and ¢ = vy, so that
(1-2) @ =ch*tandc-b=vy -8 = (m +2+2iu)/4 = (L+1-m, )/2;

hence W_u’1(atK) = ¢(at) as indicated.

2.3 Examples with L 0. Now to construct resolvants
Em(t,u) = Ep’q(t,u) from the W_U’T(atK) one multiplies the
w_u’T by a suitable factor in order to obtain the resolvant ini-
tial conditions (2.3) and to produce ;u(at) when p = q = 0.
These requirements are not alone sufficient to produce the "can-
onical” resolvants since one needs to incorporate certain group
theoretic recursion relations into the theory which serve to
"split" the second order singular differential equation for the
ﬁp,q arising from (2.11) into a composition of two first order
equations (cf. here Infeld-Hull [1]). Even then we remark that
the resolvants will not be unique since one can always multiply
ﬁm(t,u) by a function wm € C2 such that wm(o) =1, w;(o) =0,

wo(t) = 1. This will simply give a different second order
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singular differential equation for the new resolvant and dif-
ferent splitting recursion relations but the resolvant initial
conditions will remain valid and the reduction to ;u(at) for m =
0 is unaltered. Thus we will choose the simplest form of resol-
vant fulfilling the stipulations imposed while referring to

these resolvants and equations as canonical.

Example 3.1 Take the case wherem =1, My, = 0,d =
o o o

2 SL(2,RR) with

-p-, d2a =0, and p = 1/2. This corresponds to G

K = S0{2) and the resolvants are given in Carroll [18; 19; 22],
Carrol1-Silver [15; 163 17], Silver [1] as

.1
A 1“--—_"" _
(3']) Rm(tau) = (%l) 2 F(';“ iu,m+J2--ill,ﬂr+1 ’ET'})
- 2™ (m+1 -m
7 2 P (2)
(z=-1) iu-

where ¢ = cht and P;m denotes the standard associated Legendre

function of the first kind. Now we recall a formula (cf. Snow
(11, p. 18)

=20
(3.2)  Flasa+1/2,v, 2) = (2 F(2a,2081-v,0, 1202
1+/T-z

2 2

th t= sechzt we

sech t and 1 - /T-z/(1+/T-z) = z-1/z+1 with ¢ = cht

Setting z t in (3.2) and noting that 1 - th
have /T-z

as above. Now one observes that am(t,u) in (3.1) is symmetric
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in u (and t) and this is exhibited for example in the form of

the resolvant (3.1) when one uses the formula {cf. Robin [1])

m*—;—ﬂ'u m+-]2—-1'u
2 ? 2

2" MshMy

2
I‘(m"']7 ,m""l,-Sh t)

(3.3) P (cht) = F(

Hence (3.1) can be written {(recall that F{a,b,c,z) = F(b,a,c,z))
(3.9)  R"tw) sH—5— —5— m+ 1, -she)

Now, returning to (3.2) and (2.9) - (2.10), we write for
T ~ (p,0) with a = iu/2, 8 = 1/2(p + 1/2), and & = iy + 1/2

(3.5) ¥, (2K = e o thPt ch™ t F(a+g,atbr 5sp+1,th 2t)

- 2(a+B)

i
(9]

p -2,,1 + sech t
-u,rth t ch t(——’_T?__——_)

F(2(a+8) ,2(atB)-p, P+, S57)

Coput Shpt(H‘r’) “APE(iy + l +p, iu+tsx ] » pHl, 27)

Rewriting the first equation in (3.1) with u replaced by -u in

the right hand side we obtain

~ +1,-94- .
(3.6)  R™(ta) = (GF GG+ g+ uemame Eg)

Then identifying p with m we can say from (3.5) - (3.6)

(3.7)  RP(t,u) = ¢}

-P
T sh Pt W_U’T(atK)
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For completeness we check the differential equation satisfied by
the RP of (3.7), given that (2.11) holds. An elementary calcula-

tion yields then
(3.8) ﬁEzt + (2p+1)coth t ﬁE; + [p(pt1) + 12 + %] RP =0

which agrees with previous calculations (cf. Carroll [21; 22],
Carrol1-Silver [15; 16; 17], Silver [1]). The canonical recursion
relations associated to the ﬁp of (3.1), (3.4), (3.6), or (3.7)
can of course be read off from known formulas for the associated
Legendre functions for example but they can also be obtained group
theoretically (cf. Example 3.5 - Theorem 3,8) by using a full set
of basis elements in the Hu spaces. For now we simply list them

in the form

oP _ -sht 2 , 1qpptl,
(3-9) Rt = zp + 2 [p(p+]) + o+ 4]R s

Rg +2p coth t RP = 2p csch t RP1

Evidently the composition of these two relations yields (3.8) and
this is the sense in which we speak of "splitting" the resolvant

equation (3.8).

Example 3.2 We give now explicit matrix details to clarify
Example 3.1. (The Euclidian case can also be treated group
theoretically as in Carroll-Silver [15; 16; 17] and especially
Silver [1] and a simple example is worked out at the end of this

chapter; the results of course agree with those of Chapter 1.)
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Thus let G = SL{2,R) and K = SO(2) with Lie algebras a = s52(2,R)
and E = 50(2). We recall that G is connected and semisimple,
consisting of real 2 x 2 matrices of determinant one, while the
matrices in the compact subgroup K are orthogonal; 5 consists of
real 2 x 2 matrices of trace zero and Ec: 5 is composed of skew

symmetric matrices. We write V = G/K and set
=1 . =1 . =1
(3.10) X = 2 ; Y = > ; 2 >

so that k = R Z and we write p = {RRX + RY} for the subspace
of g spanned by X and Y. One has a Cartan decomposition g = k+p
(of vector spaces) with [k,k] <k, [p,p] €k, [k,p] € p and the

Cartan involution 6 : £+ n+>& -n (£ € k, n e p) is a Lie alge-

bra automorphism of ;. Recall here that if P = exp p then G =
PK is the standard polar decomposition of g € G into a product
of a positive definite and an orthogonal matrix. The Killing
form B(&,n) = trace adé adn (=4 trace &n) is negative definite
on k and positive definite on p (with B(E,p) = 0). One checks
easily that X and Y form an orthonormal basis in p for the
scalar product ((&,n)) = %B(E,n); we repeat that the 1/2 factor
is of no particular significance here in constructing resolvants,
etc. and is used mainly to be consistent with some previous work
and with the exposition in Helgason [1].

Now setting X =X+ Z, X_ =X - Z, and H = 2Y we have a

standard (or "canonical") triple (cf. Serre [1])
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(3.11) Xy = H X =

[H,.X,1 = 2% 5 [H.X 1=-2%_ ;

[xa!x_a] -

1
x

where the root subspaces 9y = R &x and 9.4 ° R X_a are character-
ized by the rule 9, = {€ e 5; ad HE = A(H)E for all H € a = RY},
while the map o : tY - t determines then an element (called a
root) in the dual a" (note that a(Ha) -2and R~a = Ra).

Here a is a maximal abelian subspace of p and in this case a =

; is also a Cartan subalgebra of 5. Set now ; =9, =

{] g4»a > 0}, N = exp n, and A = exp a. The Iwasawa decomposi-

tion of G can be written (0 <€ 8 < 4n)

(3.13) g = keat"g = exp 8Z exp t Y exp gxa

(
cos /2 sin 8/2 et/2 0 1 £

e-t/2

-sin 8/2 cos 6/2| |0 0 1

which we express as before in the form g = k(g) exp H(g)n(g).

1 0
Next we set M = {+ } for the centralizer of A in K and
' 0 1 0 1
M =MUI{t } will be the normalizer of A in K (thus M =

-1 0 ' ~ o~
{k € K; AdkH = H forHe aand M = {k € K; Adk ac a} ). Again

[}
W ="M /M has order two and B = K/M is essentially K with the
angle variation cut in half. We recall that for v = gk ¢ V and

1

b = kM e B A(v,b) = -H(g9" k) and here o = 1/2 }m, 2 (x>0) equals
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; . Thus p(tY) = t/2 and for u e R,u ¢ ;* is determined again
by the rule u(tY) = tu(Y) = ut (such u of course exhaust ; and
@ ~u=1). The Fourier transform Ff of f e L2(V) is given by
(1.1) and a, is defined as in Section 1, as is the scalar prod-
uct (A,v) = B(Hx,Hv). When u e ;* is characterized as above then
since B{Y,Y) = 2 it follows that Hu = %ﬂY and obviously a: can

~k
thus be identified with (0,). Evidently for u, v € a one has

1
(1) =z

Example 3.3 A geometrical rea]izatjon of the present situa-
tion can be described in terms of G acting on the upper half
plane Im z > 0 by the rule g = z = (az+b)/(cz+d) for g = (2 :) £
G. Then K is the isotropy subgroup of G at the point z = i
(i.e., K« i = 1) and the upper half plane can be identified
with G/K under the map gK -~ g - i (cf. Helgason [1]). In geo-
desic polar coordinates (t,8) at i the Riemannian structure is
described by dsz=dr2 + sinhzrde2 where we use the metric tensor
determined by gv(g,n) = %B(g,n) for £, n e p. If w = n(e) (which
corresponds to i under our identification since m(e) = K) then,
denoting left translation in G by rg, the Riemannian structure is
determined by gv((rg)*g,(rg)*n) = gw(a,n) (for the notation (Tg)*
see e.g. Kobayashi-Nomizu [1; 2]). The geodesics on V through
w =m(e) are of the formy : s >~ (exp sf)w and if £ = aX + BY ¢ p
the square 12 of the geodesic distance from w to (exp &)w =

2

m(exp &) is equal to o + 62 (since X and Y form an orthonormal

basis for p under the scalar product ((&,n)) = 1/2 B(&,n)) and
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the polar angle is determined by tan 6 = B/a. Many calculations
can easily be made using standard formulas and one can describe
the action g * i for example in general (relevant material for
the computations appears in Gangolli [1], Helgason [1; 2; 3], and
Kobayashi-Nomizu [1; 2]). We will spare the reader the results
of our computations since they are essentially routine. Let us
however remark that the volume element dv in (1.1) can be written

in this example as dv = sht dt d6 (up to a normalization factor).

Example 3.4 First we refer back to the formula for c(u)
given after (1.2) and mention that in general (cf. Helgason [2;

3], Warner [2])

(3.18)  c(n) = Jﬁ o~ (THro)H() 4o

where m = 6n = g_jhere, N = exp n, and dn is normalized by

c(-ip) = 1. Here 6 is the Cartan involution 8 : £ +n ~ & = 7

for £ ¢ E and n £ p and one observes that it is an involutive

automorphism of 5 such that (£,n) - -B(£,6n) is strictly positive
5 In terms of Beta functions we obtain

definite on g x

~—

(i,
B(1/2, A2y
(3.15) c(p) = Qa0

7 stz feed)

Since (a,0) = 1/2, (iu,a) = iy, and (p,a) = 1/4 there results
(cf. Bhanu Murti [1])

r(+iu(g)

(3.16)  |c(u)|™? = I_'(Tﬂ—'[ = mutanhmy
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Thus we can recover f(v) from f{u,b) using (3.16) and (1.2).

Example 3.5 We now want to show how the resolvants (3.1)
can be obtained by a cumbersome and "classical" method in order
to further confirm (3.7) as a legitimate resolvant (the equiva-
lence of (3.1) and (3.7) has already been established). The
technique has a certain interest and moreover we will obtain a
full basis for Hu while showing how the recursion relations (3.9)
can be obtained group theoretically. Some of the more tedious
calculations will be omitted. We remark that Theorem 2.1 does
not seem convenient here to obtain a full set of basis elements
in Hu since the unitary irreducible representations of K = S0(2)
are one dimensional of the form ein¢ (see Vilenkin [1]). Thus

A A A

first we can remark that atke = K a n where a = ag with

(3.17) e = (ch t + sh t cos 8)

(cf..Helgason [1] and Warner [1; 2]). Thus pH(atke) = p(sY) =
s/2 and for u(sY) = us one has
1

(iu-p)H(agky)  (in- H)s - 4

(3.18) e = e = (ch t + sh t cos ¢)
Now, given basis vectors ¢m(b) = exp im(8-m) for example in

L2(B) (recall that B ~ K with the angle variation, in our nota-
tion of (3.13), cut from (o, 4w) to (o, 2m)), we get basis vectors
in Hu by means of (1.4) (the factor of exp (-imm) is inserted for
convenience in calculation). In particular we obtain “radial

1

objects" when v = a.kK in (1.4) and since A(gK,keM) = -H(g~ ke) we
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- ] ]
consider H(at]ke) = s Y in (1.4), where s 1is determined as in
(3.17) but with t replaced by -t. Thus the radial part of the

basis vactors in Hu will be

~ -imm 2w . LI
(3.19)  on(aK) = S5 Je(w—p)s Y ime o
0
. . 'I
-1mm e ju- .
= gfﬁ—“ J (cht -shtcoso) 2eMgo
=T
o]
2m iu- 5 .
f H
= §%‘J (cht + sht cos n) 2 e'™ gn
0
- %
= Pm,o (ch t)

(see Vilenkin [1]). In order now to produce resolvants ﬁm(t,u)

- ]/Z(Ch t) of (3.19) one must first

. . iy
as in Section 2.2 from Pm,o
consider the growth of these functions as t + 0 and introduce
suitable weight factors in order to satisfy the resolvant initial
conditions (2.3) (note that 3/3t =(22-1)]/2 9/3z). Let us recall
in this direction that {cf. Vilenkin [1] and Robin [1])
I‘(2+rg+])1‘(2—m+1) P:IL] O(Z)

r(2+1) :

_ T(2-mt1 m
- S e

where PT is the standard associated Legendre function of the

2 =
(3.20) Po,m(z) =

first kind. Then we can exhibit the resolvants in the form
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~ im
3.21)  RAW(t,y) = ZLAEDI{L-mtd)  om
( ) (es) I‘(1L+m+1)(22—1)m/2 1(2)

+1,2-
= (BN (w0 men mi1 D)

where z = ch t, £ = =1/2 + iy, m 2 0 is an integer, and F denotes
a standard hypergeometric function (cf. Carroll-Silver [15; 16;
17] and Carroll [18;-19]). Recalling that P(l+m+1)P£m(z) =
T(l-m+1)Pg(z) for m 2 0 an integer, we remark in passing that,
for m ¢ € not a negative integer, resolvants can be determined

by the formula

(3.22)  R™(t,) = ﬂ()ﬁm}%p;’"(z)

(which reduces to (3.21) when m is an integer) and this should be
taken as the generic expression for Em in this case {cf. (3.1)).
Evidently the R" of (3.21) satisfy (2.3).

We recall the next well known formulas

m

(3.23) (z -1)‘/2 i mz = (2+m)(g-m+1)
B ETYVAAN

Pm-]

ap"
1/2 ~" % mz m m+1
(3.24) (z -1) - ————= P, = P
dz (22_1)1/2 L

(cf. Vilenkin [1] and Robin [1]) and these, with (3.22), lead to
(3.9), where p is replaced by m (note that 2(2+1) = —(%-+ uz));
consequently (3.8) will follow as before.

The most interesting fact however about (3.9) is that these

recursion relations have a group theoretic significance (cf.

1
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Carrol1-Silver [15; 163 17]) and the variable t in (3.8) - (3.9)
may be identified with the geodesic distance t of Example 3.3.

For purposes of calculation it is convenient to consider
(3.25) X, = =X +iY;  X_=-X-1iY; H= -2iZ

and to note that (H, X_, X_) form a "canonical" triple relative

to the root space decomposition 9¢ = km +ox, + OX_, k¢ = CH, in

the sense that
(3.26) [H,X+] = 2X+; [H,X_] = =2X_; [X+,X_] = H

(one notes the difference here between (3.12) complexified as

;¢ = ¢Ha + E&x + mx_a and the decomposition above relative to
(HsX;,X_) based on (3.26) - such decompositions occur relative
to any Cartan subalgebra such as CH or CY as indicated in Serre
[1] for example). It will be useful to exploit the isomorphism
Q between SL{(2,R ) and the group SU(1,1) of unimodular quasiuni-

~

g = m']g m where m = (l ;). Thus

tary matrices given by Q(g)
a B
Yy 6
1/2[B+y+i(0-6)] while det g

9=( §)~ag= (%—%J with a = 1/2[a+6+i(B-y)] and b =

det g = 1 (cf. Vilenkin [11).

There is a natural parametrization of SU(1,1) in terms of gener-
alized Euler angles (¢,T,¥) so that any g € SU{1,1) can be

written in the form

(Y i |
ch t/2 e sh t/2 e
(3.21) 9+ (%5 -1
sht/2e 2 cht/2e 2
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where 0 < ¢ < 2m, 0 S T < =, and -2r < y < 2m; this will be ex-
pressed as § = (¢,T,¥). In particular, setting w](s) = exp sX,
wz(s) = exp sY, and w3(s) = exp sZ, we have Qw1(s) = (0,5,0),
sz(s) = (n/2, s, -n/2), and Qw3(s) =(s,0,0) = (0,0,5). We note
that (¢,T,w)-1 = (m-p,1,-m-¢) and (¢,0,0)(0,7,0) (0,0,y) =
(¢,T,9) while if 51 = (o, T1,0) and 32 = (¢2,T2,0) then 6152 =
(¢,T,9) with

sh T, sin ¢2
ch T sh T, COS ¢2 + sh 7 ch T, >

(3.28) tan ¢ =

ch 1 ch'ﬁ ch T, + sh 3 sh T, CoS ¢2 5

sh ™ sin ¢2

tan b = 55 T, ¢h 1, cos ¢, * ch 1, sh 1,

Now going to the notation of Example 3.3 with p = exp (aX + BY),

2 az + 82, and tan 8 = B/a an easy calculation shows that

T =
Q(p) = (8,T,-8). Consequently the geodesic polar coordinates of
m(p) = pK can be read off directly from the Euler angles of Q(p).

Now the representation Lu of G on Hu (cf. (1.5)) induces
a representation, which we again call Lu’ of g~on dense subspaces

wu € Hu of differentiable functions by the rule
d
3.2 L = — L
(3.29) u(«E) flv) = & u(exp S«E)f(V)lszo
Recall here that L (h)f(n(g)) = f(h"n(q)) = f(n(h™'g)) and to

apply (3.29) for £ = X, Y, or Z one wants then to differentiate

f(n(gi(s))) with respect to s where gi(s) = wi(-s)g = wgl(s)g
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(and v = m(g)). We work in the geodesic polar coordinates
(x(s), 8(s)) of m(g(s)) = w(p(s)k(s)) = m(p(s)) and consider
therefore Q(g(s)) = Q(p(s))Q(K(s)) = (8(s), T(s), -6(s))
(0,0,6(s)) = (8(s), t(s), ¢(s)-8(s)) = (8(s),t(s),y(s)). In par-
ticular Q(g;(s)) = Q(exp(-sX))Q(g)=(0,-5,0)(8,7,0)(0,0,u-6)
where Q(g) = Q(p)Q(k) = (6,t,-8)(0,0,u). Then one uses (3.28)
to compute {0,~s,0)(8,7,0) with ¢ = 8(s), t = (s), T = =S,
T, =T, and ¢, = 8 (evidently %(s) is of no interest here).
Similarly Q(gz(s)) = (n/2,-s,-1/2)(8,1,~6)(0,0,u) = (n/2,0,0)
(0,-s,0){8-1/2,7,0)(0,0,u-8) and (3.28) can be applied to the
middle two terms. Finally Q(g3(s)) = (~s,0,0)(8,t,0)(0,0,u-9)
which lends itself immediately to calculation. We write H+ =
LU(X+), H_ = LU(X-)’ and Hy = %LU(H) and using the relation
d/ds f(r(s),e(s))|S=0 = fT T (o) + fo 0 (o) a routine calcula-

tion yields (cf. Carroll-Silver [16])

Proposition 3.6 In geodesic polar coordinates (t,8) on V

one has

(3.30)  H, = e '8 [_i coth T 3/30 + 3/07]

e'® [i coth < 3/30 + 3/31]

(3.31)  H_

(3.32) H i 95/38

3

From general known facts about irreducible unitary principal
series representations of G, or SU(1,1), and their complexifica-

tions (see e.g. Miller [1; 2] or Vilenkin [1]) - other
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representations contribute nothing new in this context - it is
natural now to look for "canonical" dense differentiable basis

vectors in Hu of the form f:(T,e) satisfying

M _g)fH . Moo L
(3.33) Hofp = (m=2)F o 5 H_fL (me)f 13

1

TR
H3fm mfm

where £ = =1/2 + iu(u > 0) and m = 0, (It seems

1, 2, . . . .

excessive here to go into the general
SL(2, R), or SU(1,1); the references

at the beginning of the chapter - are

representation theory of
cited here -and previously

adequate and accessible.)

It is then easy to verify, using (3.30) - (3.32), that the fol-

lTowing proposition holds.

Proposition 3.7 Canonical basis vectors in Hu can be taken

in the form

(3.34) (-1)™ exp(-ime) P* (ch 1)

u - L
fm(T,e) o.m

where 2 = =1/2 + ipy{pu > 0) and m = 0, 1, *2, , . . .

In view of {3.20) and the definition (3.21) (or (3.22)) of

R" we can write form 2 0, z = ch t, and & = -1/2 + in

(3.35)

~ m .
Rm(T’ ) = 2T (m+1)T(2+1) ,_1)me1me M(r.8)
B ) (22 m

Using (3.30) - (3.31) one can then easily prove (cf. Carroll-
Silver [16])
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Theorem 3.8 The "canonical" relations (3.33) for H, and H_
are equivalent to the recursion relations (3.9) for R". In par-
ticular the variable t in Example 3.1 can be identified with the

geodesic distance v, from w = K to k atK.

v

Proof: The recursion relations (3.9) (and hence (3.8)) fol-
low immediately from (3.30) - (3.31) and (3.34) - (3.35). This
suggests of course the identification of T and t but one can give
a computational proof also. We write klak2 = 5k3 so that k1a =
Bk4 and for B = exp (aX+BY) we obtain from Example 3.3 the dis-
tance 12 = a2 + 82 between w = m(e) = K and SK together with
angle measurements cos 6 = a/T and sin 6 = B/T. Set now k1 =

k¢’ a = a, and k,; = k, using the notation of (3.13); there

¢
result a number of equations connecting the variables
(t,t,¥,0,0,8), the solution of which involves the identification
of t with t. Thus the radial variable t in the natural polar
expression (k¢M’ at) for u = w(h) = k¢atK is in fact the geo-

desic radius t of w(h) = pK. The actual calculations are some-

what tedious but completely routine so we will omit them, QED

We note now that the second equation in (3.9) can be written

N 1 ~,
in the form (sh®™ R™ = 2msh®™ 't R™! which yields, in view
of (2.3),
2m, om t 2m-1 m-1
(3.36) sh™t R (t,u) = 2m J sh n R (n,u)dn

0

One rewrites the integrand in (3.36)m in terms of (3.36)m_1 and
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integrates out the n variable; iterating this procedure we obtain

Theorem 3.9 If m 2 k 2 1 are integers the "Sonine" formula

A k t
(3.37) sh2Ms R™(t,u) = T ﬁ_£+T+} n J (cht-chn)k-1
0

« (shn)2m-2K+T pmk o Ydn

is a direct consequence of (3.9). In particular for m = k we
have
(3.38)  sh®™ RM(t,pu) = 2™ ft(cht-chn)m']shn RO(n,u)dn
0
Remark 3.10 Referring back to the formula for the zonal
spherical functions (1.8) and using the notation of (3.17) -

(3.18) we see that (cf. (3.19))

~ ]217 1'112
(3.39) ¢u(at) = o J (cht + sht cosp) do =P ](cht)

0 iy

o]
- =
where P ](cht) P0 o 2(cht) is the standard Legendre function.
iu-5 ’

a -
We recall 2also by Lemma 1.1 that FM t. FMt = ¢u(at), which

It

equals ﬁo(t,u).

Using (3.38) we can define R"(t,-) = F-]Em(t,u) € EI(V) and
integrating in EI(V) (cf. Carroll [14]) we have for m 2 1 an
integer,

t
(3.40) sh2™ RM(¢,.) = 2™y J (cht-chn)™ Tshn M dn
0

We recall that in the present situation D(G/K) is generated by

the Laplace-Beltrami operator A which arises from the Casimir

117



SINGULAR AND DEGENERATE CAUCHY PROBLEMS

operator C in the enveloping algebra E(a) (here A corresponds to
2C due to our choice of Riemiannian structure determined by
1/2B(+,+) and C = 1/2(X2+Y2-Zz) - see Remark 3.15 below on Casi-
mir operators). In E(5¢) we have then also 2C = (%H)2 +

%{X+X_ + X_X,) and in geodesic polar coordinates (cf. Proposi-

tion 3.6)

2

24 S{HH_+ HH,) = a%/a17 + coth t 8/t

(3.41) A=H

+
NI

+ CSChzT 32/392

We note here that an alternate expression for A is given by A =

2

HH_ + Hy

- H3 {cf. Carroll-Silver [15; 163 17] and Silver [1]).

Theorem 3.11 For v fixed (Muf)(v) depends only on the geo-
desic radius T = t of u = w(h) = kwatK and can be identified

with the geodesic mean value M{v,t,f).

Proof: This can be proved by tedious calculation based on
the coordinates introduced in previous examples but it is simply
a consequence of Lemma 1.1 and Theorem 3.8. Indeed, setting

g= k]ak2 with h = k]atk2 we have v = n{g) = k]aK and u = w(h) =

k]atK with

a
(3.42)  (M'F)(v) = (M 5F)(v) =(M.F)(v)
- IKf(k]akzkn(at))dk =IKf(k]akn(at))dk

We note that the distance from v = E]QK to E];katK is the same as
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the distance from w = m{e) = K to katK = (exp E) w = Sw, which
as indicated in Theorem 3.8, will simply be T = t. Hence as k
varies the points ;1;kw(at) describe a geodesic "circle" around
v = ;]Sw of radius T = t; (3.42) is, upon suitable normalization

already provided, the definition of M(v,t,f). QED

Remark 3.12 The validity of the Darboux equation {(1.7) for
geodesic mean values M(v,t,f} and D = A in spaces of constant
negative curvature, harmonic spaces, etc. has been discussed,
using purely geometrical arguments by Ginther [1], Olevskij [1],
and Willmore [1] (cf. also Fusaro [1], Giinther [2; 3], Weinstein

[12], and Remark 5.6}.

We can now define, for m > 1 an integer, a composition {(or
convolution) of RM(t,+) ¢ E'(V) with a function f(+) on V by

means of {3.40). Thus for v = w(g) we write
(3.43) (M, # £)(v) = <M (+),f(g-)> = (M F(g-)){w) = (M, F)(v)

where < , > denotes a distribution pairing as in Lemma 1.1
{cf. Helgason [2] for a similar notation}. Then, setting
(R™(t,+) # £(+))(v) = u"(t,v), we have from (3.40) a Sonine
formula

t
(3.48)  sh?™ J"(t,v) = 2 J (cht-chn)m']shn(Mnf)(V)dn
0

Since FAT = L(2+1)FT with & = =172 + ip when T e E (V) (cf.

Ehrenpreis-Mautner [1]) there follows from (3.8), (3.9), (3.43)
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and the definition of u" = um(t,v) = um(t,v,f)

Theorem 3.13 For m 2 1 an integer and f € C2(V) the func-

tion u™(t,v,f) = u"(t,v) = (R™(t,+) # f(+))(v) satisfies

(3.45) o - 75(% [A-m(m+1) Ju™!

(3.46) u? +2m coth t u" = 2m csch t u™!
(3.47)  upy + (2m+1) coth t uy + m(mr1)" = A"
(3.48) u"(o,v) = F(v); u?(o,v) =0

where (3.45), (3.47), and (3.48) hold for m 2 0.

Proof: The notation here directs that (AMt # f)(v) =
Av(Mtf)(v) = (MtAf)(v) (see e.g. (1.7) and recall also that A =
8d + d§ in the notation of de Rham [1] is formally symmetric)
while (3.48) is immediate from the definitions and (3.45) for
example. One can also prove Theorem 3.13 directly from the de-
finition (3.44) and the Darboux equation (1.7) without using the
Fourier transformation (cf. Carroll-Silver [15; 16; 17]). Indeed
(3.46) follows immediately from (3.44) by differentiation while
(3.45) and (3.47) result then by induction using (1.7) and the
radial Laplacian D, =8 = 82/81:2 + coth t 3/3t (cf. (3.41)) for
m = 0 together with (3.46) (see Carroll-Silver [16] for details).

QED

Definition 3.14 The sequence of singular Cauchy problems
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(3.47) - (3.48) for m 2 0 an integer will be called a canonical
sequence. The canonical resolvant sequence corresponding to

(3.8) under inverse Fourier transformation is (cf. also (2.3))

m
tt

m

(3.49) RT + (2m+1) coth t R? + m(m+1)R™ = AR

(3.50)  R™o,+) =6 ; R?(o,-) =0

where & is a Dirac measure at w = w{e). Similarly from the equa-

tions (3.9) we have

m m+1

(3.51) R} = E%EI%T [A-m(m+1) R

(3.52) R} + 2m coth t R™ = 2m csch t R

Remark 3.15 We recall at this point a few facts about
Casimir operators for a semisimple Lie algebra g {cf. Warner [1]).
If X1, .« o ey Xn is any basis for 9¢ let ?ij = B(Xi’xj) where
B(-,+) denotes the Killing form and let g1J be the elements of
the matrix (g1J) inverse to (gij)' The Casimir operator is then

defined as
(3.53) C=7J ginin

This operator C is independent of the basis {Xi} and Ties in the
center Z of the enveloping algebra E(EC). Another formulation
can be based on a Cartan decomposition E = E + p and a 9 stable
Cartan subalgebra j of E (i.e., =3 Nk+3j Np-= j; + jp);

such 3 always exist. Let a basis Hi (1 €i<m) for j~ and a
k
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basis Hj(m+15j£2) for jp be chosen so that B(Hi,Hj) = -§.. for

ij
1<i, j<mand B(Hi,Hj) = 6.j form+1<1i, j < &, Pick root

i
vectors X, in g¢ so that B(Xu,X_a) = 1 (where [Xa,X_a] = H).

o
Then
(3.54) c=-'§H?+§H2. F XX +X X)
-|1 m+-| J u'>0 o -Q -0, O
=-r§H2.+§H2.+ZH +27X X
T 7 w1 d w0® o0

When G has finite center with K a maximal compact subgroup then
the operator in D(G/K) determined by C is the Laplace-Beltrami
operator for the Riemannian structure induced by the Killing form

B(*,*) (see Helgason [1] and cf. (3.41)).

Example 3.16 We consider now the case where G = 500(3,1) =
SH(4) is the connected component of the identity in the Lorentz
group L = S0(3,1) and K = SO(3) x SO(1) ~ S0(3). The resulting

46

Lobacevskij space V = G/K has dimension 3 and rank 1. In R
consists of so called proper Lorentz transformations which do not
reverse the time direction, Thus set [x,x] = -r?(x,x) = -xg *

x? + xg + xg and think of X, as time. Then G corresponds to 4 x 4
matrices of determinant one leaving [x,x] invariant and preserving
the sign of Xge In particular if Qq denotes the interior of the
positive light cone rz(x,x) > 0, Xo > 0, then G : 2 > . The
Lobalevski j space V can be identified with the points of the
"pseudosphere" rz(x,x) =1, Xy > 0 (which lies within 94). If

coordinates
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(3.55) X

r sh 63 sin 62 sin e]; x3 r sh 63 cos 62;

r sh 63 sin 62 cos e]; x0 r ch 63

%2
with 0 < 6] <2m, 0 ¢ 62 <m, 0% 63 <o, and 0 £ r < = are pre-
scribed in 2 then coordinates ei(i = 1,2,3) can be used on V and
the invariant measure dv on V is given by dv = shze3 sin ezndei
(i = 1,2,3). We will now follow Takahashi [1] in notation because
of his more “canonical" formulation but refer also to Vilenkin
[1] for many interesting geometrical insights.

Thus as a basis of the Lie algebra g of G we take

fo 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0
(3.56) ¥, = SV, - ;
0 0 0 o0 1 0 0 0
0 0 0 o o 0o o o
(0 0 0 1 (0 0 0 0
0 0 0 0 0 0 1 0
R PPN I A T
1 0 0 0 o 0 o o
0 0 0 0 © 0.0 0
0 0 o0 1 0 0 0 0
A O - I R
0 -1 o o o o0 -1 o
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Note that if Ep denotes the matrix with 1 in the (p,q) position

q
(pth row and qth column) with zeros elsewhere then Yp = Eop +
Epo(p =1,2,3) and qu = qu - Eqp (p<q; p,q = 1,2,3). Then

setting k = RX +RY2+RY3we

12 1

+ RX13 + RX23 and p = RY
have a Cartan decomposition g = k + p and K = exp k. Take now

a-= RY] as a maximal abelian subspace of p and set Xp = Yp + X]p

{(p = 2,3) so that

0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1
(3.57) X2 = H X3 =

1 -1 0 0 0 0 0 O

0 0 0 0O 1 -1 0 0

Then writing n = RX2 + RX3 an Iwasawa decomposition of g~ is
given by g~= k~+a+n~ and writing A = exp a with N = exp n one

has G = KAN. We will use the notation a, = exp tY1 so that

ch t sh t 0 0

sh t ch t 0 0
(3.58) a; =

0 0 1 0

0 0 0 1

One can take Y] = H0 in the general rank one picture with a(Ho) =

1 since [Y1,X2] = X, and [Y1 ,X3] = X3. Thus a, which is the

2
only positive root, has multiplicity two and p = %maa = a with

p(tY1) = t. We recall that M = {kek; AdkH = H for H € a} and

(]

]
that M = {kek; Adka € a}. Since exp AdkH = k exp Hk™| we see
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that AdkH = H for H € a implies k exp kY = exp H while AdkH €

- ' 1
a for H e a implies k exp Hk 1. expH forH € a. It is im-

mediate that M = {exp 6X23} consists of matrices
(3.59) m = 0 1 ; m e S0(2)

)
whereas M = M U {exp "XIZ’ ?xp nX]3}, where exp nX]p (p = 2,3)

sends ay to a_;- Thus W = M /M has the properties indicated be-

fore in the general rank one situation and B = K/M can be identi-

2

fied with the two sphere S C»R3. This identification can be

spelled out in at least two ways and we will adopt the one lead-
ing to the simplest integral expressions later. Thus, following

Takahashi [1], we write Ug = exp GJX]2 and v, = exp ¢X23 for 0 <

¢

8 <mand -m < ¢ £ 1w (in particular v, € M). Then any k € K can

¢

be written in the form k = m uev¢ for me M so that ifm=v

then k]] = cos 8, k]2 = sin 6 cos ¢ k]3 = sin 6 sin ¢, k2] =

v

-sin 8 cos y, and k3] = sin 6 siny One can pass the map k + x =
(k]],kz],k3]) k> R3 to quotients to obtain a map K/M - 32
where k - kueM and x > (¢,8); here -t <y <mand 0 <6 <7
on the domain of uniqueness. The invariant measure on 32 corres-
ponding to this identification is given by ds = (4n)_] sin 6 dedy

and the functions

(3.60) 7, .(6.9) = ¢ PM(cos g)ei™
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with Cm,n = [(2n+1)(n-m)!/(n+m)!]]/2, -n<m<n, and n = 0,1,2,
.« « o5 form a complete orthonormal system in L2(52) (cf. Talman
[1] and Vilenkin [1]).

We can now give explicit formulas for a canonical set of
radial objects in H, (cf. (1.4)). Thus let v = atK and b = kM

with k = vyu, and consider (cf. (3,19))

~mn 1 (" (T (in 1)H(at k) )
(3.60)  §"(a,K) = 4—“J-n fo e 2, (0,0 sino dody
It follows from general formulas in Takahashi [1] that

exp H(a;]kue) = cht - sht cos 6 and therefore (3.61) becomes
(3.62) Ma,K) = 4°° n(a K) = zg(t)

Co,n M iu-1
= ——%—-I (ch t - sh t cos 8) H Pn(cos g) sin o de
)

ai
since J 1mwdlp =0 form#%$ 0 and P (cos B) = Pn(cos 6). We note
=T
that (3.62) reduces to RO (t,u) = = ¢u(a ) when n = 0 since
0,0 " 1 and Po(cos 8) = 1 whereas, sett1ng k = V¢”ev¢ and re-
calling that ¢u is an even function of t, the expression for

Ro(t,u) can be written in the form (cf. Takahashi [1])

(m-nH(a;‘k)
f e dk

(3.63)  R%(t,u) =

1 T T T -1
= ——§-j J J (cht-sht coss) sinededyde
T -1/ 0
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" ip-1

= §-| cht-sht cos9) sinode = Zg(t)
10

= E-u;—hf[((:ht + Sht).Iu - (cht - Sht)“"]

= sinpt/usht

To evaluate (3.62) in general one has recourse to various formulas
for special functions and we are grateful here to R. G. Lange-
bartel for indicating a general formula for such integrals in
terms of Meijer G functions (cf. Luke [1]). The details are some-
what complicated so we simply state the result here. Thus, since
1/2

Coun " (2n+1)

1
1)m,1/2 T(n+1-ip -z
(3.60)  2(t) - ({2ntldmy 1/ (??1 ﬁu) sh 2t P 2(ch t)

We note that for n = 0 this formula yields (cf. Magnus-
Oberhettinger-Soni [1])

(3.65) Zg(t) /T sh 2 sz (ch t)

= (53) sh™Vt[(ch t + sh t)T¥ = (ch t + sh t)"TH]

21u

(74 sh't(e™E - e

in accordance with (3.63). Further let us remark that (cf.

Robin [1])
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(3.66) ](ch t)=/ Zsn!/2g p(Hy, 1oiu 3 gp2)
'i]J-?-
and hence from (3.65) one has Zﬁ(t) = F(li%HQ,J:%H3 %3 -sh’t)

as required by (2.2),
To obtain resolvants Rn(t,u) forn=1,2, .. . we now
multiply the Zﬂ(t) of (3.64) by an appropriate weight factor.

Since one has for example

-n-3: 'n'l n+% . .
(3.67) P 2(cht) =2 “sh(s) U AR U R
iu-ﬁ- I'(n + 50

(cf. Robin [1]), in order to satisfy the resolvant initial condi-

tions (2.3), it is natural to take (cf. (3.21) - (3.22)

(3.68)  R"(t,n) = F(UL A 0,3 hPt)
"*‘;‘ 3 ‘"']7 ‘"'l
2 F(n+§)sh(t) p ](ch t)
iU‘f
1 . 3
i 2n+§ ((2n+])“)-1/2 F(]-1u)F(n+E)
2 I'(n+T-1y)

_.=n, 5N
sh™'t Zu(t)
We now use (3.23) - (3.24) to obtain recursion relations for the

“n

R'. Some routine calculation yields then

Theorem 3,17 The resolvants R" for the case of three dimen-
sional Lobacdevskij space are defined by (3.68) and satisfy (v =

ip-1)

(3.69) ﬁ’; + (2n+1) coth t R" = (2n+1) csch t R
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“n _ [v{v+2) - n(n+2)] “n+1
(3.70) R = s sh t R
(3.71) Egt + @n+2) coth t E: + n(n+2)RM = y(v+2)R"

These equations are in agreement with Silver [1] where they
are obtained in a different manner and the resolvants are ex-
pressed somewhat differently in terms of the functions PZ’Y of
Vilenkin [1]. One can now proceed as before to determine resol-
vants R" and canonical sequences of singular Cauchy problems.
Similarly one can expand the matrix theory to deal with higher
dimensional LobaEévskij spaces (cf. Silver [1]) but we will
not spell this out here {cf. Section 4). The question of deduc-
ing the recursion relations (3.69) ~ {3.70) from group theoretic

information about the irreducible unitary representations of G in

the Hu will be deferred for the moment.

Remark 3.18 Going back to the general format of Sections
2.1 - 2.2, Example 3.16 corresponds to the case m, = 2, Moy = o,

p=1, da = —p(p+1), d2a = 0, and n = p. Then using the Kummer

relation indicated at the end of Section 2.2 with z = th2t now,

2

we have z/z-1 = -sh“t and for t ~ (p,0)

(372 v (aK)

p ~iu-1 ju+l+p ipt2+ 3.2
c_y thPE ch e PR ISR b tht)

P, p(PHl+ik pHl-in 3 2
¢, oshPt F(m PRIl pis,-shit)
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Hence we can write from (3.68)

1

op - -p
(3.73) R (t,u) c_u,Tsh t‘i’_u’T(atK)

exactly as in (3.7). Putting this in (2.11) yields (3.71) and

the recurrence relations follow as before from (3.23) - (3.24).

2.4 Expressions for general resolvants. Let first m, =
- = = 9 m = o -
m and Mg = 0 so that p = m/2, £ = iy + > du p(p+m-1), and

d2a = 0, while T ~ (p,o0).

Theorem 4,1 Resolvants for the case m,=m and Mo = 0 are

given by

opP = o) -p
(4.1) R¥(t,u) c_u’Tsh t W_U’T(atK)

ch™P~% ¢ FER I L thle)

m 1
p - —
g2 * L e
= p (ch t)
L i
P¥5-72 M7
sh t

These satisfy the resolvant initial conditions as well as the

differential equation and splittina recursion relations below,

(4.2) ﬁgt + (2p+m) coth t ﬁg + [p(p+m) + 12 + (ﬂzl)zjﬁp =0
A - N +
(.3)  RD =SSt rp(pam) + 2+ (D7) R

2p+mt1 2

(4.4) ﬁi + (2p+m-1) coth t ﬁp = (2p+m-1)csch t ﬁp']
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Proof: Equation (4.1) follows from definitions (cf. (3.7)
and (3.73) for motivation), (2.9), the Kummer relation F(a,b,c,z)=
(1-z)'aF(a,c-b,c,z/z-l), and an extended version of (3.67); the

recursion formulas (4.3) - (4.4) follow from the known relations

1/2 d az a _ a-1

a+l

(a.6) (22 L W PR = o2

(cf. Robin [1] for details). Finally (4.2) results from {2.11)

or (4.3) - (4.4). ' QED

In the situation now when Moy = 1 the situation becomes some-
what different. We recall that t ~ (p,q) with (p,q) e Z_ x Z and
ptqe2Z,. We take m, = m so that d, = -p(p+m} + q2 and d, =

2

-4q° with p = D+ 1. For the resolvants we use (3.7) again (cf.
2

(3.73) also) with (2.9) to obtain

=1

(4.7) RN tw) =<l

-p
sh™"t W_U’T(atK)
= ch'p'ZXF(x+E%ﬂ, X + E%Hu Y, th2t)

where x = %{iu + g-+ 1) = %-and y=p+ g-+ 1. An elementary

computation now yields the resolvant equation from {2.11) in the

form
(4.8) ﬁ‘t’;q + [(2p+m*1)coth t + tht]ﬁ‘;’q

+ [p(p+m+2) + u2 + (g-+ 1)2 + qzsechzt]Rp’q =0
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Theorem 4.2 For the case Moy = 1 with m, = m resolvants are
given by (4.7), satisfying the resolvant initial conditions
(2.3) and (4.8). There are various splitting recursion relations

which we Tlist below,

N 2(x+BE9) (x+229) -
(4.9) RP-9 = [ X Zy ) p - 2x] tht RP+9
+ - _Ptq -
. 2(x+Lﬂ)(x+;Lz—q)(y x-E5) (x+B5dey) 2 the 2P2
y (y+1)

(4.10) ﬁ‘é’q = 2(y-1)coth t sech®t RP=2-9

2(x+P—;3-1)(y-x- p—é—q--l)
- qlth t]

+ [2(1-6)cotht + {
y=-2

. P4
(4.11)  RP*9 =g th ¢t RP9 + %{x+%‘-)(x+9—§3-y)sh ¢ RP*1.9%1
(4.12) ﬁg’q = -qtht ﬁpsq -2(y-1)coth tﬁp’q

+ 2(y-1)csch t RP™129-1
(4.13)  RET = —q th £ B9 - E(x+ B39y (y - BX)sh ¢ RPHI0C]
(4.]4) Rp’q = qth t /Fip’q -2(y—])coth t ﬁpsq

+ 2(y-1)csch t RP~1:9%1
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=]
-
Nal
1

=qthtRPY 4+ 2 C°fh t x+%ﬂ)

(4.15) R pre)

(X +%-‘Y)(Rp’q-Rp’q+2)

(4.16)  RP»9

_q th t Rp’q + ..2_:(3__1'1]_2 (x-{-%—g-)

(y_x__gggg(ﬁp,q_ﬁp,q-Z)

Proof: The recursion relations are derived using the for-
mula &= F(a,b,c,2) = (ab/c)F, = (ab/c)F(a+1,b+1,c+1,2) and var-
ious contiguity relations for hypergeometric functions (cf.
Magnus-Oberhettinger-Soni [1]. Thus to obtain (4.9) - (4.10) one

uses the easily derived formulas

(417)  (-2)F, = F o+ {300 Sp(a o1 cr2,2)

(4.18) abz(]-z)F+ = ¢(c-1)F(a-1,b-1,c-2,2)
+ c[ié:%%égih:ll z - (c-bz-1)JF
For (4.11) - (4.12) one uses the formulas
(4.19) b(1-z)F+ = ¢F + (b-c)F(a+1,b,ct1,2z)
(4.20) abz(]-z)F+ = c(c-])F(a-],b,c-],z)-c(c-bz-i)F
whereas for (4.13) - (4.14) we utilize

(4.21) abz(]-z)F+ = ¢(c-1)F(a,b=1,c=1,2} - c(c-az-1)F
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(4.22) a(1-z)F+ = ¢F - {c-a)F(a,b+1,c+1,2)

and finally for (4.15) - (4.16) one has

(b-c)
a-b+l

c(b-c)
a-b+1

(4,23) bz(]-z)F+ = ¢{z+ VF - F(a+1,b-1,c,z)

(4.24) abz(]-z)F+ = :Egéﬁf%l-F(a-l,b+1,c,z)

+ c[is:g%é%%l)- (c-bz-a) JF

Let us also remark briefly about the splitting phenomenon, Thus

for example (4.19) yields

(4.25)  F = ey [oF + (b-c)F(a+1,b,c+1,2)]

whereas (4.20), after an index change, gives

(4.26) Fl(a+1,b,c+1,z) = ET%:ES.[CF - {c-bz)F{a+1,b,c+1,z}]

Now differentiate (4.25), insert (4.26), and then use (4.25)
again to eliminate F{a+1,b,c+1,z). Multiplying by z(1-z) one
obtains then the hypergeometric equation z(]-z)FI| +

[c - (a+b+1)z]Fl - abF = 0. It is easy to show that if the
hypergeometric equation splits in this manner then so does (4.8)

under the composition of (4.11) - (4.12), for example. QED

For completeness we will write down some formulas for the

cases m, = 3 or 7 but will omit the recursion relations since

200
the pattern is exactly as above. Thus for My, = 3 we set m, = m

and recall that (p,q) e Z, x Z, with p £ q e 2Z_. One has
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=" = j ;
p=3 + 3 and & = ju + p with d2a

q(q+2). We use (3.7) and (3.73) again to define RP*9 and from

= -4q(q*2) and d = -p(p+m+2) +

(2.9) this yields

1

RPsq = -p
(4.27) R H(t,u) c_u’Tsh t W_U’T(atK)

chP* ¢ F(&fém-, &fl’-g-‘tﬁ, p+D+2, thlt)

ch™P2%; F(x+%—q, x+%ﬂ-], 'R th2t)

Fiu+D+3) andy = p + 2+ 2. The differential

where x = 2/2

equation arising from (2.11) is then

(4.28) Rg,;q + [(2p+m+3)coth t + 3 th t]ﬁfé’q

[p(p+m6) + 1% + (3+3)° + q(a+2)sech?tJR*9 = 0

= =m
For Moo, = 7 one has p >

that da = -p(ptm+6) + q{q+6) with d2a = -4q(q+6). In this case

+ 7 and setting m, = m it follows

from (3.7) and (2.9) again
(4.29)  RP(t,) = ch Pt g p(EP ARG L Ty ihlt)
and from (2.11) the differential equation for ﬁp,q is
(4.30)  RP29 + [(2p+m+7)coth t + 7th t]ﬁ:’q
+ [P(P+m+14)*'u2*'(g*—7)2-+q(q+6)sech2t]§p’q =0

Theorem 4.3 For m, = 3 (resp. 7) the resolvants are given

20,
by (4.27) (resp. (4.29)) and satisfy (4.28) (resp. 4.30)).
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These results completely solve the rank 1 case and the con-
nection of the Fourier theory to the associated singular partial
differential equations has been indicated already (cf. Theorem

3.13 and Chapter 1).

2.5 The Euclidean case plus generalizations. We follow
here Carroll1-Silver [15; 16; 17] and will indicate results only
for one simple Euclidean case; a complete exposition appears in
Silver [11. Thus let G = R% X S0(2) and K = S0(2) where (X,a)
(¥,8) = (x+y(a)y,0+B) is a semidirect product with

cos & -sin a (y]

(5.1)  ylaly =
sin o cos qa Y,

(cf. Helgason [1], Miller [1; 2], and Vilenkin [1]) for back-
ground information). Thus G = M(2) is the group of orientation
and distance preserving motions of R2 and is a split extension
of R2 (with additive structure) by K so that R2 and K are sub-
groups of G with K compact and R? normal (cf. Rotman [1]).
Elements g = (;,a) can be represented in the form

cos o =-sin a X

1

(5.2) g= |[sina cosa Xy

0 0 1

and multiplication is faithful., As generators of the Lie alge-

bra g of G we take
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0 0 1 0 0 0 0 -1 0
(5.3) ap = 0 0 of; a, (0 0 1f; ag 1 0 0
0 0 O 0 0 0 0 0 0

with multiplication table
(5.4) [a;,a,1 = 05 [ay.a3] = a;3  [ag,ay]1=a,

Thus 5 is solvable {but not nilpotent, nor semisimple)., Now set
V = G/K and since (x,a)(0,8) = (X,a+B) there is an obvious global
analytic diffeomorphism V > R2 . One defines as before L(g)f(X) =
£(g7'X) = Fly(-a) (%)) where g = (J,0) and g7' = (v(-a)(-§),=).
One thinks here of x as m(h) = m(x,8) = m((X,0)(0,8)) so that
¢7'% = g7'm(h) = w(g7h) = w(y(=a) (F) + y(-a)k,Ba) = y(-a) (K-F).
If f is differentiable then L induces a representation of ; as in
(3.29). Writing A; = L(a,) we have first, for X = (i‘) -

m(X,8) = (x],xz) (for simplicity of notation), exp(-t§])§ =
(x]-t,xz), exp(-ta2)§ = (x],xz-t), and exp (-ta3)§ = y(-t)X.
Consequently we obtain A] = -B/Bx], A2 = -B/sz, and A3 =

Xo B/BX]-x] B/sz. Writing H = A] + iAz, H = A] - iAz, and H =
it follows from (5.4) that (note the contrast here with

21'A3

(3.12) and (3.26))
(5.5) [H,H,1 =205 [H,H1=-2H_; [H,H]1=0

The Riemannian structure on V is described in (geodesic) polar

2 2

coordinates by ds® = dt© + 2 do2 (cf. Helgason [1]) and the

geometry is "trivial," There follows immediately (cf. Vilenkin
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[RR))
Lemma 5.1 In polar coordinates (t,8) on V

(5.6) W, = -e'®[asat + LasaTs W= 21 /205

H = - ®La/at - %—a/ae]
1

t2

(5.7) s =HH_=27t? + Losar + 1o ofae?

As before (cf. Proposition 3.7) we work with (dense) differ-
entiable basis "vectors" f: in Hilbert spaces Hu where G provides
a unitary irreducible representation Lu and these are character-

ized by the conditions {cf. Miller [1; 2], Vilenkin [1])

(5.8) H f: = jufH

. VR TR Mo gl
A mt] s H_fm 1ufm_], H,f mfm

3'm

where H3 = 1/2 H and p is real (see Carroll-Silver [15; 16; ]7]v
and Silver [1] for further details). Here we can write L =

Jw Lu pudu (cf. (1.5)), but emphasize that the semisimple theory
)

does not apply. There results (cf. Vilenkin [1])

Theroem 5.2 Canonical basis vectors in Hu can be written

in the form
(5.9) f: = (-1)™ exp (imo)J_(ut)

Proof: Take f; = eimew:(t) which will assure the third

requirement in (5.8). Then the w: must satisfy
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2
d- pu,1d u
(5.10)  —5wo * T qE ¥ "

uo_
W= -uw
datc M m

dRJEha

{cf. (5.7) - (5.8)). The solutions Jm(ut) are chosen for finite-

ness conditions and the factor (-i1) makes valid the recursion

ym
relations indicated in (5.8) (cf. Vilenkin [1]); the resolvants
age given by R"(y,t) = (i)mzmr(m+1)(ut)'mw:(t) and satisfy
(1.3.11) - (1.3.12) with A(y) replaced by 1° (resp. y by u) -

similarly (1.3.4) - (1.3.5) hold for R" with T = 1. QED

Remark 5,3 It is easy to show that the mean value as de-
fined by {1.6) coincides in this case with the mean value ux(t)
{cf. formula (1.2.1) - and see Carroll-Silver [16] for details).
Thus the results of Chapter 1 may be carried over to this group

theoretic situation, which is equivalent.

We conclude this chapter with some "generalizations" of the
growth and gonvexity theorems (1.4.12) and (1.4.16) in the
special case V = SL(2,R) /S0(2) {(cf. Theorem 3.13 and Carroll-
Silver [15; 163 17]). First it is clear that if f > 0 then,
referring to (3.43), (Mt # f)(v) = (Mtf)(v) >0 form2 0 an in-
teger (here we assume f ¢ C2(V) for convenience later). Hence
u"(t,v,f) = u™(t,v) > 0 when f 2 0 by (3.44) for m > 0 an integer.
Now write A, = b - m(m+1) so that by (3.45) we have (recall My =
wt)

Theorem 5.4 Let Amf 20, m2 0 an integer; then um(t,v) is

monotone nondecreasing in t for t 2 0,
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Proof: AMnf = Mn(Af) by (1.7) and Lemma 1.1. QED

Now let ¢ be any function such that dy/dt = csch2m+]t so

2

that d/dy = sh2™ 't d/dt (cf. Weinstein [12]). Then (3.47) can

be written

4

(5.11) 32/3w2 u™(t,v,f) = sh m+2t um(t,v,Amf)

Consequently there follows

Theorem 5.5 If Amf 2 0 then um(t,v,f) is a convex function

of v.

Remark 5.6 MWorking in a harmonic space Hm(cf. Ruse-Walker-
Willmore [1]), Fusaro [1] proves (M = M(v,t,f) as in Theorem
3.11)

(5.12) M + (L’ﬂ;—‘l +og g(t)"/Z)m, = an

where g = det (gij)’ 9i; denoting the metric tensor, and g depends
on the geodesic distance t alone (A denotes the Laplace-Beltrami
operator). If Af 2 0, M will be nondecreasing in t and a convex
function of y where wl(t) = t]'m/g(t)]/z. Weinstein [12] works

in spaces of constant negative curvature -az (which are harmonic)

and proves similar theorems for

(5.13) Mtt + a{m-1) coth (at)Mt = AM

We refer to Helgason [4] for such "Darboux" equations in a group

context; the extension to "canonical sequences" is due to Carroll
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[21; 22], Carroll1-Silver [15; 16; 17], and Silver [1].
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Chapter 3
Degenerate Equations with Operator Coefficients

3.1 Introduction. In the preceding chapters we were con-
cerned with Cauchy problems for evolution equations with operator
coefficients that were permitted to become infinite or singular,
We turn now to the dual situation in which the operator coeffi-
cients are permitted to degenerate in some sense. The examples
to follow will illustrate some typical partial differential equa-
tions that occur in the initial boundary value problems to which

our abstract results will apply.

Example 1.1 Various diffusion and fluid flow models lead to

the partial differential equation
2. _
(1.1) Dt{m](x,t)u(x,t) - Dx(mz(x,t)Dxu)} - Dxu = f(x,t)

with nonnegative real coefficients. This equation can be ellip-
tic (m] =m, = 0), parabolic (m] > 0, m, = 0), or of pseudopara-
bolic or Sobolev type (m2 > 0), and the type may change with
position = x and time = t. The equation (1.1) with m, > 0 was
proposed in 1926 by Milne [1]. Similar equations have been pro-
posed for numerous other applications by Barenblat-Zheltov-
Kochina [1], Benjamin [1], Benjamin-Bona~Mahoney [2], Buckmaster-
Nachman-Ting [1], Chen-Gurtin [1], Coleman-No1l [1], Huilgol
[1], Lighthill [1], Peregrine [1; 2], Taylor [1], and Ting [2].

This equation appears below in Examples 3.5, 4.5, 4.6, 4.7, 5.10,
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5.13, 5.14, 5.15, 6.21 and 7.6.

Example 1.2 A partial differential equation analogous to
(1.1) but containing a second order time derivative was intro-

duced in 1885 by Poincare. Similar equations of the form
? ?
(1.2) D} {c]u(x,t)-czAnu(x,t)} - {a]An_]u(x,t)+aanu(x,t)
= f(x,t)

with nonnegative coefficients have been proposed; here An is the

Laplacian in x € R" and An-] denotes the first n-1 terms of Age

Applications of (1.2) are given by Boussinesq [1], Lighthill [1],
Love [1], and Sobolev [1]. Equations of the form (1.2) are con-

sidered below as Examples 3.9, 4.8 and 6.22 (cf., Theorem 3.8).

Remark 1.3 The name Sobolev equation has been used exten-
sively to designate partial differential equations or, more gen-
erally, evolution equations with a nontrivial operator acting on
the highest order time derivative. This operator is usually--not

always--elliptic in the space variable.

Example 1.4 Certain applications lead to problems with
standard evolution or stationary equations in a region G of R"
but with a constraint in the form of a partial differential equa-
tion on a Tower dimensional submanifold (e.g., the boundary) of

G. Thus one may seek a solution of
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Dtu(x,t) - Anu(x,t) = f(x,t), xe G,
(1.3)
Dtu(s,t) + 3u/dN = div(a(x) grad u(s,t)), s e S

where S is a n-1 dimensional submanifold, N denotes a normal,
and the divergence and gradient are given in local coordinates
on S. Such a problem was given by Cannon-Meyer [1] to describe

a diffusion process which was "singular" on S (cf. Example 6.21).

Example 1.5 Problems similar to the above but of second
order in time occur in the form
-Anu(x,t) = f(x,t), X e G,
(1.4)
Diu(s,t) + 3u/aN = 0, s € 3G

to describe gravity waves (cf. Whitham [1]). One can view this
as a degenerate problem in which the coefficient of Use is the
boundary trace operator. It can be handled as the preceding

{(cf. Showalter [5]) or directly as by Friedman-Shinbrot [3] or

Lions [10], Ch. I.11.

Example 1.6 Degenerate parabolic equations arise in various
forms other than (1.1). Problems from mathematical genetics

lead to
(1.5) tD,u(x,t) - x(]-x)Diu(x,t) = f(x,t), 0<x<1,t>0

where the leading operator degenerates at t = 0 and the second
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degenerates on the boundary of the interval [0,1] (cf. Brezis-
Rosenkratz-Singer [2], Friedman-Schuss [1], Kimura-Ohta [1],
Levikson-Schuss [1], and Schuss [1; 2] for {1.5) and related
problems). Also, (1.5) is considered below in Example 5.15. De-
generacies can occur in parabolic problems as the result of non-

linearities. This is the situation for the equation
(1.6) D u(xst) - D ([u(x,t)|™D u(x,t)) = 0
of flow through porous media {cf. Aronson [1] and Example 6.23).

Example 1.7 Wave equations occur with degeneracies, typical-
ly either in the form of (1.2) with c](x,t) 20and c, =0 or in
the form of (1,1.4)., The latter situation will be discussed in

Section 3.2 below.

Each of the preceding examples is a realization in an ap-

propriate function space of one of the abstract Sobolev equations

(1.7) GEMu) + L) = f

2
(1.8) ditzm(u)) + SB(u)) + ACu) = f

for certain choices of the operators. These two equations will
be considered in various forms in this chapter. In Section 3.2
we use spectral and energy methods to discuss (1.8) when C is

the identity and B and A are (possibly degenerate) operator poly-
nomials involving a closed densely defined self adjoint operator.

This covers the situation of {1.1.4). The equation (1.7) is
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called strongly regular when M is invertible and M_]L is contin-
uous on some space. Similarly, (1.8) is strongly regular when
C_]B and C']A are continuous. The strongly regular case is stud-
jed in Section 3.3; the operators are permitted to be time-
dependent and nonlinear. We call the equations weakly regular
when their leading operators are only invertible. We shall give
well-posedness results in Section 3.4 for linear weakly regular
equations by means of the classical generation theory for linear
semigroups in Hilbert space. Section 3.5 treats degenerate
linear time-dependent equations by the energy methods of Lions
[5]. Applications include Examples 1.1, 1.4, 1.6, second order
evolution equations of parabolic type (cf. Theorem 5.9), and
many others (cf. Showalter [2]). Related nonlinear problems are
discussed in Sections 3.6 and 3.7 by methods of monotone nonlinear
operators, These techniques also allow the treatment of related
variational inequalities (cf. Theorems 3.12 and 6.6). Each sec-
tion contains a list of references to related work. The parti-
tion of these references is inexact, so one should check all sec-

tions for completeness.

3.2 The Cauchy problem by spectral techniques. Referring
to Remarks 1.1.3 and 1.1.4 we will deal first with an abstract
version of the degenerate Cauchy problem in the hyperbolic region
with data given on the parabolic Tine, following Carroll-Wang
[12] (cf. also for example Berezin [1], Bers [1], Carroll [7; 9;
34], Conti [3], Frank'l [1], Krasnov [1; 2; 3], Lacomblex [1],
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Protter [2], Walker [1; 2; 3], Wang {1; 2] as well as other pre-

. 1]
vious citations in Remark 1.1.4). Thus consider ( denotes d/dt)
[ 3] ) 1 B
(2.1) u + AS(t)u + APR(t)u + Ag(Ju = f

where A is a closed densely defined self adjoint operator in a
separable Hilbert space H with (Ah,h) 2 c||h”2, c>0, a,820,
] = Al e L(H), q(}) = a(t) + B(t)} where a(t) vanishes as t ~ 0
(B(t) € L(H), S(t) € L(H), and R(t) e L(H)) while f is "suitable"
(see below). It is assumed that all operators commute and we
seek u(+) € CZ(H) satisfying (2.1) with u(o) = ul(o) = 0 (other
initial conditions can also be treated but we omit this here -
cf. however (2.32)). We will use first the technique of Banach
algebras and spectral methods developed in Carrol1[4; 6; 8; 10;
115 145 29; 30; 31], Carroll-Wang [12], and Carroll-Neuwirth [32;
33]; cf. also references there to Arens [1], Arens-Calderon {11,
Dixmier [1], Foias [3], Ge]fand-Raikov-gilov [8], Lions [5; 61,
Rickart [1], and Waelbroeck [2]. We obtain results "similar" to
those of Krasnov [1; 2; 3] and Protter [2] but in a more general
operator theoretical frameword; moreover in our development a(-)
need not be monotone and some new features arise (see Remarks
2.10 - 2.12 and cf. also Theorems 2.16 and 2.17).

Let us assume for illustrative purposes that S(t) = Ss(t),
R(t) = Rr(t), and B(t) = Bb(t) where B, R, S, and J commute in
L(H) and are normal; hence by a result of Fuglede [1] (},B,R,S,

* * *
B ,R,S ) are a commuting family and we denote by A the uniformly

148



3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS

closed * algebra generated by this family and the identity I.
Note that for any h € H, ABfh = AJBh = Bh automatically for ex-
ample, and the commutativity of say A with B means that for

h € D(A), Bh € D{(A) with ABh = BAh. It will be assumed that b,

r, and s belong to Co[o,T] and a € C][o,T] where T < o,

Remark 2.1 A few remarks about finitely generated commuta-
tive Banach algebras A with identity will perhaps be useful in
what follows (cf. Carroll [14] and references there). Let ¢ :

A > ¢ be a continuous homomorphism so that ker ¢ is a (closed)
maximal ideal in A with A/ker ¢ = ¢ and one identifies ¢ with
ker ¢. The set QA (called the carrier space) of maximal ideals
can then be identified with a weakly closed subset of the unit
ball in AI and we write ¢(a) = ;(¢) for a € A. Since f(¢) =1,
if A is a commutative * algebra in L(H) with generators a,s

Qs o o es Aps aT, N a:, and 1 (a0 self adjoint), one can
show that 7 is homeomorphic to the (compact) joint spectrum

op = (a(0)} = {(2,(0)5 a(6)s « « +» 2 (6))} € ¢2™T where
;:(¢) ='3;T$7 and ;0(¢) is real. The functions ;k will then be
continuous on QA ~ Op and A will be isometrically isomorphic to
C(@A) where C(@A) has the uniform norm. In our situation above
we have o C ¢7 and we associate the complex variables (zo, e o e
26) o (§(),B(0)s . . »S7(¢)) with A = 1/z 2 ¢ and l2,] <

c; = max([|B][,[[R]l,1[S|l) for k 2 1. One notes that z >0 cor-
responds to A > » and we will call the map I' : a ~a : C(@A) =

C(oA) -+ A the Gelfand map. A further notion of use here {cf. also
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Section 1.5) is that of decomposing H by an isometric isomor-
®
phism & : H+ H = f H(z)}dv which diagonalizes A and T may be
o
extended, as an isométric isomorphism, for example to all bounded

Baire functions B(oA) with values in the von Neumann algebra A'l
(here A'lc: L{H) is the bicommutant of A and is the closure of
A in say LS(H)); we will use o, for convenience in measure
theoretic arguments instead of QA' The so called basic measure
v arises naturally (cf. Dixmier [1] or Maurin [1; 3]) and we
will not give details here. A v-measurable family of Hilbert
spaces H(z) on 9 consists of a collection of functions z -~ h(z)
€ H(z) such that there is a vector subspace F <€ IH(z) with z »
||h(z)|th) measurable (h ¢ F), (h(+), g(.))H(Z)

all h ¢ F implies g ¢ F, and there is a fundamental sequence hn €

measurable for

F such that the closed subspace of H(z) generated by hn(z) is
H(z). Now under the present circumstances H = Ls(oA,H(z)) is a
Hilbert space with norm [f ||h(z)||2d\):|1/2 = ||h”H and a Lebesque
dominated convergence theogém will be valid. Diagonalizable
operators G € L(H) are defined in the obvious manner {cf. Section

1.5) with G = 8"

G6 ¢ L{(H) where G ~ G{z) e L(H(z)), all argu-
ments being carried out in LS(H) for example.

Now in connection with (2.1) we consider the equation (under
our assumptions S(t) = s(t)S, etc.), obtained by applying 6 to

(2.1)

(2.2) u + )\O‘zss(t)al + B2,r(t)u + Ala(t)+z,2;b(t)Tu = 0
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where U = 6u and for example 6s6” .. z;. We write z = (z], . . oes

26) and by Coddington-Levinson [1] or Dieudonné [1] (cf. also
Chapter 1) there exist unique solutions Z(t,t,z,\) and Y{(t,T,z,\)
of {2.2) such that Z{1,1,z,A) = 1, Zt(T,T,z,A) =0, Y{1,1,Z,)) =
0, and Yt(T,T,z,A) =1 for0<sT<StsT <o, lzkl < ¢, and

¢ £ X <o, The functions Z and Y will be continuous in (t,T,z,})
in this region and we need only check their behavior as A + o,

To this end we construct a "Green's" matrix as in Sections 1.3

and 1.5 {cf. (1.3.13)) in the form

2(t,1,2,2) a2yt ,0,2,0)
(2.3)  Gy(tiToz,0) =
A—]/ZZt(t,T,Z,A) Yt(t,T,Z,A)

which will satisfy the equation

(2.4) %GA(t,T,Z,A) + A]/ZHA(t,z,A)GA(t,T,z,A) =0
0 -1
(2.5)  Hy(t,z,0) = ]
B-1 *Z
a(t)+zoz]b(t)+A zzr(t) A z3s(t)

As in Chapter 1 it follows that (cf. (1.3.15))

(2.6)  26G,(t,T,2,2) -A]/ZGA(t,T,Z,A)HA(T,Z,A) =0
~ ~ ~ ]/2/\] > Cl.l
Setting u, = u and u, = A"'/“y with u =(~") we obtain formally
1 2 u,
from ﬁt + A]/ZHA(t,z,A)ﬁ = ¥ the solution of (2.1) in the form
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t
(2.7 u(t) = [ VnefE)E
T
., 0 N
Yhere y(t,t) = e_]Y(t,E,z,A)e, f = ()\_1/2 ;), u(o) = 0, and

In order to check the behavior of Y we replace t by £ in
(2.2) for Y and multiply by VE(E,T,Z,X); upon taking real parts

and assuming now that a(t) is real valued one obtains
d_ 2 o - 2 B v
(2.8) dE IYEI + 2Re(X z3s(¢))|YE| + 2Re(X zzr(g)YYE)
+2a(g) & [¥]2 + 2Re(z,b(E)WV,) = 0
dg 1 £

Now note that |rABY7é| < %-(]rlZAZBIYI2 + |YE|2) so that, upon

integration from t to t,

t
L 2Re(Aaz3s(g))|YE|2d£ + xa(t)|v]2
T

(2.9) 1Y

t. t
@ s [ iz lus@ Pyt
T T

t
* | Izl Ur@ B2 vy e

Assume now that Re(z,s(g)) 2 0 if o > 0 with 28 < 1 and take A 2
1 so that AZB < A (recall A 2 ¢ and if ¢ < 1 a further argument
will apply - see below). If o = O then the \* term can be in-
corporated into the right hand side of (2.9) or (2.10) in an

obvious manner. We have then (since |z | < ¢y for k 2 1)
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t
2
Y |“de

(2.10) | % +aa)|v)2 <1+ 2, J
T

t
+ 2] P(e)¥1%e
T
(2.11)  P(e) = a' (&) + ¢ (Ir(e) % + Hb(E)]?)

it
Adding now 2c, | Aa(E)|Y|2dE to the right hand side of (2.10) and
T

using Gronwall's lemma (Lemma 1.5.10) one obtains, setting

E(tss) = exp 2C-|(t"€)’

2

2 . t 2
2.02) V.12 + aa®)|Y[2 < E(t0) +jxp(s)z(t,s)lvl dc

¢
T

The following lemma now gives a somewhat sharper estimate on
[Y|2 than can be obtained by a direct application of the Gronwall

Temma; the proof however is a simple variation.

Lemma 2.2 Given (2.12) with P 2 0 and a > 0 it follows that

for0 <t sSt<T<wand x 1

t
2 P
(2.13)  2a(t) V]2 € E(t,T) exp (jr 5{%} do)

Proof: We first omit the term [Yt|2 on the left hand side
of (2.12) and set X(t,t) = JtAP(E)E(t,E)IYIng so that Xt(t,r) =
AP(E)[V|2 + ftxp(g)zt(t,g)|vfzdg = ()]V]% + 2¢,X(t,7). Then
multiplying (;.12) {(with [Yt[2 deleted) by P(t) and using the

last relation for Xt we obtain

(2.14)  -a(X,-2c;X) < PE + PX
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t
Thus defining F{t,T) = exp (-J [§-+ 2c]]d£) for T > 0 we have
T t
from (2.14), (FX), (P/a)EF But E(t,T)F(t,7) = exp(-f [gidi)
T
and hence (FX)t < -(exp( J [—Jdg)) from which follows

(2.15)  F(t,0)X(t,0) <1 - exp(-J (%3¢e)
T
since F{t,t)X{(t,T) = 0. This may be written
tp
(2.16) X(t,t) + E(t,t) < E(t,1) exp(J [Eidg)

T

which proves the lemma QED

, c
We observe from (2.11) that P/a = a /a + (El-)[lrl2 +%4b|2]

so that
(2.17) <t5]d)=a—<(9; (el 168
. exp JT[a £ alc) &P JTc] 3 a £

If ¢ < 1 we can carry through the estimates with |r|2 replaced

2,28-1

by |r]“A"" 'when A < 1 (recall 28 < 1) and from Lemma 2.2 we ob-

tain, using {2.17),

Lemma 2.3 Given (2.12) with P 2 0 and a{t) > 0 for T > 0O

we have for 28 < 1
2
@18)  a(0[ ¢ L en(c, j[l—L Bl

where 2] = €y max (1, CZB- )} and C, = exp 2c]T.

_Define now d(t,T) = exp < J l—l—di and P(t,T,A) =
exp ——-[ l-l—-dg and as T > 0 these functions may of course
T
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become infinite. Noting that ¢(t,t) £ ¢(T,t) and $(t,t,A) <

Y(T,T,c) we can state

Corollary 2.4 Let ¢(1) = ¢-](T,T) and (1) = w-](T,r,c);
then

(2.19)  o()pln)aln)[¥]% € c,/n

where Y = Y(t,7,z,\) is the unique solution of (2.2) with P 2 0,
a(t) >0 for t >0, 261, A 2c¢, and Re(z3s(£)) > 0 satisfying
Y(t,1,Z,A) = 0 with Yt(T,T,Z,)\) = 1.

We set now W(t,T,z,A) = Q(T1) Y(t,1,2,\) where Q = (cp\pa)]/2
and observe that the estimate (2.19) holds for T = 0 also while
W is continuous in (t,t,z,A) (Q(t) > 0 as t > 0). If he H then

then (cf. Remark 2.1) (t,t) » W(t,t) = 6~'We = h > A"/ %h is

continuous since J HAF/Zweh||2dv will converge appropriately by

oA 1/2

Lebesque dominated “convergence for example (in fact A"/ “W ¢ B(o

)
[ ]
can be demonstrated, so F(A]/ZW) e A but this will not be

1/2

needed - note here that A and W also commute on cA). One can

now prove

Theorem 2.5 Under the assumptions of Corollary 2.4 (and

Lemma 2.3) we have, with vy = max (1/2,0) and 0 S 1 €t S T < o,

(2.20)  (ty) » W(ta) e CO(Lg(H00 /4
t>w(t,a) e C(L(H);
t > w(ta) e CO(L(D(AY),H)
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Proof: We need only check the bounds since the rest will
follow from the Lebesque dominated convergence theorem. From

(2.12) and {2.16) - (2.17) one has

2<a

(2.21) |, |% € HRE(e )0t T)u(t,Ta0)

so that |wt|2 = |QYt|2 < cs where c,, = c, max a(t) (max on

3
[0,T]); actually (t,T) ~ wt(t,T) € CO(LS(H)) since Q{t) -~ 0 as
T > 0 and this is useful later. For the last estimate we go

back to {2.2) to obtain the inequality (recall that 28 < 1)

1/2
(2.2) |QYtt| < c4xa tcph /

and the theorem follows. We again observe that (t,T) - th(t,T) €
cO(L(D(AY),H)). QED

Now we consider (2.7) and will show that it represents a
solution of the Cauchy problem (2.1) when f ¢ CO(D(AY)). Thus
setting h(g) = f(£)/Q(g) (2.7) may be written in the form

t

u(t) = j w{t,g)h(g)ds and we can consider this as a Riemann type

0
{vector valued) integral {in order to carry the closed operators
A%, AB, and A under the integral signs). The following computa-

tions are then justified by Theorem 2.5 and remarks in its proof.

First u(o) = 0 and
t

(2.23)  uy(t) = (e, tIn(8) + [ W (t,e0n(E)de
o]

t
= [ w(tnte)ae
o]
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t
(2.280)  ug (6) = 18+ | (L0m(E)e

Theorem 2.6 Assume a € C][o,T], a{t) > 0 real for t > 0,
a(o) =0, b, r, s e C°0,T], 28 < 1, v = max(a,1/2), Re(z,s(t)) 2
0, P20, and f/Q ¢ CO(D(AY)). Then there exists a solution of
(2.1) given by (2.7) with u{o) = ut(o) =0, ue CZ(H), ue
c'(D(AY)), and u e O(p(a"*1/2)),

For uniqueness we will give several results. First from

(2.6) one obtains (cf. 1.3.17)
(2.25) Yy = -z-+x“z3s(r)v
T

and some bounds for Z must be established. Duplicating our esti-

mates leading to (2.9) we have

2

t o 2 2
(2.26) A + [ 2Re (X 235(5))|ZE| d& + ra(t)|z|® - ra(t)

|
t T

t, t
- 3@zl < [z 0niBizi? + 1zl P
T T

t
¢ [ Izl (Ir1B212)7 + 12,2
T

and under the same assumptions and procedures as before it fol-

lows that (cf. (2.9) - (2.12))

2 2 t o2
(2.27)  Aa(t)]Z]" + |Z,]" < xa() + 2¢ |z£| dg
T

t 2
; A[ p(£) || 2de

T
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(2.28)  |z,|?

2 . t 2
2+ 2a()]212 € aa(n)E(t,T) + J AP(E)E(t,E) (2] 2de
T

Then by a version of Lemmas 2.2 and 2.3 one obtains
(2.29)  1Z)% < E(t,)0(t,T)u(t,T,0)
Consequently we have proved

Lemma 2.7 Under the hypotheses of Corollary 2.4,
(1) |2]% < ¢y,

We set q = (¢w)”2

with V{(t,t) = 6-]q(T)Z(t,T,Z,A)6 so that
by Lebesque dominated convergence again V(t,t) € L(H) (and

114
V(t,T) € A can be shown but again this is not needed). Next we

observe from (2.6} again that

(2.30)  Z_ = Dxa(1) + z,b(x) + APzyr(1)]¥
a-
a £ 1/2 with [Y_| < ¢5 for a 2 1/2. The case a < 1/2 is essen-

N —

so that [Q(1)Z | < ¢,2'/% while from (2.25) |Y | < ¢ for

tially trivial and will not be discussed further. Thus using

Lebesque dominated convergence again we can state that for t > 0,

a—
o e c'(L(D(n 2),H)) while © » Z2(t,1) =

1/2

T+ Y(t,t) =8

176 ¢ C](LS(D(A

CH ),H)). Therefore if u is a solution of (2.1)
with data prescribed at v > 0 we operate on (2.1) with V(t,£)
(changing]t to £ in (2.1)) and integrate to obtain for u ¢

o’ 2y, ue ¢, and u e c2(H)
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t t
[0 ]
@31 vt - jT[VE—VA 55()1u, e

+ ftV[Aa(£)+Bb(£) + ABRr(g)]udE = ftVde

T T
Our hypotheses and lemmas insure that everything makes sense and
using (2.25) with (2.30) plus another integration by parts there
results from (2.31)
(2.32) u(t) = 2(t,m)ulr) + v(t,t)uy(r) + Jtv(t,a)f(a)da

T

As in Section 1.5 for example we are making use in (2.31) and
(2.32) of the hypocontinuity of separately continuous maps E x
F - G when F is barreled. Now as 17 >~ 0, by hypocontinuity again

we have (note that this is stated badly in Carroll-Wang [12])

Theorem 2.8 Assume the hypotheses of Theorem 2.6 with con-
)
tinuous u/qg - 0 and u /Q - 0 as T - 0. Then the solution of

(2.1) given by Theorem 2.6 is unique.

In the event that q(t) > 0 for 0 < t < T a somewhat stronger
uniqueness theorem for (2.1) can be proved (cf. Carroll-Wang
[12]). Assume u(o) = u (o) = f = 0, with u satisfying the con-
clusions of Theorem 2.6, and then we define the operator in
L(H) by

t
exp(-1"z4 f s(£)dg)o

T

(2.33) L(t,T) = 67!

Operating on (2.1) with L(t,£), where t has been changed to £ in
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(2,1) we obtain
] t
(2.38)  u'(t) = j L(t,£) [APRr(£)+ha()+Bb(£) Ju(£) e
0

Since ||Aul| and ||A8u|| are bounded in Theorem 2.6 we have by a

well known inequality

' ~ t
(2.35) lu (t)]] < ¢ J (atcg|r|+cg|b])de
0

2
~ ¢t t t
< ol ada)”z[(f ade) /2 vcq([ 1L ag)!/2
0 0 0

t

t 2
regl| A2 a0)'/2) < e[ a2

0

t .2 t 2

(recall that q > 0 means J lg—L dg < « and J 19%-d£ < ), Now
0 0

Z(t,t)u(t) -~ O automatically in (2.32) as T + 0 since qZ is

bounded and u -~ 0 while the term V(t,r)ut(r) can be written

, s ([ade)® »
(2.36)  y(t,t)u (1) = al(t)'/°y(t,1)—=2 y it
a(T)]/2 (JTadg)é

0

qa]/2 so q > 0 implies a(r)]/zv(t,r) £

where § < 1/2, But Q
LS(H,D(A]/Z)) by Corollary 2.4 and Theorem 2.5 while by (2.35)

1 T
u (r)/(f adg)(S + 0 as T > 0. Hence we have
0

Theorem 2.9 Let u be a solution of (2.1) satisfying the
conditions of Theorem 2.6 with q(t) > 0 for 0 < t < T <« and

t 8 1/2
([ a(&)dg)®/a(t)'/“ bounded (8§ < 1/2). Then u is unique.
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Remark 2.10 We emphasize here that a(*) is not required to
be monotone, in contrast to Protter [2] or Krasnov [1], since by
(2.11), P{t) 2 0 for all X merely implies al > —c1|r|2 (examples
of nonmonotone a are given in Carroll-Wang [12] and Wang [1; 2]).

The condition of Protter [2] (cf. also Berezin [1], Bers [1])},

1/2

phrased here in the form tr(t)/a{t) >0as t >0 (with a(-)

monotone), for solutions of a numerical version of (2.1) to be
well posed in a local uniform metric, has its analogue here in

the conditions on ¢(t). Thus for example if A ~ -az/axz, a(t) =

t" 2B R(t)u = r(thu, = t"u , and A%S(t) = s(x,t) with

1/2 ntl—

2

A ) B(t) ~ b(t) then it follows that tr{t)/a(t) t

0-Myr = (1/2n-m+1)

m T 2 T
0ifn>%- 1 whereas J |r|“/a dg = J E
t 2n-m+1

(T2n-m+1_t2n-m+1

t .
) so that ¢(t) = k exp (c]t /2n-m+1) > 0

when n > g-- %: The L2 con%ition of Krasnov [1] involves monotone
a(t) = 0(t™ and r(t) = 0(t2  ¥(t)) where Y(t) > 0 as t - O but
Krasnov is dealing with weak solutions. Now our existence and
uniqueness conditions are phrased in terms of u/q, ul/Q, and f/Q
where q2 = ¢y and 02 = ¢ya which permits a rather precise com-
parison between the behavior of f, u, and ul as t > 0. The ¢

term seems somewhat curious however since for example if

- T .
Ib| <k < = then [ Ib2/a dg < (K&/-me1) (171 ¢
t -m+1

t } for a(t) =

t" so that p(t) = 0 (exp k]t

poses growth conditions on b(t) in order that y(t) > 0. This

/-m+1) - 0 for m > 1 which im-

seems to indicate that the role of the y term should be investi-

gated further and some comments on this are made in Remark 2.12.
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Walker, in as yet unpublished work, investigates by spectral
methods (using Riesz operators Rk defined by a/axk = i(-A)]/sz)
the question of directional oscillations and well posedness (cf.

also Walker [1; 2; 3])

Remark 2.11 In Wang [2] it is pointed out that if a(e)
is monotone near t = 0 (locally monotone) then (2.35) can be

0t1/2a(t)1/2

)
replaced by |lu (t)|} < < for small t so that in
1

(2.36) one could write V(t,T)u.(T) = a]/z(r)y(t,T)—¥7éll— with
UI(T)/a]/z(T) +~ 0 as t >~ 0. This produces a somewﬁat gilonger
version of Theorem 2.9 when a(+) is locally monotone. Examples
are given in Wang [2] to show that A{t) = J a{g)d&/a(t) may not

0
even be bounded for nonmonotone a(t) = O(tm).

Remark 2.12 First we assume z, and b(t) are real so that
(2.9) becomes, after elimination of the A% term as before, and
t
adding a term c]AI a(E)|Y|2d£,
T

t,
12+ aa(t)[Y[2 S0 + x! a (£)]v] %
T

(2.37) |y,

t 2 2
+e, [ (Y12 + rae)iv| )
T

t
+ ¢ f A281r(e) %) ¥|%de - z,b(t)]¥|?
T

t.
+ 7, ! b (E)IledE

T

[} A
Now assume |b (t)/b(t)] < c3 on [0,T] and set ¢ = max(c],c3);
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then, if z]b(g) 2 0 one can write (for 286 <1 and A 2 1)

(2.38)  =(t) < ¢ J S(E)dE + 1 + xf P(e)|Y|2de
T T

(2.39) () = |YyI% + ra(0)[¥I? + z)b()|¥)?

t

(2.80)  P(£)

a'(£) + ¢|r(e) |2

Setting E(t,£) = exp c(t-£) we obtain from Gronwall's lemma again

(cf. (2.12))
A tA A . 2
(2.41) g(t) < E(t,T) + xf P(E)E(t,E)|Y| dE
T
Assuming 3 2 0 Lemma 2.2 applies to (2.41) (upon omitting the
term [¥,|° + z,b(t)]Y|% in E(t)) to yield

~ t g
(2.42)  na(e)[Y|? < E(e,o) exp(| e} )
'l.'ag
and as in Lemma 2.3 one obtains (cf. (2.17))

[} A
Lemma 2.13 Assume |b /b| < c; with ¢ = max(c],c3) while

E >0, az20, and z
2B-1
81

]b 2 0. Then for Cy = exp ET and E] =

max(1,c
c ~ gt 2

(2.43)  a(x)]¥|? s_;‘exp(c]f Irl” 4g)

T

Corollary 2.14 Defining ¢(t,T) and ¢(t) as in Corollary 2.4

the hypotheses of Lemma 2.13 imply

(2.88)  o(t)a(r)]v|? < cy/A
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Thus it is possible to eliminate the y term in Q and q (cf.
Theorems 2.5, 2.6, and 2.8, Remarks 2.10 and 2.11, and Lemma 2.7)
if one assumes z;b 2 0 with [bl/bl < Cy in addition to a 2
—c1|r‘|2 (cf. Remark 2.10). This means locally (i.e., near t = 1)
that if z; 2 0 then b 2 0 with either b 2 0 and 0 € b(t) <
b(t) exp c3(t-r) or b < 0 with b(t) 2 b(t) exp (-c3(t-r));
suitable oscillations in the sign of bl are of course allowed.

1 S0 then b < 0 with Ib| = -b so either
b’ 2 0 with 02 b(t) 2 b(r) exp (-c5(t-1)) or b < O with b(t) <

On the other hand if z

b(t) exp c3(t-r). We refer to Carroll [34] for further remarks.

Remark 2.15 In Carroll [7; 9] some weak degenerate problems
are solved using Lions type energy methods. The notation is
chosen here to conform to these articles rather than to earlier
parts of this section and most technical details will be omitted.
Thus let ¢ > 0 be a numerical function in Co(o,T], T < 3 with y
increasing as t = 0 (a priori ¥ need not approach infinity but
it usually will). Let q > O belong to C'(0,T] with q(t) > 0 as
t > 0. Let VcH be Hilbert spaces (H separable for simplicity),
V dense in H with a finer topology, and a(t,-,+) a family of
continuous sesquilinear forms on V x V with a(t,v,u) = a(t,u,v)

3. Assume t + a(t,u,v) € C1[0,T] for (u,v)

and a(t,u,u) > oflul
fixed and let t - B(t) ¢ C1(LS(H)) on [0,T] be a family of
Hermitian operators. Let w > 0 be a numerical function to be

determined such that w(t) » « as t - 0. Let F¢ be the Hilbert
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space of functions u on [0,s], s < T to be determined, such that
[}
u(o) = 0, Yu = L2(H), and wu € L2(V) with norm ”ullﬁs =
s '
f (kuHS + |yu lﬁ)dt; all derivatives are taken in D'(H) (cf.
0

Carroll [14] or Schwartz [5]). Let Hs be the space of functions

h satisfying h(s) = 0, h/ve L2(H), h /v € L2(H), and gh/w €

L2(v). We define

S ' ] ]
f {qalt,u,h) + (B(t)u',h) - (u'.n')}dts

(2.45) Es(u,h)
0

L(h) = fs(f,h)dt
0

where f is given with yf ¢ L2(H) {(here (A, ) {resp. (( , ))) de-

notes the scalar product in H {resp. V)). The first problem is

to find u e F_ such that Eg(u,h) = L(h) for all h e H_. Then

since q > 0 on say [s/2,T] one can apply standard techniques for

nondegenerate problems (cf. Lions [5]) to proceed stepwise and

find u € F; satisfying ET(u,h) = LT(h) for all h e H After a

T
series of technical lemmas such a u ¢ FT can be found using the
Lions projection theorem (see Carroll [9] for details). Another
series of technical Temmas will yield uniqueness and one can

state

Theorem 2.16 Assume the conditions above with q(t) 2
t o2, 1 . Tim, "2, ([t .2
([ den?(en' (0 < ¢ < 1) white 0 = 1B (a"vE/a) | deniPe)
) 0 ~
exists. Then there exists a unique solution u ¢ FT of ET(u,h) =

LT(h) for all h ¢ Hy» based on a function w ¢ Lz(w e €%o,T]).
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We remark that w measures the rate of how rapidly u(t) - 0
as t - 0 but its precise description is somewhat complicated
(cf. below). Another theorem based on energy methods can be
obtained as follows, We define KS to be the space of functions
k(t) = jt¢hd€ for h e HS with suitable ¢ € C][o,s] where ¢ > 0
on (o,s]0while $(t) - 0as t - 0. For suitable choice of the

numerical function § > 0 with &(t) » » as t -~ 0 we put a prehil-

S '
bert structure on K_ with norm ||kHi = I (||6kH$ + |k /¢w|ﬁ)dt.
s 0

(We note that if v
2 ] Z-E]
woo= v Jy (0 < gy < 1).) For suitable ¢, §as above (e.g.,

~ ¢t
6= c [ de/v2(z) and 62
0

¢#/q then our w above can be taken to be

~ N
= ~c(1/v) )le CZFS and one can state

Theorem 2.17 Under the hypotheses of Theorem 2.16 there
exists a unique solution u e Ky satisfying ET(u,h) = LT(h) for

T o2..\1/2
all h ¢ Hy such that |Jul]. < c(f lwf|Hdt)
Kt o}

3.3 Strongly reqular equations. We consider first the

nonlinear equation
(3.1)  M(t)u (t) = f(t,u(t))

in a separable and reflexive Banach space V. For each t ¢

la

L{V,V ). Denote by Bb(uo) the closed ball in V centered at us

[0,a] we are given a continuous linear operator M(t) ¢

with radius b > 0, and suppose we are given a function f : Ia x
)
Bb(uo) -V, A solution of (3.1) is a function u : I, > V which

is (strongly) absolutely continuous, differentiable a.e. on Ia’
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has its range in Bb(uo), and satisfies (3.1) a.e. on I,. Suf-
ficient conditions for the Cauchy Problem for (3.1) to be well-

posed are given in the following.

Theorem 3.1 Assume there is a pair of measurable functions

K(+) : I, > (0,@) and Q(+) : I_ > [1,%) with Q(+)/k(+) € L'(I_,R)

a
such that
(3.2)  M(t)xe 2 k()]xIIZ ae. tel,xelV,
(3.3) [£(tsx) =F(t )l o S Q) [Ix=ylly> ace. te I,
v _

X,y € Bb(uo).

Then any two solutions u](-), u2(-) of (3.1) will satisfy the

estimate
(3.4) llug (©)-uy (e)lly < lluy (0)-uy (o)l
t
. exp{[ (Q/k)ds} , te Ia'
0

In particular, the Cauchy problem of (3.1) with u(o) = us has

at most one solution.

Proof: Since k(t) > 0, the coercive estimate (3.2) implies

', .. . -1 -]

M(t) : V>V 1is a bijection and | M(t) ||L(V',V) < k(t) .
] ] -
Thus, we obtain from (3.1)||u](t)-u2(t)]|V < k(t) 1.
-1

I f(t,u](t))-f(t,uz(t))||V, < k(t) Q(t)||u](t)-u2(t)||V , a.e.
t e Ia.

Since u](-) - u2(-) is absolutely continuous with a
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summable derivative, we have ||u (t)- u2(t)||V <
Hu](o)-uz(o)llV + f I Uy (s) u2(s)||vds Therefore the bounded
function Z(t) El[u (t) u2(tﬂlv satisfies the inequality Z(t) ¢
Z{o) + th(s)']Q(s)Z(s)ds, te Ia' The estimate (3.4) follows
immediatg1y by the Gronwall inequality. QED
Theorem 3.2 In addition to the hypotheses of Theorem 3.1,
assume that t > <M(t)x,y> is measurable for each pair x, y € V
and that t -~ <f(t,x),y> is measurable for x e Bb(u ) and y ¢ V.
Finally, let b >0 and ¢ > 0 satisfy [f(t,u )H £ Q(t)b s a.e.
tel, and Jok(t) Q(t)dt < b/(b0+b). Then there exists a

(unique) solution u(+) of (3.1) on IC which satisfies u{o) = U+

Proof: We first show that for every function u : IC -
Bb(uo) which is strongly (= weakly) measurable in V, the function
t > M(t)_] o f(t,u(t)) : IC + V is measurable. For each ¢ ¢ Vl
we have <¢,M(t) TF(t,u(t))> = <F(t,u(t)),(M(t)71) ¢>. The indi-
cated adjoint is measurable when M(t)-] is, and so it suffices
to show the measurability of each factor. To show f{t,u(t))
is measurable we consider first the case where u(+) is countably-
valued; thus uj(t) = Xy for t ¢ Gj’ where {Gj :j21})isa
measurable partition of Ic' Letting ¢j denote the characteristic
function of Gj’ we obtain f(t,u(t)) = Z{f(t,xj)¢j(t) iz
on IC, and this is clearly measurable. The case of general
u(+) follows from the strong continuity of x » f(t,x), since any

rneasurable u is the strong limit of countably-valued measurable
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functions. To show the second factor is measurable, let m 2 1
and consider the restriction of M : I.~ L(V,V') to the set Jm of
those t eI with k(t) 2 1/m. Since M is measurable on this set,
there is a sequence of countably-valued functions Mk :d >

m

lim Mk(t) = M(t) strongly for t ¢ Jm.

ko0

M(Jm) C L(V,VI) such that
But Mk(t) e M(J ) implies ||Mk(t)']|| <m, so for ¢ € V' we have
1 (&) o-M(e) Tl = [ ()7 (M(EIxM ()M,
mHM(t)x-Mk(t)xHV. + 0 as k ~ =». Hence, the restriction of M1 to
Jm is measurable for every m 2 1, and this gives the desired re-
sult.

The proof of Theorem 3.2 now follows standard arguments.
Let X be the set of u e C(IC,V) with range in Bb(uo). For u e X
the function t - M(t)']f(t,u(t)) is measurable I.~ V (from above)
and it satisfies the estimate ||M(t)'] o f(t,u(t))lly < k(t)_]-
Q(t) -t(b0+b) on I.. Hence, we can define F : X »~ X by [Ful(t) =

u, * f M(s)_]f(s,u(s))ds, te Ic, and it satisfies the estimate
o )

t
(3.5 NFI©-IVI < [ ki) Tasuls) (sl ds,
o]

u,v e X, te Ic.

But any map F of a closed and bounded subset X of Lw(IC,V) into
itself which satisfies (3.5) is known to have a unique fixed-
point, u (cf. Carroll [14]). This fixed-point is clearly the

desired solution. QED

A solution exists on the entire interval Ia in certain
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situations. Two such situations are given below.

Theorem 3.3 Assume all the hypotheses of Theorem 3.1 hold
with Bb(uo) = V. Also, suppose t > <M(t)x,y> and t - <f(t,x),y>
are rieasurable Ia - R for every pair x,y € V, and let u, € v,
b0 > 0 be given and satisfy||f(t,u0)ﬂvn < Q(t)b0 a.e.on L.

Then there exists a unique solution of (3.1) on Ia with u(o) = ug-

rt -
Proof: Set g(t) = b0 exp{l k(s) ]Q(s)ds} and let X be those

0
functions u € C{I_,V) for which |m(t)-uJ|V < g(t) - b0 for t ¢

a,
I, If ueX, the estimate HM(S)—]f(s,u(s))
k(s)—]Q(s)(Hu(s)-u(JlV + bo) shows that Fu defined as above belongs
to C(Ia,V) and furthermore satisfies|l[Fu](t)-u0HV <

t
J k(s)—]Q(s)g(s)ds = g(t)—bo, so Fu e X. Thus F has a unique
)
fixed-point u € X which is the solution of the Cauchy problem

for (3.1). QED

Remark 3.4 The preceding results permit the leading opera-

tors to degenerate in a very weak sense at any t0 € Ia' That is,

1

€ L](Ia,R) . On the other

hand we have placed no upper bounds on the family {M(t) : t e Ia};

(3.2) must be maintained with k(-)~

they may be singular (cf. Introduction) on a suitable set of
points in Ia'

The Lipschitz condition (3.3) together with the estimate on
f(t,uo) in Theorem 3.3 impose a growth rate on f(t,u) which is
linear in u. Such hypotheses are frequently appropriate, espec-

ially in linear problems such as Example 1.1 which occur
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frequently in practice. However they are not appropriate for
nonlinear wave propagation models, and these applications call

for solutions global in time.
Example 3.5 The third order nonlinear equation

(3.6) g = Uy +ou, *ouu = 0

provides a model for the propagation of long waves of small ampli-
tude. The interest here is in solutions of (3.6) for all t 2 O.
Similarly, models with other forms of nonlinearity in addition

to dispersion and dissipation occur in the form

(3.7) u, - u

t xxt = e

+a sgn(u) « Ju]d+ bupuX X

We refer to Benjamin [1, 2], Bona [2,3, 4, 5], and Showalter [18,
19, 21] for discussion of such models and related systems.
Initial boundary value problems for (3.6) and (3.7) can be

resolved in the following abstract form.

Theorem 3.6 Let a > 0 and assume given for each t ¢ Ia =
]
[0,a] an operator M(t) e L(V,V ), where V is a separable reflexive

Banach space. Assume there is a k > 0 such that
2
(3.8) <M(t)x,x> > k|| x|l xeV, telg,

each M(t) is symmetric, and for each pair x,y € V the function

t - <M(t)x,y> is absolutely continuous with

(3.9) g€-<M(t)x,x> < m(t)Hx||2, a.e. tel, xelV,
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]
for some m(+) € L1(Ia,R ). Let f: I_ xV =~V be given such that

a
for each pair x,y € V the function t -~ <f(t,x),y> is measurable,
and for each bounded set B in V there is a Q(+) ¢ L1(Ia,R } such
that [[f(t,x)-f(t,y)]l » € QL) [[x-Aly, and [[F(t,x) ][ < Qt),
for x,y € B and a.e. t ¢ Ia' Finally, assume there exist K(+)
and L(+) ¢ L1(Ia) with L(t) 2 0 a.e. such that <f(t,x),x> <
K(t)Hx|F + L(t)]|x]l>» x € V. Then for each u, € V there exists a

unique solution u : I, >V of (3.1) with u(o) = Uye

Proof: Uniqueness and local existence follow immediately

from Theorem 3.1 and Theorem 3.2, respectively. The existence
of a (global) solution on Ia can be obtained by standard contin-
uation arguments if we can establish an a priori bound on a solu-
tion. But in the present situation the absolutely continuous
function o(t) = <M(t)u(t),u(t)> satisfies (cf. Lemma 5.1) 0'(t) =
2<£(t,u(£)),u(t)> + <M (£)u(t),u(t)> < [(2K(t)4m(t))/k] o(t) +
[2L(t)/k1/2] 0(t)1/2; hence we obtain

t 172, (t 2
(3.10)  o(t) < exp{zj H(1)dd - [o(0)/2 + | L(x)d]

0 0
with H(t) = (K'(t) + (1/2)m(t))/k. The estimates (3.10) and
(3.8) provide the desired bound on all solutions of (3.1) on Ia

with given initial data Uy QED

Remark 3.7 Equations similar in form to (3.6) have been
used to "regularize”" higher order equations as a first step in

solving them (cf. Bona [4], Showalter [17]). The advantage over
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standard (e.g., parabolic) regularizations is that the order of
the problem is not increased by the regularization. An important
case of this is the "Yosida approximation" AE of a maximal ac-
cretive (linear) A in Banach space given by AE = (I+sA)_]A, £ >
0. Thereby, one approximates the equation u'(t) + Au(t) = 0 by
one with A replaced by the bobunded AE, or, equivalently, solves
the equation (I+eA)u_(t) + Au_(t) = 0 and then looks for

u(t) = li3+ uE(t) in some sense. This technique was used for a
nonlinear time-dependent equation by Kato [2] and to study the
nonwell-posed backward Cauchy problem in Showalter [16, 20];
also see Brezis [3].

The preceding results immediately yield corresponding results

for second order evolution equations of the form

1 1
(3.11) M(thu (t) = F(t,u(t),u (t))
Theorem 3.8 Let the family of operators {M(t)} and the
functions k() and Q(+) be given as in Theorem 3.2. Let Ugsly €
V and the function F : I x Bb(uo) x Bb(u]) + V be given with

t - <F(t,x],x2),y> measurable for X] € Bb(u ) Xy € Bb(u]), ye

0
2 2
V. Suppose we have[|F(t,x)-F(t,yN|V. < Q) ix;-y4lly +[1x,=yl1y 1

FF(taugaupdil v < Q(t), and

<
(3.12) ”M(t)HL(V,V') 5 0Q(t)

for x = (x],xz) andy = (y1’y2) in Bb(uo) x Bb(u]) and a.e. t ¢

Ia. Then there exists ¢ > 0 and a unique u : IC > V which is
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continuously differentiable with u(t) ¢ Bb(uo), u'(t) £ Bb(u1),
uI is (strongly) absolutely continuous and differentiable a.e.,
(3.11) holds a.e. on IC and u(o) = Uy > u'(o) = Uy,

The preceding follows from Theorem 3.2 applied to the equa-
tion M(t)U (t) = F(t,U(t)) in V= V x V with M(t)x =
[M(t)x1,M(t)x2] and f(t,x) = [M(t)xz,F(t,x1,x2)]. The estimate
(3.12) 1imits the growth rate of the leading operator (cf. Re-
mark 3.4). This hypothesis can be deleted when V is a Hilbert
space; we need only replace M(t) by the Riesz map V VI in the
first factor of each of M(t) and f.

Initial boundary value problems for partial differential
equations arise in the form (3.11) in various applications. Two

classical cases are given below; see Lighthill [1] or Whitham

[1] for additional examples of this type.
Example 3.9 The equation of S. Sobolev [1]

(3.13) BgUpy + U, = 0

describes the fluid motion in a rotating vessel. It is on ac-

count of this equation that the term "Sobolev equation" is used
in the Russian literature to refer to any equation with spatial
derivatives on the highest order time derivative (cf., however,

Example 1.2).

Example 3.10 The equation

(3.14) u - Aqu = f(x,t)

tt ~ 33U
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was introduced by A.E.H. Love [1] to describe transverse vibra-
tions in a beam. The second term in (3.14) represents radial
inertia in the model.

Finally, we describe how certain doubly-nonlinear evolution
equations

'

(3.15) M(t,u (t)) = f(t,u(t)), 0st<T,
in Hilbert space can be solved directly by standard results on
monotone nonlinear operators. The technique applies as well to
the corresponding variational inequality

(3.16)  <M(t,u (t)) - F(t,u(t)), v - u (t)> 20, v e K(t),
ul(t) e K(t), a.e. te [0,T]
with a prescribed family of closed convex subsets K(t) € V, so we
consider this more general situation.
Let V be real Hilbert space and for each a 2 0 we let Va
be the Hilbert space of square summable functions from [0,T] into
. o 2 -2at ,.\1/2

V with the norm ||v|| = (J lv(t }| dt)''“. For each t ¢
[0,T] we are given a pair gf (possibly nonlinear) functions f(t,-),
M(t,*) from V into VI. The following elementary result is funda-

mental for this technique.

Lemma 3.11 Assume [Mv](t) = M(t,v(t)) defines a hemicontin-

]
uous M : Va - Va and that there is a k > 0 with
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(3.17) <M(t,x)-M(t,y),x-y> 2 k"x-yns, a.e. t € [0,T], x,y € V.
t

Let u eV and assume [f(v)](t) = f(t,u0+J v(s)ds) defines f :
| 0
v, Va and that there is a Q > 0 with
(3.18) i f(t,x)-f(t ,y)ﬂ Q||x-y||v, a.e. te [0,T], x,y e V.

]
Then the operator T = M - f : Va > Va is hemicontinuous and

strongly monotone for "a" sufficiently large.
Proof: For u,v ¢ Va we have

t
u) - f(t,u0+JV)H2 dt

T t
2 -2at
I1£(u)-F(v) || %0 = Joe I f(t,u0+J 0

0

T ,t
f J e (506728 |1y (5)-v(s) |2 as) %t

Tt t

< Q -2a(t- s)d -2as —v(s) |12 ds)dt
jo joe "Lf" lu(s)-v(s) (12 ds

s @ TL(1-e"2T)/2a] |Ju-v]|2

A

(Q°1/2a) || u-v]|

The condition of uniform strong monotonicity on M(t,) gives

<Mu-Mv,u-v> 2 c||u-vH§ » U,v e V,, hence we obtain <Tu-Tv,u-v> 2
[c-Q(T/2a) /2
a > TQ%/2¢%. QED

]Hu-v”a, u,v e V,. The desired result holds for
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Theorem 3.12 Let the hypotheses of Lemma 3.11 hold and as-
sume in addition that we are given a family of nonempty closed
convex subsets K(t) of V for which the corresponding projections
P(t) : V> K(t) are a measurable family in L(V) (cf. Carroll
[14]). Then there exists a unique absolutely continuous u ¢ V0 =
%

1
L°(0,T;V) with u ¢ Voo u(o) = uy» and satisfying (3.16).

Proof: With a chosen as in Lemma 3.11, the operator T :
Va > V; is hemicontinuous and strongly monotone. Define K =
{vev, :v(t) e K(t), ace. te [0,T]}. Then K is closed, convex
and nonempty in Va’ so it follows from érowder [5] (cf. Carroll

[14]) that there exists a unique w £ K such that
(3.19) <Tw,v-w> 2 0, v e K.

Finally, the measurable family of projections {P(t)} is used to
show that (3.19) is equivalent to (3.16) with u(t) = uy *
ftw(s)ds, 0stsT, QED
0

The preceding result is far from being best possible, but
serves to illustrate the applicability of the theory of monotone

nonlinear operators to the situation. A similar result holds for

the doubly-nonlinear equation
(3.20) %EM(t,u(t)) = £(t,u(t))

and more generally, the inequality
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rt
(3.21) <M(t,u(t)) - u, - J f(s,u(s))ds, v-u(t)> 2 0, v e K(t),
0

u(t) e K(t), a.e. t e [0,T],

under essentially the same hypotheses as Theorem 3.12. It would
be desirable to have such results on either (3.16) or (3.21) with
M(t,-) permitted to be degenerate, or at least not uniformly
bounded (cf. Remark 3.4). We shall return to similar problems

in Banach space with a single linear operator (possibly degener-
ate) in Section 3.6 below. Also, a variation on Theorem 3.8
(using Theorem 3.12) gives existence results for second order

evolution equations and inequalities.

Remark 3.13 Theorems 3.1, 3.2 and 3.3 are from Showalter
[3] and Theorem 3.4 is from Showalter [18, 19]. Theorem 3.8 was
unpublished and Theorem 3.12 is due to Kluge and Bruckner [1].
For additional material on specific partial differential equations
and on general evolution equations of the type considered in this
section we cite the above references and Amos [1], Bardos-Brezis-
Brezis [2], Bhatnager [1], Bochner-von Nuemann [1], Bona [1],
Bri1ll [1], Brown [1], Calvert [1], Coleman-Duffin-Mizel [2],
Colton [1, 2, 3], Davis [1, 2], Derguzov [1], Dunninger-Levine
(1], Eskin [1], Ewing [1, 2, 3], W. H. Ford [1, 2], Fox [3],
Gajewski-Zacharius [1, 2, 3], Galpern [1, 2, 3, 4, 5], Grabmuller
[1]1, Horgan-Wheeler [1], I1in [1], Kostyulenko-Eskin [1], Lagnese
f,2,3,4,5, 6,7, 8, 9], Lebedev [1], Levine [3, 5, 6, 7, 8,
9], Lezhnev [1], Lions [5, 9, 10], Maslennikova [1, 2, 3, 4, 5,
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6], Medeiros-Menzala [1], Mikhlin [2], Miranda [1], Neves [1],
Prokopenko [1], Rao [1, 2, 4, 5], Rundell [1, 2, 3], Selezneva
[1], Showalter [1, 7, 8, 9, 11, 12, 13, 14], Sigillito [1, 2, 3],
Stecher-Rundell [1], Ting [1, 3], Ton [1], Wahlbin [1], Zalenyak
[1, 2, 3, 4]. One could also include certain references from
Remarks 4.10, 5.18, 6.24 and 7.10 to which we refer for addition-

al material.

3.4 Weakly regular equations We restrict our attention

to a class of linear evolution equations of the form
]
(4.1) Mu (t) + Lu(t) = f(t), t >0,

and obtain well-posedness results when M is not (necessarily)
as strong as L. Although the semigroup techniques employed here
will be used for nonlinear degenerate problems in Section 3.6
below, we introduce them in the simpler situation of (4.1) where
we shall be able to distinguish the analytic situation from the
strongly-continuous case.

Let Vm be a complex Hilbert space with scalar-product (-,-)m
and define the isomorphism (of Riesz) from v, onto its antidual
V; of conjugate-linear continuous functionals by <Mx,y> = (x,y)m,
XsY € Vm. Suppose D is a subspace of Vm and the linear map
L:D~ V; is given., If u € Vm and f ¢ C((o,m),V;) are given, we
consider the problem of finding a u(+) € C([o,»}, Vm) ()C]((o,m),
Vm) which satisfies (4.1) and u(o) = Uy

To obtain an elementary uniqueness result, let u(-) be a
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solution of (4.1) with f B 0 and note that Dt(u(t),u(t))m =
-2Re<Lu(t),u(t)>, t > 0. Hence, if L is monotone then ||u(t)||m =
(u(t), u(t))r]n/2 is nonincreasing and a uniqueness result is ob-
tained. Recall that L monotone means Re<Lx,x> 2 0, x ¢ D. This
computation suggests that Vm is an appropriate space in which to
seek well-posedness results. The equation in Vm

' -1 -1
(4.2) u (t) + M oLu(t) =M f(t), t>0

is equivalent to (4.1) and suggests consideration of the operator
-1
A =M oL with domain D(A) = D. We see from

(4.3) (Ax,y)m = <Lx,y> , xeD,yeV

that L is monotone if and only if A is accretive in the Hilbert
space Vm. In this case, -A generates a contraction semigroup
on Vm if I + A is surjective; then the Cauchy problem is well-
posed for (4.2). These observations prove the following (cf.

Carroll [14], Hille [2], or Kato [1]).

Theorem 4.1 Let M : Vm > V; be the Riesz map of the complex
Hilbert space Vm, L:D~» V; be given monotone and linear with
domain in Vm, and assume M + L : D » V; is surjective. Then for
each f ¢ C([O,m),V;) and u, € D there is a unique solution u(-)

of (4.1) with u(o) = Ug

The Cauchy problem for (4.1) is solved above by a strongly
continuous semigroup of contractions. This semigroup is analytic

when the operator A is sectorial (Kato [1]) and we describe this
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situation in the following.

Theorem 4.2 Suppose M is the Riesz map of the Hilbert space

Vm, V is a Hilbert space dense and continuous in Vm, and L : V>
1
V is continuous, linear and coercive: Re<Lx,x> 2 c||x”§, xeV,

]
for some ¢ > 0. Then for every HOlder continuous f: [0,o) - Vo

and ug € V, there is aunique, solution u(+) of (4.1) with u(o) =

UO.

Each of the two preceding results implies well-posedness of
the Cauchy problem for a linear second-order evolution equation

(4.4)  Cu (t) + Bu (t) + Au(t) = f(t), t> 0.

The idea is to write (4.4) as a first-order system in the form

e £ L0 L

Theorem 4.3 Let Va and Vc be complex Hilbert spaces with
: 1
Va dense and continuous in Vc’ and denote by A : Va > Va and C :

]

Vc > Vc the respective Riesz maps. Let B be Tinear and monotone
1 1

from D(B) c Vv, into Va and assume A + B + C : D(B) » v, is sur-

jective. Then for each f ¢ C1([o,w), Vc) and pair ug e V,, uj €

0

1
D(B) with Aug + Buj e V, there is a unique solution u(+) €

1
C([0,2),¥,) N €1 ((0,2),¥,) N €' ([0,2),V) N €2((0,2),V) of (4.4)

with u(o0)) = U, and ul(o) = uj.

Proof: Define Vm = Va X Vc; then we have Vm = Va X Vc and
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the Riesz map M : Vm > Vm is given by M[x],xz] = [Ax],sz],
[x],xz] € Vm. Let D = {[x],xz] € Va x D(B) : Axq + Bx, € V;},

' ' :
recalling Vc C:Va, and define L : D ~ Vm by L([x],xz]) =
[-sz,Ax] + Bx2], [x],xz] e D. With M and L so defined, the
system (4.5) is clearly equivalent to Mwl(t) + Lw(t) = [0,f(t)],
t > 0. In order to apply Theorem 4.1 we need only to verify that
L is monotone and M + L is surjective. But an easy computation
shows Re<L([x],x2]), [x],x2]> = Re<Bx2,x2> so B monotone implies
;, then we can
solve (A+B+C)x2 =f,-fx ¢ D(B), then set X = Xp ¥ A_]f]

]
L is monotone. Finally, if f] € Va and f2 eV

to obtain [x],xz] e D with (M+L)[x],x2] = [f],fz]. QED

Theorem 4.4 Let the Hilbert spaces and operators A: Va >
1 ] ]
Va and C : Vc > Vc be given as in Theorem 4.3. Let B : Va > Va
]
be continuous and linear with B + AC : Va > Va coercive for some
[}
X > 0, Then for every Holder continuous f : [0,») » Vc and pair
Uy € Vyo uy € Vc’ there is a unique solution u(-) € C([O,w),Va)/]
¢ ((0,2),V,) N €' ([0,0),¥) N C2((0,2),V,) of (4.4) with u(o) =
[}

Us and u (o) = uy.

Proof: Following the proof of Theorem 4.3, we find that we
can apply Theorem 4.2 with V = Va x Vg if we verify that AM + L
is V-elliptic for some X > 0, But AB + C being Va-e11iptic is

precisely what is needed. QED

Briefly we indicate some examples of partial differential

equations for which corresponding initial-boundary value problems
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are solved by the preceding results. The examples are far from
best possible in any sense and are displayed here only to suggest

the types of equations to which the results apply.

Example 4.5 Let m(-) ¢ L2(0,1) with m(x) > 0 for a.e. x ¢
(0,1) and define Vm to be]the completion of C:(O,l) with the
scalar-product (u,v)m = J m(x}u(x)v(xJdx. Let V = Hl(O,]) and
set <Lu,v> = f u'(x)v (x)dx, u,v € V. Then Theorem 4.2 shows

0

that the initial-boundary value problem

m(x)Dtu(x,t) - Diu(x,t) = f(x,t), t>0,
(4.6) u{0,t) = u(1,t) =0,
u(x,0) = u_(x), 0<x<1,

is well-posed for appropriate f(-,+) and measurable Uy with

m]/zu0 £ L2(0,1). The initial condition above means

. (1

llg+ J m(x)lu(x,t)-uo(x)lzdx = 0 and the equation holds at each
0 1

t > 0 in the space Vm of measurable functions v on (0,1) with

- 1
m ]/Zv £ L2(0,1). Note that VmC L2(0,1) CVrn and the equation

may be elliptic on a null set (where m(x) = 0).

Example 4.6 Let Vm = Hl(o,]) with the scalar-product
r

(u,v)m = Jo{u(x)VT?T + mul(x) ;T(;Y}dx where m > 0. (More general
coefficients could be added as above.) Set Lu = Diu on D =

{ue H2(0,1)(1 Hl(o,l) T coe uI(O) = u.(l)} where ¢ is given with
|c] £ 1. Then 2 Re<Lu,u> = |u'(0)|2 - |u.(1)|2 2 0,ue D, so

L is monotone; we can show M + L is surjective, so Theorem 4,1

shows the problem

183



SINGULAR AND DEGENERATE CAUCHY PROBLEMS

(Dt-mDiDt)u(x,t) + Diu(x,t) = f(x,t), O0<x<T,
(4.7) U(O,t) = U(] ,t) =0, c- Ux(o,t) = uX(1 ’t)’ t2 0,

u(x,0) = u (x)

is well-posed for appropriate f(-,*) and Uge This equation is a

linear regularized Korteweg-deVries equation (cf. Bona [4]).

Example 4,7 Take Vm as above and let V = Hi(O,]) with L =
1 1 —-
Di : V>V defined by <Lu,v> = J Diu(x)Div(x)dx, u,v e V.
0
Then Theorem 4.2 gives existence-uniqueness results for the meta-

parabolic (Brown [1]) problem

(Dt - mDiDt)u(x,t) + Diu(x,t) = f(x,t), 0<x<1,
(4.8) u(0,t) = u(l1,t) = ux(O,t) = ux(1,t) =0, t >0,

u(x,0) = u (x),

when u, € Hl(O,]) and t » £(~,t) : [0,%) > H'1(0,1) is HElder
continuous.

1 —
=
Example 4.8 Let V_ = H;(O,]) with <Au,v> = | u'vidx, V_ =
1 0

L2(0,1) with <Cu,v> = J uvdx; positive coefficients could be
added as in Example 4.5. 0Let re¢, be R and define B: Va -> Vc
by Bu = ru + bu', ueV,. Since Re<Bu,u> = Re(r) - ||uH€ , B is
monotone whenever Re(r) > 0., The operator A +B + C : Vac+ V; is
continuous, linear and coercive, hence surjective, so Theorem 4,3

shows the problem
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Diu(x,t)+rDtu(x,t)+beDtu(x,t)-Diu(x,t) = f(x,t),
(4.9) u(o,t) = u(1,t) = 0, t> 0,
u(x,0) = uo(x), Dtu(x,o) = u](x), 0<x<1,

is well posed with u_ e HlnHZ(OJ), U e H;(OJ) and t -

1
fe,t) ¢ C]([O,w),L2(0,1)). This is a classical problem for the
damped wave equation. If instead of the above choice for B we
set B = €A, ¢ > 0, then from Theorem 4.4 follows well-posedness

for the "parabolic" problem

D%u(x,t)—eDiDtu(x,t)-Diu(x,t) - f(x,t), 0<x<1,
(4.10) u(0,t) = u(1,t) = 0, t >0,
u(x,0) = uO(X), D u(x,0) = u,(x),

of classical viscoelasticity (cf. Albertoni-Cercignani [1]). Here
the data is chosen with u, € Hl(O,]), uy e L2(0,1), and t »

f(+,t) : [0,o) » L2(0,1) Holder continuous.

We return to consider the parabolic situation of Theorem 4.2
and describe abstract regularity results on the solution. In
addition to the hypotheses of Theorem 4.2, assume given a Hilbert
space H which is identified with its dual and in which Vm is dense
and continuously embedded. Thus we have the inclusions VCZVm<:
H = ch: V;ICZV'. Let M] be the (unbounded) operator on H ob-
tained as the restriction of M : Vm > V; to the domain D(M]) =

[}
{ue Vm : Mu e H}. Similarly, the restriction of L : V>V to

the domain D(L') = {ue V : Lu e H} will be denoted by L'. Each
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of D(M]) and D(L]) is a Hilbert space with the induced graph-norm
and they are dense and continuous in Vm and V, respectively. MWe
shall describe a sufficient condition for the solution u{:) of
(4.1) with £(+) = 0 to belong to C([0,=),V ) 1 C7((0,=),D(L")).
The arguments depend on the theory of interpolation spaces and
fractional powers of operators (cf. Carroll [14] for references).
Specifically, the operator L] is regularly accretive and corres-
ponding fractional powers Le, 0 26 <1, can be defined. Their
corresponding domains are related to interpolation spaces between
D(L]) and H by the identities D(L]-e) = [D(L),H;8], 0 28 <1,

and corresponding norms are equivalent,

Theorem 4.9 In addition to the hypotheses of Theorem 4.2,
we assume D(L]'e)c: D(M]) for some 6, 0 < 6 £ 1, Then for each
u, € Vp, the solution u(s) of (4.1) with f(+) = 0 belongs to
C7((0,%),0(L")).

Remark 4.10 Theorem 4.1 is new in the form given. The
closely related Theorem 4.2 is from Showalter [6]; cf. Showalter
[7, 11] for an earlier special case. Theorem 4.3 is the linear
case of a result in Showalter [5] and Theorem 4.4 is new,
Theorem 4.9 is presented in Showalter [6, pt. II] with a large
class of applications to initial-boundary value problems., The
additional hypothesis in Theorem 4.9 makes L strictly stronger
than M; the result is false in general when 6 = 0. For related
work we refer to Coirier [1], Krein [1], Mikhlin [2], Phillips
[1] and Showalter [17].
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3.5 Linear degenerate equations. We shall consider appro-

priate Cauchy problems for the equation
(5.1) ad;(M(t)u(t)) + L(t)u(t) = f(t)

whose coefficients {M(t)} and {L(t)} are bounded and measurable
families of linear operators between Hilbert spaces. We show
(essentially) that the problem is well-posed when the {M(t)} are
nonnegative, {L(t)+xM(t)} are coercive for some A > 0, and the
operators depend smoothly on t. Some elementary applications

to initial-boundary value problems are presented in order to indi-
cate the large class of problems to which the results can be
applied (cf. Examples 1,1, 1.4 and 1.6). Consideration of the
case of (5.1) on a product space leads to a parabolic system
which contains the second order equation (cf. Example 1.2)

2
(5.2) g‘?(c(t)u(t)) + SHB(t)u(t)) + A(tu(t) = f(t).

Certain higher order equations and systems can be handled similar-
1y.
In order to describe the abstract Cauchy problem, let V be

a separable complex Hilbert space with norm ||v]||; V' is the anti-
dual, and the antiduality is denoted by <f,v>., W is a complex
Hilbert space containing V and the injection is assumed continuous
with norm £ 1., L(V,W) denotes the space of continuous linear
operators from V into W and T is the unit interval [0,1]. Assume

that for each t ¢ T we are given a continuous sesquilinear form
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{t;*,°) on V and that for each pair x,y € V the map t -+ 2(t;x,y)
is bounded and measurable. By uniform boundedness there is a

number K, > 0 such that [2(tsx,y)| S KZHx

y|| for all x,y ¢ V
and t € T. Standard measurability arguments then show that for
any pair u,v LZ(LV) the function t -» 2(t;u(t),v(t)) is inte-
grable (cf. Carroll [14], p. 168). Similarly, we assume given
for each t € T a continuous sesquilinear form m(t;s,+) on W such
that for each pair x,y € W the map t - m(t;x,y) is bounded and
measurable. Let {V(t) : t € T} be a family of closed subspaces
of V and denote by L2(T,V(t)) the Hilbert space consisting of
those ¢ € L2(T,V) for which ¢(t) € V(t) a.e. on T. Finally, let
u, € Wand f e L2(T,V|) be given. A solution of the Cauchy prob-
lem (determined by the preceding data) is a u e L2(T,V(t)) such
that

1 ,
(5:3) | Mtsu(t),v(t))dt - J m(tsu(t),v (t))dt
0

1
= f <f(t),v(t)>dt + m(O;uo,V(O)
0

for all v e L2(T,V(t)) /1 H (T,W) with v(1) = 0.

A family {a(t;s,*) : t € T} of continuous sesquilinear forms

on V is called regular if for each pair x,y € V the function t ~»
1

a(ts;x,y) is absolutely continuous and there is an M(:) e L (T)
such that for x,y € V we have

]
(5.4) la (tsx,y) | < MCe) (Il iy Il a.e. teT.
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The following “chain rule" will be used below.

Lemma 5.1 Let {a(t;-,+) : t e T} be a regular family on V.
Then for each pair u,v e H](T,V) the function t - a(t;u(t),v(t))
is absolutely continuous and its derivative is given by

1 ]
Dia(tsu(t),v(t)) = a (tsu(t),v(t)) +a(tsu (t),v(t)) +
1

a(t;u(t),v (t)), a.e. t e T.

Proof: Define a(t) e L(V,V) by (a(t)x,y)V = a(t;x,y), X,y €
V. Fix x € V and let{ Yo i 2 1} be dense in V. For eachn 2 1
define (&(t)x,yn)V = Dt(a(t)x,yn)v, a.e.’t € T. (The estimate

(5.4) shows (a(t)x,y), is defined and continuous at every y e V

v
and a.e. t € T.) The map a(+)x is weakly, hence strongly, mea-

](T,V). The weak

surable and the estimate (5.4) shows it is in L
absolute continuity of t - a(t)x then shows a(t)x = a(o)x +

J a(s)x ds, t € T. Thus a(+)x is strongly absolutely continuous
agd strongly differentiable a.e. on T.

Let u e H](T,V). For each v £ V we have (a(t)u(t),v)v =
(u(t),a*(t)v)V absolutely continuous, since the above discus-
sion applies as well to the adjoint a*(t). Hence, t » a(t)u(t)
is weakly absolutely continuous. The strong differentiability of
a(+) from above implies D, [a(t)u(t)] = a(t)u(t) + alt)u (t), a.e.
t € T, hence the indicated strong derivative is in L](T,V). From
this it follows that a(e)u(+) is strongly absolutely continuous

and the desired result now follows easily. QED
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Our first result gives existence of a solution with an a

priori estimate.

Theorem 5.2 Let the Hilbert spaces V(t)C V C W, sesqui-
linear forms m(t;+,+) and 2(t;-,+) on W and V, respectively,
u, e Wandfe L2(T,V') be given as above. Assume that
{m(t;+,+) + t € T} is a regular family of Hermitian forms on W:
m(tyx,y) = m{t;y,Xx), x,y € W, a.e. t € T, and m(o;x,x) > 0 for

Xx € W, Assume that for some real X and ¢ > 0
]
(5.5) Ref(tyx,x) + am(ty;x,x} + m (t;x,x)
> cl|xH€, x e V(t), a.e. teT,

Then there exists a solution u of the Cauchy problem, and it

satisfies |[ul| , < const.(||f|l22 . m(o;uo,uo))]/z,

L™(T,V) LT(T,V )

where the constant depends on X and c.

Proof: Note first that by a standard change-of-variable
argument we may replace 2(t;*,*) by 2(t;+,) + Am(t;+,*). There-
fore we may assume without loss of generality that A = 0 in (5.5):
2Ref(t;x,x) + ml(t;x,x) > c”xl[z, xe V(t), a.e. t € T. Now
define H = L2(T,V(t)) with the norm ||u”ﬁ = J]||u(t)||2dt and let
FzioeH:o clL2(TM), ¢(1) = 0} with the norm II¢H,2: =
||¢“ﬁ + m(o;¢(0),¢(0)). For ue Hand ¢ € F we define E(u,¢) =
J]z(t;u(%),¢(t))dt - J m(t;U(t),¢l(t))dt and
0

L(¢) = J <f(t),¢(t)>dt0+ m(o;u0,¢(o)). Then E : Hx F >~ C is
0
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sesquilinear, L : F >~ ¢ is conjugate-linear, and we have the

estimates [E(u,0)] < Ky lulllloll * K llulllle’ll , and
1/2 LE(T, W) 172

IL(e)] < ”f“LZ(T N lolly + m(osu su )" “m(03¢(0),¢(0))

S (l|f”22 ' +,"1(0;u »U ))1/2H¢] o These imply that u >

(T,V ) o0
E(u,$) is continuous H + ¢ for each ¢ in F and that L : F > ¢ is

continuous.

Finally, for ¢ in F we have from Lemma 5.1 and 5.5 with A =
ﬂ 1
0, 2ReE(6,6) = | 2Ren(ts(£),0(£))dt + | In'(ts(t).0(t)) -
(0] (0]
Dem(tsa(t).(t))}dt 2 cll¢ll2 + m(030(0),0(0)) 2 min(c,1)[lo]|2.

These estimates show that the projection theorem of Lions [5, p.

37] applies here, Thus, there is a u € H such that E{(u,¢) =
L(¢) for all ¢ € F and it satisfies |lul|, < (2/min(c,1))llLHF..

But this is precisely the desired result. QED

Remark 5.3 The hypotheses of Theorem 5.2 not only permit
m(t;x,x) to vanish but also to actually take on negative values.

This will be illustrated in the examples.

Remark 5.4 An easy estimate shows that (5.5) holds (with A
replaced by 2x + o) if we assume that for some ¢ > 0 anda 2 O

(5.6) m (t;x,x) + om(tyx,x) 2 0, x e V(t), a.e. teT,

(5.7) Re2(t;x,x) + am(t;x,x) = c||x]

2
V.

This pair of conditions is thus stronger than (5.5) but occurs
frequently in applications. HNote that (5.6) and m(o3x,x) 2 0
imply m(t;x,x) 2 0 for all t e T.
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We present an elementary uniqueness result with a rather
severe restriction of monotonicity on the subspaces {V(t)}. This
hypothesis is clearly "ad hoc" and is a limitation of the techni-
que which is not indicative of the best possible results. In
particular, much better uniqueness and regularity results for the
very special case of m(t;x,x) = (x,x)w have been obtained (cf.
Carroll [14], Carroll-Cooper [35], Carroll-State [36], Lions [5]);
the novelty here is in the forms m(t;s,+) determining the leading

(possibly degenerate) operators {M(t)}.

Theorem 5.5 Let the Hilbert spaces V(t) ¢ VC W, sesqui-
linear forms 2(t;+,+) and m(t;=,+) on V and W, respectively,
Uy € Wand f ¢ L2(T,V|) be given as above. Assume that
Rem(ts;x,x) 2 0, x € V(t), a.e. t € T, that {&(t;+,*) : t e T} is

a regular family of Hermitian forms on V(t):
(5.8) e(tyx,y) = 2(t;y,.x), X,y € V(t), a.e. teT

and for some real X and c > 0, &{t;x,x) + ARem(t;x,x) 2
cHxllz, x e V(t), a.e. t € T. Finally, assume that the family

of subspaces {V(t) : t & T} is decreasing:
(5.9) t>1, t,te Timply V(t)c V(T).
Then there is at most one solution of the Cauchy problem,

Proof: Let u(-) be a solution of the Cauchy problem with

Uy = 0 and f(+) = 0, By linearity it suffices to show that
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s

u(*) = 0. Let s e (0,1) and define v( j u(t)dr for t ¢
t

[0,s] and v(t) = 0 for t € [s,1]. Then v ¢ L2(T,V) and (5.9)

shows v(t) € V(t) for each t € T, Also, v (t) = -u(t) for t ¢
1
(0,s) and v ( ) =0 for s € (0,1), so we have v ¢ L2(T,V(t))c:

12 ) and v(1) = 0, Since u(-) is a solution we have by (5.3)
s

j ), v(t))dt - j m(tsu(t),u(t))dt = 0. Lemma 5.1 and
0

(5.8) give us the identities

jSZRem(t;u(t),u(t))dt = jS{DtZ(t;v(t),v(t)) - Zl(t;v(t),v(t))}dt,
0 0

fS{ZRem(t;u(t),u(t)) + Zl(t;v(t),v(t))}dt + 2(o3v(o),v(0)) = 0,
0

As before, we may assume 2(t;x,x) 2 cHx||2, xe V(t), teT.

t

Define W(t) = f u(t)dt; then W(s) = -v(o) and W(t) - W(s) = v(t)
(0]

for t € (o,s) and we obtain the estimate

cHw(s)||2 < 2(o;W(s),W(s)) + jSZRem(t;u(t),u(t))dt
0

S
- j 2" (£3v(t) v (t))dt € j £) [lv(t) || %t
0 0

S
<2 j M(t){llw(t)||2 + ||w(s)||2}dt.
0

s
Choose S, > 0 so that 2 J O M(t)dt < c. Then for s ¢ [O’So] we

2 0rSg s 2
1“ < {2/(c - 2 J M(t)dt)} j M(t)[|W(t)||“dt. From
0 0

the Gronwall inequality we conclude that W(s) = 0 for s ¢ [o,so],

have |[W(s)

hence u(s) = 0 for s ¢ [o,so]. Since M(+) is integrable on T we

could use the absolute continuity of the integral JM(t)dt to
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T+s,
0
choose s > 0 in the above so that J M(t)dt < c/2 for every
T
T2 0 witht+ So s 1. Then we apply the above argument a finite

number of times to obtain u(<) = 0 on T. QED

A fundamental problem with degenerate evolution equations is
to determine the precise sense in which the initial condition is
attained. A consideration of the two cases of m(t,x,y) = (x,y)w
and m(t;x,y) = 0 shows (see below) that we may have the case

of llg+ u(t) = us in an appropriate space or, respectively, that
llg+ u(t) does not necessarily exist in any sense. These remarks

illustrate the importance of the following.

Theorem 5.6 Let u(-) be a solution of the Cauchy problem
and assume the subspaces {V(t) : t € T} are initially decreasing:
there is a t_ e (0,1] such that (5.9) holds for t,T ¢ [o,to].
Then for every T ¢ (o,to) and v € V(1) we have t > m{(t;u(t),v)
is in H](O,T) (hence is absolutely continuous with distribution
derivative in LZ(O,T)) and m(osu(o) - uo,v) =0, Thus, if

UJ{V(t) : T > 0} is dense in W, then m{o;u(o) - uo,u(o) - uo) = 0,

Proof: Define v(t) = $(E)v for t ¢ (o0,7) and v(t) = 0 for
t e [1,1]. Then v(+) e L2(T,V(t)) N H'(T,W) and v(1) = 0, so
fz(t;u(t),v)fp(t)dt - JTm(t;u(t),v)¢l(t)dt - r<f(t),v>¢(t)dt.

) 0 0
That is, we have the identity

(5.10)  2(-su(<),v) + Dym{esu(+),v) = <f(+),v>
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in the space of distributions on {0,T) for every v € V{t). The
first and last terms of (5.10) are in LZ(O,T) and so, then, is
the second and we thus have pointwise values a.e. in (5.10) and
hence the equation

T T
(511) [ atsu(t)wg(t)et + [ dynltiu(e)vg(t)dt
0 0

= JT<f(t),v>g(t)dt
0
for g e LZ(O,T) and v ¢ V(t).

Suppose now that ¢ ¢ H](O,T) is given with ¢{t) = 0. Define
v{+) as above so as to obtain from (5.3) JTz(t;u(t),v)¢(t)dt -
JTm(t;u(t),v)¢'(t)dt = JT<f(t),v>¢(t)dt + 3(o;u0,v)¢(o) where
voe V(t). Since {5.11) go]ds with g(t) = ¢(t), we obtain from
these JT{Dtm(t;u(t),v)q)(t) + m(tsu(t),v)e (£)}dt = -m(osu_,v)¢(o).
The intggrand is the derivative of the function t ~

m(t;u(t),v)e(t) in H](O,T) and ¢(t) = 0, so the desired result
follows. QED

Another situation which arises frequently in applications

and to which the above technique is applicable is the following.

Theorem 5.7 Let u(*) be a solution of the Cauchy problem
and assume there is a closed subspace V0 in V with Voc:fj{V(t):
t ¢ T}. Define the two families of linear operators {L(t)} C
L(V,V;) and {M(t)} C L(w,V;) by <L(t)x,y> = 2(t;x,y), xe V, y ¢

Vo’ te T; <M(t)x,y> = m{tix,y), xe W, ye Vo’ t ¢ T. Then in
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the space of V;—valued distributions on T we have (5.1) and the
function t > M(t)u(t) : T » V; is continuous.,

The proof of Theorem 5.7 follows from (5.10) with v ¢ Vs and
the remark that each term in (5.1), as well as M(+)u{+), is in

!

LA(T,V,).

Our last result concerns variational boundary conditions.
Suppose we have the situation of Theorem 5.7 and also that
(5.9) holds. Let H be a Hilbert space in which V is continuously
imbedded and V0 is dense. We identify HI with H by the Riesz
theorem and hence obtain V0=+ H e V; and the identity <h,v> =
(h,v)H for he H, v ¢ Vo’ Assume f ¢ kz(T,H), T>0and v e V().
Then from (5.11) and (5.1) we obtain | (tsu(t),v)o(t)dt +
j:Dtm(t;u(t),v)¢(t)dt = J:(L(t)u(t) + Bt(M(t)u(t)),v)H¢(t)dt for
each ¢ ¢ C:(O,T). This gives us the following.,

Theorem 5.8 Assume the situation of Theorem 5.7 and that

(5.9) holds, Let H be given as above and f & L2(T,H). Then for

each 1 > 0 and v € V(1) we have in L2(0,T)

(5.12) L(tsu(t),v) + Dtm(t;u(t),v)

= (L(t)u(t) + DtM(t)u(t),v)H.

We briefly indicate how the preceding theorems can give cor-
responding results for second order evolution equations which are
"parabolic", These results are time dependent analogues of Theo-

rem 4.4,
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Theorem 5.9 Let Va and VC be separable complex Hilbert
spaces with Va dense and continuously imbedded in Vc' Let
{a(t;s,+) + t e T}, {b(tse,+) : t € T} and {c(t3+,*) : t e T}

be families of continuous sesquilinear forms on Va’ V_, and Vc’

a
respectively. Define corresponding fami]ies of linear operators
{A(t)} and {B(t)}c:L(Va,V;) and {C(t)}<IL(VC,Vé) as in Theorem
5.7. Assume that {a(t;+,+) : t € T} and {c(t;+,*) : t € T} are
regular families of Hermitian forms with a(o;x,x) 2 0 and

closx,x) 2 0 for x € Va' Assume that for some A and ¢ > 0

Aa(tsx,x) +a (tix,x) 2 Cllxlls ,
a
(5.14)  2Reb(t;x,x) + Ac(t;x,x) + ¢ (t;Xx,x) 2 c|l><l|\2, ,
a

for each x ¢ Va and a.e. t € T. Then for Uy € V., v ¢V, and

a 0 C

f(+),g(+) ¢ L2(T,V;) given, there exists a pair u(«),v(:) ¢
L2(T,Va) which satisfies the system

D, (A(t)u(t)) - A(t)v(t) = - f(t)
(5.15)

D (C(t)v(t)) + A(t)u(t) + B(t)v(t) = g(t)

]
in the sense of Va—valued distributions on T and satisfies the

initial conditions A(o)u(o) = A(o)uo, C(o)v(o) = C(o)vo.

Proof: This follows directly from Theorem 5,2 and Theorem
5.7 with m(t:X,y) = a(t;x],y]) + c(t;xz,yz) for X,y e W=V_ xV
and £(t5x,y) = a(tsx)yy) = a(tsxy,yy) + b(tsxy,y,) for X,y e
vea v(t) e V0 =V, x Va‘ QED
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There are two natural reductions of the first order system
(5.15) to a second order equation, and we shall describe these.
First, we set g(+) = 0 in Theorem 5.9 and note than that both
C(-)v(+) and Dt(C(-)v(-)) + B(+)v(+) belong to H](T,V;). Thus

v(+) is a solution of the second order equation
(5.16) Dt(Dt(C(t)v(t)) + B(t)v(t)) + A(t)v(t) = f(t)

and the initial conditions (Cv)(o) = C(o)vo, (D (Cv) + Bv)(o0) =
-A(o)uo. Second, we set f(+) = 0 in Theorem 5.9 and assume A(t)
is independent of t, i.e., A(t) = A for some necessarily coercive
and Hermitian A € L(Va,V;). From (5.15) it follows that u(+) €

H](T,Va) and is a solution of the second order equation

(5.17) D, (C(t)u (t)) + B(t)u (t) + Au(t) = g(t)

]
and the initial conditions u(o) = ugs (C(+)u )(o) = C(o)vo.

We shall present some elementary applications of the preced-
ing results to boundary value problems for partial differential
equations in the form (5.2). These examples will illustrate
some limitations on the types of pkob]ems to which the theorems

apply.

Example 5.10 For our first example we choose V0 = V(t) =
V= H(T), W= s e H(T) : ¢(1) = 0} and H = LA(T). Recall

the estimate

(5.18)  sup ([o(x)] = xeTHSlo Il 5, o el
L™(T)
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leta : T>T be ab?o}utely continuous and define the Hermitian
ot

forms m(t;¢,¥) = [ o(x)p(x)dx, ¢, € Wy, t € T. Then m(*;0,9)
0 1

is absolutely continuous and satisfies m (t;¢,¢) =

10(a(t))| % (t)s 6 € W, a.e. t e T. Since o e L'(T), the
estimate (5.18) shows that this is a regular family of forms.

T,

For ¢, € V, we set 2(t;¢,yp) = [ ¢ (x)y (x)dx, t € T. From the
0

well-known inequality

<o ll b € HI(T),

(5.19)  wlill , 2y

L™(T)

]
o
.

it follows that the preceding family satisfies (5.7) with A

Finally, let u, € Wand F ¢ L2(T x T) be given and set f(t)
F(e,t), t € T. Then the hypotheses of Theorem 5.5 (on unique-
ness) are satisfied. Suppose additionally there is a number o,

0 <o <2, such that
1
(5.20) a (t) 20 -2, a.e. teT.

1 1
Then (5.18) shows that 22(t;6,6) + m (t;6,) 2 (2-0)||¢ ||22( .
L (T
¢ €V, so by (5.19) it follows that (5.5) holds with x = 0,

hence, the hypotheses of Theorem 5.2 (on existence) are satisfied.
Let u(*,t) = u(t) be the solution of the Cauchy problem.
Then u{x,t) is the unique generalized solution of the elliptic-

parabolic boundary value problem, Up = u = F(x,t), 0 < x <

XX
a(t); -uxx'= F(x,t), a{t) < x < 1; u(0,t) = u(1,t), teT;
u(x,o0) = uo(x), 0 < x < a{o). The solution u(t) belongs to

H2(T) for each t ¢ T, so u(-,t) and ux(-,t) are continuous
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across the curve x = a(t), t e T.

Remark 5.11 The estimate (5.20) permits a(e) to decrease,
but not very rapidly, whereas the estimate (5.6) holds if and
only if a'(t) 2 0 a.e. on T. The curve x = a(t) is noncharac-
teristic a.e. on T; the example a(t) = 1/2 + [(t - 1/2)/4]1/3

shows it may actually be characteristic at certain points.

Remark 5.12 The conclusions of Lemma 5.1 hold if we assume
only that a(-;x,y) is absolutely continuous for each pair x,y &
V. Hence we need not assume an estimate like (5.4) on the family
im(t;+,+)} in order to obtain Theorem 5.2. One can prove this
assertion as follows: (1) use the closed graph and uniform
boundedness theorems to obtain an estimate

1,
(5.21) j la’ (t3x,y)dt < KlixIllIyll» x.y € Vs
0

(2) approximate uI in L2(T,V) by simple functions and use the

Lebesgue theorem with (5,21) to obtain the result for the special
case of constant v € V; approximate v' by step functions and use
the results of (1) and (2) to obtain the general result. The de-

tails are standard but involve some lengthy computations.

Example 5.13 Our second example is similar but allows the
equation to be of Sobolev type in portions of T x T. Choose the

spaces and the forms g(t;-,+) as before. For ¢,p € W, define

0"(t) fB(t) 1 -
m(t;,9,) =J o(x)u(x)dx + J ¢ (x)¥ (x)dx, t € T, where «

0 0
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and B map T into itself, both are absolutely continuous, and B

is nondecreasing. For ¢, € W, m(+;4,9) is absolutely contin-
uous so Remark 5.12 applies here. Using the estimate

sup{|¢(s)|2 :0<s £B(t)} s Js(t)|¢l(x)|2dx, ¢ € V, one can

show that the estimate (5.5) ho?ds if a'(-) has an essential lower
bound (possibly negative) and if there is a numberc, 0 < o < 2,
such that a'(t) 2 o - 2 where a(t) > B(t). Thus, for each u, €

%

Wand F e L(T x T) it follows from Theorems 5.2 and 5.5 that

there exists a unique generalized solution of the elliptic-

parabolic-Sobolev boundary value problem, u; - Uit = Uyy = F,
0 <x<alt), x < B(t); SUgp T Uy T F, a(t) < x < B(t); ug -
Uy = Fs B(t) < x < a(t); U, = F, a(t) < x, B(t) < x<1;

u(0,t) = u(l,t) =0, te T; u(x,0) = uo(x), 0 < x < max{a(o),

B(o)}. Examples (e.g., a(t) = 0) show that if B is permitted

to decrease, then a solution exists only if the initial data Uy
satisfies a compatibility condition. This is to be expected

since the lines "x=constant" are characteristic for the third

order Sobolev equation.

Example 5.14 We shall seek conditions on the function
m(x,t) which are sufficient to apply our abstract results above
to the boundary value problem 3/3t(m(x,t)u(x,t)) - u, = F(x,t),
(xst) € T x T; u(0,t) = u(1,t) = 0; m(x,o)(u(x,o)-uo(x)) =0,
a.e. x € T, We choose the spaces Vo = V(t) =V = H;(T) and the
forms 2(t;+,*) as above and let H = W = L2(T). Assume the real

valued m(-,*) ¢ Lm(T x T) is such that m(x,+) is absolutely
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continuous for a.e. x € T and satisfies |mt(x,t)| < M(t) for a.e.
t e T, where M(+) € L'(T). Then it follows that the family of
f1m(x,t)¢(x)i1276x, o9 € W, is re-
gular. Let Uy € H, F e LZ(Tox T), and set f(t) = F(-,t).

Hermitian forms m{t;¢,p)

Hh

Theorems 5.6 and 5.7 show that the boundary value problem above
is the realization of our abstract Cauchy problem.

In order to obtain uniqueness of a generalized solution from
Theorem 5.5, note that the forms 2(t;+,) are coercive over V,
so Theorem 5.5 is applicable if and only if additionally we as-

sume
(5.22) m{x,t) 2 0 Xx,t e T,

since this is equivalent to m(t;«,») 20 for all ¢ e W, t e T.

To obtain existence from Theorem 5.2 it suffices to assume

m(x,0) 2 0, a.e. xe T, and
(5.23)

ess inf{m (x,t) : (x,t) e Tx T} > -2n2,

for then we obtain the estimate m'(t;¢,¢) 2 (o - 2n2)f1|¢|2,
¢ € V, for some number o, 0 < ¢ < 2n2. Then from (5.18) we ob-
tain (5.5) with A = 0 and ¢ = o/2n°. Thus, (5.22) gives unique-
ness- and (5.23) implies existence of a generalized solution of
the problem,

Clearly neither of the conditions (5.22), (5.23) implies

the other. In particular (5.23) permits m{x,t) to be negative;
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then the equation is backward parabolic, This is the case for

the equation

(5.24) gf{(n2/4)(1—2t)3u(x,t)) = U,

for which mt(x,t) = -(3n2/2)(1-2t)2; hence, (5.23) is satisfied
and existence follows. But m(+,-) is nonnegative only when

0 <t <1/2, so uniqueness is claimed only on this smaller in-
terval. To see that uniqueness does not hold beyond t = 1/2,
note that u(x,t) = (1--2t)'3 exp{1-(1-2t)'2} sin (mx) is a solu-
tion of (5.24); a second solution is obtained by changing the
values of u(x,t) to zero for all t > 1/2,

The leading coefficient in fhe equation

(N> 0)

(5.25)  S{(nP/N)(1-t2) 2u(x,t)) = u,

ot

satisfies (5.22), hence uniqueness follows, but mt(x,t) > -2nl

only on the interval [0, 1-(4N)_2). Hence, the existence of a
solution follows on the interval [0, 1-(4N)'2-0] for any o > 0;
choosing N large makes the interval of existence as close as
desired to [0,1]. However the function u(x,t) = (1-t)_1/2
exp(2N(1-t)1/2) sin (wx) is the unique solution of the problem
with uo(x) = sin (mx) on any interval [0, 1-6], o > 0, and this
function does not belong to L2(T x T)., Hence, there is no solu-

tion on the entire interval,

Example 5,15 Let G be a smooth bounded domain in R" and

r(x) be a smooth positive function on G such that for those x
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near the boundary 3G, r(x) equals the distance from x to 3G.

Parabolic equations of the form
(5.26) tut + r{x)L(t)u = F(x,t), xeG, teT

arise in mathematical genetics (cf. Kimura and Ohta [1], Levikson
and Schuss [1]). They are typically degenerate in t (at t = 0)
and degenerate in x (at x € 3G); L(t) is a strongly uniformly
elliptic operator. MWe indicate how such problems can be in-
cluded in the preceding theorems. Suppose we are given real-
valued absolutely cont1nu0us % (t)(]Si,an) and Qj(t)(OSjsn)
with 2_(t) 2 0 and z b, (t)zizj (PN O PR L
c>0, z¢ ¢n. Take’a 1' vV = Hl(G) and define a regular family
of coercive forms by 2(t;¢,p) = J { Z %5 +(t)D; ¢D W+
G i,j=1 1
Z 2 (t)D. ¢ p}dx, ¢,9 € V. The corresponding e111pt1c operators
are given by
(5.27) L(t) = - Z 2 (t)D D; + Z 2:(t)D teT.
i,3=1 iJ j=0 J i’
Let m{x,t) be given as in Example 5.14, set W = Hl(G), and define
m{tsd,p) = J (m(x,t)/r(x)2)¢(x)$(§76x, ¢,y € W, From the inequal-
ity :

(s.28)  lle/rll o = Cllelly el

it follows that m(t;-,) is a regular family of Hermitian forms
on W. Let F e L2(G x T) and define f(t) = F(=,t)/r(s) for t ¢ T.

1
From (5.28) it follows that f ¢ L2(T,V ). Finally, assume u, €
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H;(G). From Theorems 5.6 and 5.7 we see that our abstract

Cauchy problem is equivalent to the initial-boundary value prob-

lem
%E(mrx;t (x,t)) + r{x)L{t)u(x,t) = F(x,t), x e G,t e T
(5.29) u(s,t) = 0, s ¢ 3G,
m(x,0) (u(x,0)-u (x)) = 0, x ¢ G.

(The first equation has been multiplied by r{x) and the last by
r(x)2 > 0.,) Existence and uniqueness follow from the additional
assumptions m(x,t) > 0, mt(x,t) >0, a.e. xe G, t e T. These

are not best possible for existence; they can be weakened as in

Example 5.14.

Remark 5.16 The equation (5.29) permits the leading operat-
or to be singular and the second to be degenerate in the spatial

variable, while the leading operator may be degenerate in time.

Remark 5.17 A minor technical difficulty arises from the
form in which (5.26) is given with the time derivative on u, not
on (tu). We first note that tut = (tu)t - u but see that the
resulting second operator L{t) - u/r might not be coercive.
However, in the change of variable T = t* the leading term is

given by tu, = atu_ = a(‘ru)T - au and the second operator result-

t
ing as above is given by L(T]/a) - au/r. From (5.28) it follows

that this last operator is coercive for a > 0 sufficiently small.
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Remark 5.18 Theorems 5.2, 5.5, 5.6, 5.7 and 5.8 are from
Showalter [2]. Theorem 5.9 which contains (5.16) and (5.17) is
new. See Showalter [2] for examples in higher dimension with
elliptic-parabolic interface or boundary conditions and other
constraints on the time-differential along a submanifold or por-
tion of the boundary. For additional material on specific par-
tial differential equations or evolution equations of the type
considered in this section we refer to Baiocchi [1], Browder [4],
Cannon-Hi11 {2], Fichera [2], Ford [1], Ford-Waid [2], Friedman-
Schuss [1], Gagneux [1], Glusko-Krein {1], Kohn-Nirenberg [1],
Lions [5, 9], Oleinik [2], Schuss [1], Vvi§ik [1]. Also see
references given in preceding sections for related linear prob-

lems and in the following sections for nonlinear problems.

3.6 Semilinear degenerate equations. We shall present some
methods for obtaining existence-uniqueness results for the

abstract Cauchy problem for the equation
(6.1)  go(Mu(t)) + N(u(t)) = F(t), 0stsT,

where M is continuous, self-adjoint and monotone. The most we

shall assume on the nonlinear N is that it is monotone, hemicon-
tinuous, bounded and coercive. Specifically, let V be a reflex-
ive real Banach space with dual VI and let N be a function from

]
VtoV. Then N is said to be monotone if

(6.2) <N(u) -~ N(v), u-v> 2 0, u,v e vV,
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hemicontinuous if for each triple u,v,w ¢ V the function s »
<N(u*sv),w> is continuous from R to R, bounded if the image of
each bounded set in V is a bounded set in V', and coercive if for
each v e V
(6.3) Tim (<N(u+v),u>/|[ul]) = +o .
[u][>=

Let H be a Hilbert space in which V is dense and continuously
imbedded. Identify H and its dual and thereby obtain the inclu-
sions VCH CZV.. We suppose M is a continuous, self-adjoint and

1/2

monotone operator of H into H; thus the square root M of M is

defined. Letp 22, 1/p+1/q=1, 0< T < w, and define V =
LP(o,Tsv), # = L2(0,T5H), v = L2(0,T5V ). Let L u = dMu/dt for
ue D(Lo) = {ueV : du/dt € H} and denote by L : D(L) ¢ VI the
closure of L0 in V x V', A standard computation shows that if
ue D(L) then M1/2u e C(o,T;H), the space of continuous H-valued

functions on [0,T].

1
Lemma 6.1 For ue Vand f e V , the following are equiva-
lent:
(a) ue d(L), M7%u(0) = 0, and Lu = f,
(T T
(b) -J <dMv/dt ,u> dt = J <f,v> dt
0 0

for all v e V with dv/dt € H and v(T) = O,

Proof: Clearly (a) implies (b): we need only observe

that the identity in (b) holds for u e D(Lo), than pass to the
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general case of u € D(L) by continuity. Conversely, if (b) is
(b e
true then we define un(t) = nJ en(S t)u(s)ds, fn(t) =
t 0
nj en(s_t)f(s)ds. Then u_ e D{L_ ), L u = f , and we have
o n 0 on n
(un,fn) + (u,f) inV xVv, QED

The basic idea here is to consider the linear operator A :
D(A) + V' defined by Au = Lu and D(A) = {u e D(L) : M/2u(o) = 0}.
That is, A = (d/dt)M with zero initial condition. Clearly A is
closed, densely-defined and linear, Lemma 6.1 shows A is the
adjoint of the operator -Md/dt with domain {v e V : dv/dt e H,
v(T) = 0}. That is, A is the adjoint of a monotone operator, so
A*, being the closure of a monotone operator, is necessarily mono-
tone, Since the above implies that A is maximal monotone by a
theorem of Brezis [1] we obtain the following from Browder [1]:
for N : V> VI monotone, hemicontinuous, bounded and coercive,
the operator A + N is surjective. The preceding remarks give the

following result,

)
Theorem 6.2 Let the spaces VC HC V , the self-adjoint
and monotone M € L(H) and the monotone, hemicontinuous, bounded
] 1
and coercive N : V -V be given. For each f ¢ Lq(o,T;V ) there

exists a u € Lp(o,T;V) such that

(T T (T
(6.4) -J <Mdv/dt,u> + J <Nu,v> = J <f,v>
0

0 0

for all v € LP(0,T;V) with dv/dt e L%(0,T;H) and v(T) = 0. Also

M]/zu e C(o,T;H) and M]/Zu(o) = 0. The solution is unique if N
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is strictly monotone, i.e., if <Nx-Ny,x-y> > 0, x,y € V, x ¥ y.

Remark 6.3 The condition expressed by (6.4) is equivalent

to the Cauchy problem

t) + N(u(t)) = f(t)
u) (o) =0

(6.5)

Ao._lso.
= ct
—

u(

/2
q )

in which the equations hold in L7(0,T3V ) and in H, respectively.

Remark 6.4 The extension of Theorem 6.2 to the case of
initial data U, € H (not necessarily hoimogeneous) is given in
is added to (6.4)

H
and the initial condition in (6.5) becomes M]/2u(0) = M]/ZUO.

Brezis [1]. Then a term (M]/Zuo,M]/ZV(O))

Also, the initial condition in Theorem 6.2 can be replaced by
the periodic condition M]/Zu(o) = M]/ZU(T) by an obvious modi-
fication of the operator A.

We consider briefly the Cauchy problem that arises when the
solution is constrained to a specified convex set. This leads
to a variational inequality. For such problems, the "natural®
hypotheses on the nonlinear operator N : V —» V' is that it be
pseudomonotone: if lim uj = u in V weakly and 1lim sup <N(uj),

uj-u> < 0, then for every v e V
(6.6) <N(u) ,u-v> < lim inf <N(uj),uj-v>.

Remark 6.5 The pseudomonotone operators include the semi-

monotone operators of Browder [6], the operators of calculus-
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of-variations introduced by Leray and Lions [1], and the demi-
monotone operators of Brezis [4]. The pseudomonotone operators
are precisely those which are most natural for elliptic varia-
tional inequalities.

To indicate the relationship between Theorem 6.2 and results
to follow, we shall prove that every hemicontinuous and monotone
operator N : V —» V. is pseudomonotone. So, suppose the net {uj}
in V satisfies lim uj = u (weakly) and 1im sup <N(uj),uj—u> < 0.
Since N is monotone it follows that <N(uj),uj—u> > <N(u),uj-u>.
The right side converges to zero so we have 1im <N(uj),uj-u> = 0.
Let ve V. For 0 <t <1 and w= (1-t)u + tv we have by mono-
tonicity <N(uj) - N(w),uj-w> 2 0 and this shows t<N(uj),u-v> +
<N(uj),uj-u> + t<N(w),v-u>2 <N(w),uj-u>, Taking the lim inf
and dividing by t gives 1lim inf <N(uj),uj-v> 2 <N{w),u-v>. The
result follows by using hemicontinuity to let t -~ 0 above.

A variational inequality problem corresponding to (6.5) and
a given convex subset K of V is the following: find u € K with

M]/zu(o) = 0 for which
T4

(6.7) f <d(Mu) + N(u) - f,v-udt 2 0
(0]

for all v € K. A technical difficulty with this formulation is
that the functional equation (6.7) might not imply that (d/dt)Mu
1

e V , so we shall weaken the problem appropriately. If u is a

[}
solution of (6.7) and if v ¢ K with (d/dt)Mv ¢ V then we obtain
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T 4 T 4
<=——(Mu)+Nu-f,v-u>dt + | <=M(v-u),v-u>dt
dt o dt

(T 4 f
J <a%(Mv)+Nu-f,v—u>dt = J
0

2 (1/2)<M(v-u),v—u>|£. The last term is nonnegative if we re-
quire Mv(o) = Mu(o) = 0. Under hypotheses to be given below, we

shall consider the (weak) variational inequality
T d

(6.8) ue K, J <a%(Mv)+Nu—f,v-u>dt 20
0

1
for all v ¢ K such that (d/dt)Mv € V and Mv(o) = 0.
(] ]
Let the spaces VC HcCV and V< HC V be given as above.
Let K(t) be a closed convex subset of V for each t ¢ [0,T]; as-
sume 0 € K(t) and K(s) c K(t) for 0 < s <t < T. Define K =
{veVv:v(t)eK(t)a.e.}.
The semigroup of right shifts given by
0, O0<t< s
(6.9) [G(s)ul(t) = { ‘
u(t-s), s<tsT uelvl
1
is strongly continuous on each of VV, H and V , it is a contrac-

tion semigroup on H, and it satisfies
(6.10) G(s)Kc K

by the assumption that the convex sets are increasing. Denote by
-L the generator of {G(s)} : s 2 0} on V(H,Vl) and its domain by
D(L,V) (respectively, D(L,H), D(L,V.)). Thus, we have L = d/dt
with null initial condition in each of v, H, and V'. From (6.10)
and the representation for the resolvent of -L by the formula
(I+eL)—] = fw e-]exp(-t/e) G(t)dt we obtain

o}
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(6.11) (1 + el) k ¢k, e > 0.

Suppose M ¢ L(V,VI) is nonnegative and self-adjoint and define
Me L(V,Vl) by [Mv](t) = Mv(t). Then we consider the operator
defined by A =L oM, D(A) = {veVv:Me D(L,VI)}. The plan
is to apply Corollary 39 of Brezis [4] to solve the abstract

variational inequality
(6.12) ue K, <Av + Nu-f,v-u> 2 g

for all v € D(A) N K. The problems (6.8) and (6.12) are certain-
1y equivalent with our choice of data and we are led to the fol-

lowing result.

Theorem 6.6 Let the spaces VC H C'.Vl and the self-adjoint
and monotone M ¢ L(V,V') be given as above. Let K be the closed
convex set in V obtained as above from an increasing family
{K(t) : 0 £t < T} of closed convex subsets of V, and assume O €
K. Let N : V-~ Vl be pseudomonotone, bounded and coercive. Then
for each f ¢ Lq(o,T;VI) there exists a solution of (6.8). The

solution is unique if N is strictly monotone.

Proof: The result follows immediately from Brezis [4] after
we verify that the lTinear A is nonnegative (= monotone) and com-

)
patible with K. Note first that for those v ¢ V with Mv e V we

T
have [ <gEMv,v>dt = (1/2)<Mv(s),v(s)> 1. Thus for v e D(A) it
0

follows
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;
(6.13) j <hv,vadt = (172)<Mv(T).v(T)> > 0.
0

That A is compatible with K means that for each u € K there
exists {un}C K M D(A) such that 1im(un) =u in V and

Tim sup <Aun,un-u> < 0. Thus, let u e K and define for n 2 1

t
]L)_]u. We have Tim (u ) = u, u (t) = nJ en(s't)u(s)ds,
0

and (6.11) shows u, € K. The representation above gives

u, = (I+n

t
Mun(t) = nJ en(s_t)Mu(s)ds, hence, Lhu = = MLu . Finally, since
0
. _ =] _
M is monotone we have <Aun,un-u> = -<LMun,n Lun> =
-n_]<MLun,Lun> $ 0, so A is compatible with K. QED

Remark 6.7 If we change the domain of L appropriately, we
can replace the initial condition implicit in (6.8) by a corres-
ponding periodic condition.

We return now to the Cauchy problem for the evolution equa-
tion (6.1) where M is given as in Theorem 6.6 but with weaker
restrictions on the nonlinear operator N. Specifically, we shall
assume N : V » V' is of type M: if lim (uj) = u in V weakly,

1
Tim (Nuj) = f in V weakly, and 1im sup <Nuj,uj> < <f,u>, then

Remark 6.8 The operators of type M include weakly contin-
uous operators (i.e., continuous from V weakly into VI weakly)
and the pseudomonotone operators, hence, the operators of Remark
6.5.

We show that pseudomonotone operators are of type M. Let
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{uj} be a net (or sequence if V is separable) as in the definition
above of "type M" and assume N is pseudomonotone. Then
Tim sup <Nuj,uj-u> < 0, so for every v € V we obtain from (6.6)
<Nu,u-v> < Tim inf <Nuj,uj-v> < <f,u-v>. But v e V is arbitrary
so Nu = f follows from this inequality.

Much of the notation of Theorem 6.6 will be used to prove
the following result.

1
Theorem 6.9 Let the spaces VC H <€V and the monotone

[]
self-adjoint M € L(V,V ) be given as in Theorem 6.6. Let N :
]
Vv >~V be type M, bounded and coercive. Then for each f ¢
]
Lq(o,T;V ) there exists a solution u e LP(0,T;V) of the Cauchy

problem

j—t(Mu) + N(u) = f
(6.14)
(Mu) (o) = 0.

If N is strictly monotone (cf. Theorem 6.2) the solution of

(6.14) 1is unique.

Proof: We give a finite-difference approximation to (6.14)
of implicit type. Thus, (6.14) is approximated by a correspond-
ing family of "stationary" problems (cf. Chapter II.7 of Lions
[10]). Note that the Cauchy problem (6.14) is equivalent to the

[}
equation in V

(6.15) A(u) + N(u) = f, A=L oM
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where -L is the generator of the strongly-continuous semigroup
(6.9) in v and M € L(V,Vl) is obtained (pointwise) from M as
before.

To approximate (6.15) we let s > 0 and consider the equa-

tion in V'
(6.16) [(I—G(s))/s]Mus + NuS = f,

Since m(x,y) = <Mx,y> is a semi-scalar-product on V we obtain
T T
m(v(t-s),v(t)dt < J <Mv,v>dt,
0 s 0

v € V, which shows that the operator [I-G(s)]M is monotone (cf.

the estimate J <G(s)Mv,v>dt = J
6.13). Thus, the operator [(I-G(s))/s] o M + N is of type M,

bounded and coercive. This implies by Brezis [4] or Lions [10]
that it is surjective, hence, (6.16) has a solution ug for each
s > 0. From (6.16) we obtain <Nu ,u,> < <f,u> < IFl = lugll s

so the coercivity of N shows that {uS : s > 0} is bounded in V,
Since N and M are bounded and V is reflexive there is a subset

(which we denote also by {u, : s > 0}) for which lim (u_) = u,

s

Tim N(us) = g and 1im M(us) = Mu weakly in the appropriate spaces.
Let L* denote the adjoint of the operator L in V'. We apply

(6.16) to any v € D(L*,V) and take the limit to obtain

<Mu,L*v> + <g,v> = <f,v>, Vv ¢ D(L*,V). This shows Mu ¢ D(L,V')

and that
(6.17) LMu + g = f

Since N is of type M, it suffices for existence to show
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1im sup <Nus,us—u> < 0. But from (6.16) and the monotonicity of
[(I-G(s))/sIMweobtain <N“s’“s'“> < <f,us-u> -
<[U—G(s))/s]Mu,uS—u>. Since Mu e D(L,VI) the left factor of the
last term converges strongly and this gives the desired result.
Uniqueness follows easily from the equivalence of (6.14) and

(6.15); we need only note that A is monotone. QED

Remark 6.10 The extension to nonhomogeneous initial data
is given in Bardos-Brezis [1] with relevant regularity results
on the solution. The problem with periodic conditions Mu(o) =
Mu(T) is solved similarly.

Qur next class of results will be obtained from the genera-
tion theory of nonlinear semigroups and its extensions to evolu-
tion equations with multivalued operators. The Tinear semigroup
theory is inadequate for degenerate problems, but its presentation
above in Section 4 provided an elementary motivation for the
techniques and constructions to follow. Specifically, it indi-
cates the "optimal" hypotheses from which one might expect the
Cauchy problem to be well-posed and it suggests the correct space
in which to Took for such results. Also, we shall not present
here a nonlinear version of the analytic situation of Theorem 4.2
and Theorem 4.4,

Let E be a vector space with algebraic dual E* and let M :

E ~ E* be nonnegative (monotone) and self-adjoint. Let K be the
kernel of Mand q : E ~ E/K the corresponding quotient map. The

symmetric bilinear functionm : E x E » R given by m(x,y) =
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<Mx,y> determines a scalar product m, on E/K by

(6.18) mo(q(X),q(y)) = m(x,y), X,y € E.

Let W be the Hilbert space completion of E/K with m,» and denote
by m, the (extended) scalar product on W,

Let EI be the Hilbert space obtained as the strong dual of
the space E with the seminorm induced by m. Note that since E/K

1
is dense in W we may identify the dual spaces (E/K) =W . Let
* 1 1
q : W -~ E be the continuous dual of g : E ~ W, Since q has
* 1
dense range, q 1is necessarily injective. Also, each g e E

]
vanishes on K, hence, g = feq for some f ¢ (E/K) . This shows

* *

q 1is surjective, and it follows from (6.18) that q 1is norm-
]

preserving., Finally, if M0 : W~> W 1is the Riesz isomorphism

determined by <M0x,y> = mo(x,y), then we obtain the identity
*
(6.19) M=qMq

relating the functions considered above.

Assume we are given for each t € [0,T] a nonempty set
D(t) ¢ E and a (not necessarily linear) function N(t) : D(t) - E'.
Then for each such t we define a multivalued function or relation

]
N (t) on q[D(t)] x W as the composition

0
* -

(6.20)  N_(t) = (a) L N(t) o q I

Finally, we define the composite relation A(t) = M;1 o No(t) on

W x W with domain q[D(t)] for each t € [0,T]. HNote that No(t)
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and A(t) are functions if and only if x,y € D(t) and Mx = My
imply N(t)x = N(t)y. The following diagram illustrates the var-

jous relationships.

N(t) ' M
E >D(t) »— [ E,m
*
q q q
W oq[D(t)] o) W "o
o o | —-e W
d N '

We shall consider the semilinear evolution equation

(6.21) j—t(Mu(t)) #N(t,u(t)) =0, O0<t<T.

A solution of (6.21) is a function u : [0,T] ~ E such that

Mu : [o,T] » E' is absolutely continuous, hence, differentiable
a.e., u(t) € D(t) for all t, and (6.21) is satisfied a.e. on
[0,T]. The Cauchy problem is to find a solution of (6.21) for
which (Mu)(o) is specified in El.

We follow the idea from Section 4 of reducing (6.21) to a
"standard" evolution equation with M = identity. If u is a solu-
tion of (6.21) and we define v = q o u, then (6.19) and (6.20)
imply

(6.22)  (aMv) = -N(t,u(t)) € - @ N(t,v(t)).

*
Since q and M0 are linear isometries, we see that v(t) e q(D(t))

for t € [0,T], v : [0,T] = W is absolutely continuous, and
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(6.23) v (t) & - A(t,v(t))

is satisfied a.e. on [0,T]. We call such a v(<) a solution of
(6.23). Conversely, suppose v is a solution of (6.23). Then for
each t at which (6.23) holds, (6.20) shows that q(u(t)) = v(t)
for some u(t) € D(t) and (6.22) holds. By choosing u(t) e D(t)
with q(u(t)) = v(t), hence, Mu(t) = q*Mov(t), for all remaining

t € [0,T], we obtain a solution u of (6.21). This proves the

following.

Lemma 6.11. If v is a solution of (6.23), then for each
t € [0,T] there is a u(t) € D(t) such that u is a solution of
(6.21). Conversely, for each solution u of (6.21), the function

v=gqouisasolution of (6.23).

Corollary 6.12 Let u, € D(o). There exists a solution v of

(6.23) with v(o) = q(uo) if and only if there exists a solution
u of (6.21) with (Mu)(o) = Muo. There is at most one solution v
of (6.23) with v(o) = q(uo) if and only if for every pair of
solutions ups Uy of (6.21) with (Mu])(o) = (Muz)(o) = Mug it
follows that Mu](t) = Mu,(t) for all t e [0,T], hence,
N(t,u](t)) = N(t,uz(t)) a.e. on [o0,T].

Results on the Cauchy problem for (6.21) can now be obtained
from corresponding results for (6.23). Turning first to the
question of uniqueness, we find that a sufficient condition for
the mo-seminorm on the difference of two solutions to be nonin-

creasing is that each A(t) be accretive: if [x1,w]] and [XZ’W2]
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belong to A(t), then mo(w]-wz,xl-xz) 2 0. The success of the
above construction for which (6.21) and (6.23) correspond to one

another is reflected in the following.

Lemma 6.13 The relation A(t) is accretive if and only if

the function N(t) is monotone.

Proof: Let w, ¢ A(x])and W, € A(xz). Choose uysl,y € D(t)

*
with X5 = q(uj) and N(t,uj) =q Mowj’ j = 1,2. Then we have

(6.24) mo(w]-wz,x]-xz) = <N(t,u])-N(t,u2),u]—u2>

so A(t) is accretive if N(t) is monotone. Conversely, if ug»U,
*

D(t) there is a unique pair WysWy € W with N(t,uj) =q Mowj’ j=

1,2. Then [q(uj),wj] e A(t) and (6,24) holds. Hence N(t) is

monotone if A(t) is accretive. QED

Remark 6.14 N(t) is strictly monotone if and only if it is

injective and A(t) is a strictly accretive function.

Theorem 6.15 Let N(t) be monotone and M + N(t) strictly
monotone for each t € [0,T]. Then for each u, € D(o) there is

at most one solution u(+) of (6.21) with (Mu)(o) = M-

Proof: Since A(t) is accretive for each t by Lemma 6.13,
uniqueness holds for (6.23). The result then follows from

Corollary 6.12. QED

We consider now the existence of solutions. Specifically,
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we shall recall the existence results of Crandall and Pazy [1]
as they apply to the rather special Hilbert space situation of
(6.23). (The monograph of H. Brezis [3] provides an excellent
introduction to this topic with an extensive bibliography; cf.
also the recent monograph of Browder [7].)} The equation (6.23)
has a (unique) solution v with v(o) specified in q(D{(o)) under
the following hypotheses:

Each A(t) is accretive and I + XA(t) is surjective
for all x > 0,

It follows that J,(t) = (I+AA(t))™) is a function defined on all
of W.

The domain of A(t), q[D(t)], is independent of t;
we denote it by q[D].

There is a monotone g : [0,*) »~ [0,*) such that
19, (8230 =0, (523 [y € ALe=s]gCl1xIly)
«(1+ inf {||y||w :yeAls,x)}), t,s 20, xeM,
0<xcs,

The preceding results with Corollary 6.12 lead to the following,

Theorem 6.16 Let M be nonnegative and symmetric from the
* 1
1inear space E to its dual E ., Denote by E the dual of the

1
]/2; E is a

linear topological space E with the seminorm <Mx,x>
Hilbert space with norm given by ||f||E- = sup {|<f,x>| :

x e E, <Mx,x> £ 1}. For each t € [0,T] assume we are given a
(possibly nonlinear) N(t) : D(t) - E' with domain D(t) C E.
Assume further that for each t, N(t) is monotone and M + AN(t) :

]
D(t) - E 1is surjective; M[D(t)] is independent of t; and for
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some monotone increasing function g : [0,») + [0,) we have
(6.25) ||N(t,w)-N(s,w)HEl < |t—s|g(<Mw,w>)(1+||N(t,w)||E.),
0<t,s<T, we D(t).

Then for each u, € D{o) there exists a solution u of (6.21) with

(Mu){o) = Muo.

Proof: From Corollary 6.12 we see that it suffices to show
(6.23) has a solution v with v(o) = q(uo), and this will follow
if we verify the hypotheses on {A(t)} above. First note that
each A(t) is accretive by Lemma 6.13. Also, M[D{t)] independent
of t implies the same for q[D{t)]. To determine the range of
I+ MA(t) we have (q'M)(I+AA(t)) = q'M_ + AN (t) = a'M_+

AN(t)q'] = (M+AN(t))q  on q[D{(t)]. The range of the above is
1 *

E and q M0 is a bijection, so I + AA{t) is necessarily onto W.

The estimate on Jk(t,x) follows from (6.25) and we refer to

Showalter [5] for the rather lengthy computation. QED

Remark 6.17 In contrast to preceding results of this sec-
tion, N need not be coercive or even defined everywhere on V,
Thus it may be applied to examples where N corresponds to a not
necessarily elliptic differential operator {cf. Theorem 4.1 and
Example 4.6).

Second order evolution equations with (possibly degenerate)
operator coefficients on time derivatives can be resolved by the

preceding results. These contain as a special case a first
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order semilinear equation which is nonlinear in the time deriva-

tive.

Theorem 6.18 Let A and C be symmetric continuous linear
operators from a reflexive Banach space V into its dual V'; as-
sume C is monotone and A is coercive. Denote by V; the (Hilbert
space) dual of V with the seminorm <Cx,x>]/2. let B :V~ Vl be
a (possibly nonlinear) monotone and hemicontinuous function.
Then for each pair Upsu, € V with Au] + B(u2) € V; there exists
a unique v ¢ L](o,T;V) such that Cv : [o0,T] » V; is absolutely
continuous, gz(Cv) + B(v) : [o0,T] » V' is (a.e. equal to) an ab-
solutely continuous function, Cv(o) = Cuz,[%%(Cv)+B(v)](o) = Au],

and

In.

(6.26) {g—t(Cv(t)) + B(v(t))} + Av(t) = 0, a.e. t e [0,T].

[=%

t

Proof: On the product space E = V x V consider M[x,y] =
[Ax,Cy], hence, E' = VI x V;. Define D = {[x,y] € V x D(B) :
Ax + B(y) ¢ V;} and N : D » E' by N[x,y] = [-Ay,Ax+B(y)]. Then
apply Theorem 6.16 to obtain existence of a solution u = [w,v]
of (6.21), HNote that C + XB + AZA is rmonotone, hemicontinuous
and coercive, hence onto Vl, and this shows M + AN is surjective
(cf. proof of Theorem 4.3). The second component v of this solu-
tion u with Mu = M[u],uz] js the solution of (6.26). Uniqueness
follows from Corollary 6.12 since M[x],y]] = M[xz,yz] and

NIx, »yq1 = NIx5,y,1 imply [x1,¥71 = [x,,¥,1. QED
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Remark 6.19 The first component of the solution u of (6.21)

in the preceding proof is the unique absolutely continuous

1
w : [0,T] > V with B(%%) : [0,T] » V. absolutely continuous and

satisfying w(o) = Uy Bw (o) = Bu2,

(6.27) B + aw(t) e v, t e [0,T]
d ~,dw dw _
(6.28) L) * B(gp + Aw(t) =0, a.e. t e [0,T].

Remark 6.20 The special case that results from choosing C =
0 is of interest and should be compared with (6.21). Specifi-
cally, (6.26) and (6.27) become first order equations in which
the time derivative acts on the nonlinear term, Also, the in-
vertibility of A was never used in solving (6.26). It is suf-
ficient for existence of a solution of (6.26) that B + AA be
coercive for each A > 0; however, uniqueness may then be lost
(e.g., take A = 0).

We briefly sketch some applications of the results of this
section to initial-boundary value problems. Let G be a bounded
domain in R" with smooth boundary 3G, wp(e) be the Sobolev space
of ue Lp(G) with each qu = 8u/8xj € Lp(G), 1<J<n, and
Dou = u, Let functions Nj(x,y) be given, measurable in x € G
and continuous in y ¢ Rn+1 . Suppose for some C > 0, ¢ > 0, and
ge LY, qg=p/(p-1), p 2 2, we have

n
(6.29)  IN(xap)| S€ L Iy 1P+ g(x),
3=0
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n
n

(6.31) IoN;Ooylyy + 9(x) 2 clyiP,
J=0

for x € G, y,ze R™', and 0 < k < n. Let Du = (Du: 0 % j <
n}, let V be a subspace of wp(e) containing C:(G), and define

]
N:V-~>V by

(6.32) <Nu,v> = E J N.(x,Du(x))D.v(x)dx, u,v e V.,
j=0 'a J

The restriction of Nu to C:(G) is the distribution on G given by

- n
(6.33) Nu = -.Z

L g0+ B (- 00).

1

The divergence theorem gives the (formal) Green's formula

<Nu-Nu,v> = J u,
40N

v(s
au a
on 3G is given by == jg]Nj(-,Du)nj and (n], . . oes nn) is the

]
unit outward normal. The operator N : V>~V 1is bounded, hemicon-

)Jds, v € V, where the conormal derivative

tinuous, monotone and coercive; cf. Browder [3, 6], Carroll [14]
or Lions [10] for details and construction of more general op-

erators.

Example 6.21 Let m(+) ¢ L*(G), mo(x) 20, a.e. x e G, and
L
define M : V >V by

(6.34) <Mu,v> = J m(x)u(x)v(x)ds, u,v £ V.,
G

Let u, € V with N(uo) = m]/zh for some h ¢ L2(G). Then each of
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Theorems 6.2, 6.6, and 6.16 gives existence of the solution to

the elliptic-parabolic equation
(6.35) Dt(m(x)u(x,t)) + N(u(x,t)) =0

with initial condition m(x)(u(x,o)-uo(x)) =0, xe G, and a
boundary condition depending on V. If V = wg(G), the Dirichlet
boundary condition is obtained, while the (nonlinear) Neumann
condition 3u/3N = 0 results when V = wp(G). The third boundary
condition is obtained by adding to (6.32) a boundary integral.
The assumption that m(+) is bounded may be relaxed; cf. Bardos-
Brezis [1] or Showalter [5]. If we add the boundary integral
jBGU(S)V(S)dS to (6.34) and if V is the space of functions in

W (G) which are constant on 3G, we obtain the boundary condition

of fourth type (cf. Adler [1])

{u(s,t) = f(t), S €36
’ {
f(t)+JaGuua%Ltl ds = 0, t >0,

This problem is soived by Theorems 6.9 and 6.16. By adding ap-
propriate terms to (6.32) and (6.34) involving integrals over
portions of the boundary (or over a manifold S of dimension n-1
in G) one obtains solutions of equation (6.35) subject to degen-

erate parabolic constraints

Dt(m(s)u(s,t)) - div(a(s)grad u(s,t))
_ _ du(s,t) se s,

oN ?

where the indicated divergence and gradient are in local
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coordinates on S and the coefficients are nonnegative {cf.

Showalter [2, 5]).
Example 6.22 Choose V = wi(G) and define

n
<Au,v> = ) [ D.u(x)D.v(x)dx, u,v eV,
=1l¢d

<Cu,v> =

|
Il t~13

f
(x)D, D. d
it JGCJ( )D;u(x)Dsv(x)dx,
where each cj € Lm(G) is nonnegative, 0 < j < n, LetB =N be

given by (6.32) and assume {6.29), (6.30) with 1 < p < 2. Then

Theorem 6.18 gives a unique solution of the equation

n ~ n 2
(6.36) Dt{Dt[cov - _Z Dj(chjV)] + N(v)} - _=]Djv 0,

J=1 J
with Dirichlet boundary condition and appropriate initial condi-
tions. Note that ﬁ is given by (6.33). Special cases of (6.35)
include the wave equation (4.9), the viscoelasticity equation
(4.10), parabolic equations (4.6), and Sobolev equations with

first or second order time derivatives.

Example 6.23 A special case of (6.36) has been of consid-
erable interest, Specifically, we choose C = 0, Nj =0 for 1<
j $n, and No(x,s) = m(x)lslp-] sgn (s) where m ¢ L™(G) is non-

negative and 1 < p £ 2. This gives the equation

(6.37) D (m(x)|v(x,t}[P7" sgn v(x,t)) - Av(x,t) = O.

The change of variable u = |v|p'] sgn{v) puts this in the form
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(6.38) D (m(x)u(x,t)) - (q-1) E D.(Ju]9%D.u(x,1)) = 0
551 9 J

with g - 2 = (2-p)/(p-1) 2 0. This equation arises in certain
diffusion processes; it is "doubly-degenerate" since the leading
coefficient may vanish and the power of u may vanish independent-
ly. Note that the second operator is not monotone so the equa~

tion is not in the form of (6.21).

Remark 6.24 Theorem 6.2 is from Brezis [1]. See Lagnese
[10] for a variation on Theorem 6.6 and corresponding perturba-
tion results on such problems. Theorem 6.9 is contained in the
results of Bardos-Brezis [1] along with other types of degenerate
evolution equations not covered here (cf. Lagnese [5] for cor-
responding perturbation results). Theorems 6,15, 6.16 and 6.18
are from Showalter [5]. We refer to Aronson [1], Dubinsky [1],
Lions [10] and Raviart [1] for additional results on (6.38)
and, specifically, to Strauss [1] for a direct integration of

semilinear equations of the form (cf. (6.37))
(6.39) Dt(N(u)) + A(t)u(t) = f(t)

with nonlinear N and time-dependent linear {A(t)} in Banach
spaces. Cf. Brezis [1], Kamenomotskaya [1], and LadyZenskaya-
Solonnikov-Uralceva [2] for a reduction of certain (Stefan) free-
boundary value problems to the form (6.39), hence, (6.36), and
Lions-Strauss [8] and Strauss [2, 3] for additional results on

(6.28). Crandall [3] and Konishi [1] have studied special cases
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of (6.39) by different methods.

3.7 Doubly nonlinear equations. We briefly consider some

first order evolution equations of the form
(7)) SMu(t)) + N(u(t) = 0

where (possibly) both operators are nonlinear. Some sort of de-
generacy is desirable (and necessary for applications) so we
specifically do not make assumptions on M of strong monotonicity
as was done in Theorem 3.12. Moreover, we can include certain
related variational inequalities (e.g.,-by letting one of

the operators be a subdifferential) so we permit the operators to
be multivalued functions or relations as considered in Section
3.6.

Let B be a real reflexive Banach space, let D(M) and D(N) be
subsets of B and suppose M : D(M) - B and N : D(N) > B are
multivalued functions. That is, M ¢ D(M) x B and N € D(N) x B.
(When M and N are functions, we identify them with their respec-
tive graphs,) We call the pair of functions u,v a solution to

the differential "inclusion"
]
(7.2) v(t) e M(u(t)), -v (t) & N(u(t)), a.e. t 20,

if u(t) € DM} D(N), v : [o,») - B is Lipschitz continuous,
hence, strongly-differentiable a.e., and (7.2) holds. If M and
N are functions, then (7.1} is clearly satisfied a.e. on [0,»),

whereas if only M is a function we replace the equality symbol in
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(7.1) by an inclusion. Let D(A) 8 MID(M) ) D(N)] denote the
indicated image in B and define a relation A : D(A) -~ B by the
composition A = N o M']. That is, {x,y) € A if and only if for
some z ¢ D(M) /1D(N) we have (z,x) € M and (z,y) ¢ N. Thus, if

the pair (u,v) is a solution of (7.2), then it follows that
(7.3) -v (t) e A(v(t)), a.e. t >0,

so we call a Lipschitz function v : [0,») ~ B a solution of (7.3)
if v(t) € D(A) and (7.3) holds. Conversely, if v is a solution
of (7.3), the definition of A shows there exists for each t > 0
a u(t) € D(M) N D(N) for which the pair u,v is a solution of
(7.2).

Theorem 7.1 Let M and N be multivalued operators on the

real reflexive Banach space B; assume M + N is onto B and that

Il (xq=xp)+s{y=y,)ll 2 |l X1'X2||, for s > 0,
(7.4)
and (Zj’yj) €N, (Zj’xj) e M, j=1,2.

Then for each ug € D{M) N D(N) and v, € M(uo), there exists a

solution pair u,v of (7.2) with v(o) = Vo

Proof: By the preceding remarks it suffices to show (7.3)
has a solution. From (7.4) it follows that the same estimate
j) ¢ A; this is precisely the
statement that A is accretive (cf. Crandall-Liggett [2]).

holds for s > 0O whenever (xj,y
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Furthermore, it is easy to check that (x,y) € I + A if and only
if for some z € D(M) fAD(N) we have {z,y-x) € N and (z,x) € M,
so it follows that the range of I + A equals the range of M + N,
Thus I + A is hyperaccretive and it follows from results of
Crandall-Liggett [2] that (7.3) has a unique solution for each
Vo € D(A). QED

Remark 7.2 If UsVy and UysV, are solutions of (7.2),

then it follows ||v1(t)—v2(t)|l S||v1(o)—v2(o)
-1

. If v1(o) =
v2(o) and either M—1 or N ' is a function, then the solution pair

u,v is unique.

Remark 7.3 In a Hilbert space H with inner product (-,-)H,

the condition (7.4) is equivalent to

- - >
(x1 x2, y1 y2)H 20 whenever (Zj’xj) e M
(7.5)

and (zj,yj) e N for j = 1,2.

For linear functions this is the right angle condition (cf.
Grabmuller [1], Lagnese [2, 4, 8], and Showalter [6, 14, 15, 16,
20]).

The difficulty in applying Theorem 7.1 to initial-boundary
value problems arises from the assumption {7.4) which relates
the operators M and N to each other. A desirable alternative
which we shall describe is to place hypotheses on each of the

operators independently. The results of Section 3.6 were

231



SINGULAR AND DEGENERATE CAUCHY PROBLEMS

obtained when the leading (linear) operator was symmetric. The
nonlinear analogue of this is that this operator be a differen-
tial or, more generally, a subdifferential., Recall that the
subdifferential at x € E of an extended-real-valued lower semi-
continuous convex function ¢ on the locally convex space E is the

]
set 3¢(x) of those u € E verifying

dly) = ¢(x) > <u,y-x>, y e E.

(Cf. Brezis [3], Ekeland-Teman [1], Lions [10].) Some examples
will be given below. In general, the subgradient 3¢ is a multi-

valued operator from (a subset of) E into E .

Theorem 7.4 Let V1 and V2 be real separable reflexive
Banach spaces with V1<: V2, V1 is dense in V2, and assume the
inclusion is compact. Let 9 and ¢y be convex continuous (ex-
tended) real-valued functions on V1 and V2, respectively. As-
sume their subdifferentials N = a¢1 and M = 3¢, are bounded (cf,
Section 3.6) and that N is "coercive" in the sense that
1im inf {¢1(U)/[u|5 : l“lV] + o} > 0 for some p, 1 < p < o,
Suppose we are givel u, € V1, Vo € M(uo), and f € Lm(o,T;V;)
with df/dt & L%0,T;V,) where 1/p + 1/q = 1. Then there exists
a pair of functions u ¢ Lm(o,T;Vl), Ve Lm(o,T;V;) with dv/dt €

Lm(o,T;V;) satisfying
(7.6) v(t) & M{u(t)), f(t) - vl(t) e N(u(t))

a.e. on [0,T] and v{o) = Vo
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Remark 7.5 The compactness assumption above limits applica-
tion of Theorem 7.4 to parabolic problems; cf. examples below,
We illustrate some applications of the preceding results

through some examples of initial-boundary value problems.

Example 7.6 Let V = wl’p(G), the closure of C:(G) in
w]’p(G), p 2 2, and define the nonlinear elliptic operator
T:V-~ VI by (6.32), where the functions Nj(x,y) satisfy (6.29),
(6.30) and (6.31). For j = 1,2, let m;(+) ¢ L"(6) be given with
mj(x) >0, a.e. x € G, and let k > 0. Set H = L2(6) so Ve HC
VI, and define D(M) = {ue V : mu + sz(u) e H}, M(u) = mu +
m2T(u); D(N) = {ueV: (k/m](°))Tu e H}, N(u) = (k/m](°))T(u).
Then M and N are (single-valued) nonlinear operators in the
Hilbert space H., To apply Theorem 7.1, we first verify (7.4)
in its equivalent form (7.5). For u,v € D(M) /1 D(N) we have
)2

(a-M N )y = K<T()=T0) e + [ Gy (x)/my () (T(w)-T(v)
G

dx 2 0, so (7.4) holds. To show M + N is onto H, let w € H and

consider the equation

(7.7) [(m])z/(m]m2+k)]u + T(u) = [m/ (mm,+k) .

§

The coefficients all belong to L™ (G), so the operator on the left
side of (7.7) is monotone, hemicontinuous and coercive from V

to VI, hence, surjective, so there is a solution u ¢ V of (7.7).
Since m](-) and mz(-) are bounded, it follows from (7.7) that

ue D(M) ) D(N) and that M(u) + N(u) = w. Thus, Theorem 7.1

gives existence of a weak solution of an appropriate initial-

233



SINGULAR AND DEGENERATE CAUCHY PROBLEMS

boundary value problem containing the equation
(7.8) D, tm (x,t)u(x,t)4my(x)TLul} + ﬁ;%;7¢[u] =0

where T[u] is given by (6.33), MNote that the coefficients m

and m, may vanish over certain subsets of G.

Example 7.7 We apply Theorem 7.4 with V] = w;’p(e) and V2 =
n
(@), & £ py 440 = 1 [ 1 10ju001Pax, 6w -

1/af |u(x)|%dx, and appropriate f : [0,T] » w']’q(G). The cor-
G
responding subdifferentials are given by 3¢](u) =
n
=2 o-2
{-jZ]Dj(|Dju|p Dju)}, ue Vys3 3¢,(u) = {Ju|" “u}, u e Vys SO
we obtain existence of a solution of an initial-boundary value
problem for the equation
-2 g 2
(7.9) Dt(|u|°‘ u) = ¥ D.(|D,ulP™D.u) = f(x,t).
j=1 J J J
Example 7.8 Let V1’V2’ ¢] and f be given as above but

[

define ¢2(u) = 1/a J |u+(x)|adx, ue V2, where u+(x) = 0 when

G
u(x) < 0 and u+(x) = u(x) when u(x) = 0. Theorem 7.4 gives

existence for an initial-boundary value problem for

+a-1 0 P20 1y -
(7.10) D (u)* - jZ]Dj(|Djul D;u) = f(x,t).

Example 7.9 Let V2 be a Hilbert space and set ¢2(u) =
max {1/2,|u|ﬁ/2}. The subdifferential is given by
0, lulH <1,
M(u) = < {au:0sag1},  Ju| =1,

u, luly > 1.
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If Vq and N are given as in Theorem 7.4, there is then a solu-
tion pair u,v which satisfies the abstract "parabolic" equation
-u.(t) + f(t) € N(u(t)) where [u(t)| > 1 and the "elliptic" equa-
tion f(t) e N(u(t)) where Ju(t)] < 1.

Remark 7.10 Theorem 7.1 is an extension of the correspond-
ing result of Showalter [4] when M and N are functions. Theorem
7.4 and Examples 7.7, 7.8 and 7.9 are from Grange-Mignot [1].
See Barbu [1] for related abstract results and examples where M
and N are subdifferentials which are assumed related by an as-
sumption similar to (7.4) but distinct from it. The equation
(7.9) was studied directly in Raviart [2]; cf. Chapter IV.1.3 of
Lions [10]. A doubly-nonlinear parabolic-hyperbolic system is
discussed by Volpert-Hudjaev [1], and parabolic systems are
considered by Cannon-Ford-Lair [3]. These last two references
indicate how certain doubly-nonlinear equations arise in applica-
tions; for applications of equations of the type (7.8), cf.

Gajewski-Zacharius [2].
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Chapter 4
Selected Topics

4,1 Introduction. In this chapter we will discuss
briefly some further questions arising in the study of singular
or degenerate equations. Some of the presentation will be in a
more "classical” spirit and we will follow the original papers
in describing problems and results. Proofs will often only be
sketched or even omitted entirely, mainly for reasons of space
and time, but suitable references will be provided {without at-
tempting to be exhaustive in this respeﬁt); further relevant in-
formation can often be obtained from the bibliographies in these
references. The material considered by no means covers all pos-
sible questions and has been selected basically to be represen-
tative of the historical development and to reflect some current
research trends in the area. Thus we will deal for example with
Huygens' principle, radiation problems, initial-boundary value
problems, nonwellposed problems, etc., among other questions;
the section title will indicate the problem under consideration.

4.2 Huygens' principle. Referring back to (1.4.8)
and (1.4.10) with AX = -A Tet us suppose m + p = %-— 1 with T a
function so that wm+p(t) is given in terms of a surface mean
value ux(t) * T of T(g) over the sphere [x-£| = t (here we also
want m 2 - 1/2 to insure the uniqueness of w"). Thus if
n - (2m+1) = 2p+1 is an odd positive integer the value wm(t) =

Wwh(x,t) depends only on the values of T{&) on the surface
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|x-g| = t, as was noticed by Diaz-Weinberger [2] and Weinstein
[4]1. To picture this one can draw the retrograde "1light" cone
from (x,t) € R" x R to the singular hyperplane t = 0 and look

at the intersection. We note here that for the wave equation
where m = - 1/2,n = 2p + 1 is required above which reproduces a
well known fact. This phenomenon furnishes an example of what is
known as the minor premise in Huygens' principle. In general
Huygens' principle can be enunciated in various versions involv-
ing other features as well (cf. Baker-Copson [1], Courant-Hilbert
[11, Hadamard [1], Lax-Phillips [1]) but we shall simply say

here that a linear second order partial differential operator
L(ka’Dt) (k = 1,...,n) is of Huygens' type in a region Q@ C

R" xR if the value u(x,t) of the solution of Lu = 0 at a point
(x,t) € Q depends only upon the Cauchy data on the intersection
of the space Tike initial manifold with the surface of the
characteristic conoid with vertex (x,t). This formulation and
others play an important role in wave propagation for example and
the matter has been studied extensively. (Inaddition to the above
references we cite here only some more or less recent work by
Bureau [1], Douglis [1], Fox [1], Giinther [1; 2; 3; 4; 5],
Helgason [4], Lagnese [11; 12; 13], Lagnese-Stellmacher [14],
Solomon [1; 2], and Stellmacher [1].) In dealing with Huygens'
principle for singular problems we will follow Solomon [1; 2] and
only make a few remarks about other work on singular problems
later.

Thus Tet us consider the operator
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2mt]

(2.1) B = 325t + L

a/3t + c(t)

where Rem > - 1/2 or m = - 1/2 and c(-) is a complex valued
function belonging to L](o,b) (0st<b<=). We deal here with the

[}
singular Cauchy problem in D

(2.2) EW™ = ad™ J™0) =TeD'; u?(O) =0

where A is the Laplace operator in R" and since ¢ (*) ¢ Ll um

is required only to satisfy the differential equation almost

everywhere (a.e.). Solomon [1; 2] employs the Fourier technique
developed in Chapter 1 and looks for resolvants ZT(t) satisfying
(2.2) with T = 8. Setting A2 = g yi = |y|2 one then looks for a

function Z"(y,t) = FXZT(t) satisfying
(2.3)  E""+ %"= 0; I"(y,0) = 1; Z0(y,0) = O

A solution zm(y,t) of (2.3) is obtained by converting (2.3) into
an integral equation as in Chapter 1 (cf. (1.3.24)) and using a
Neumann series such as (1.3.25) (cf. also Section 1.5). Using
techniques similar to those of Chapter 1 the solution is obtained

in the following form (see Solomon [1], pp. 226-231).

Theorem 2.1 The unique solution of (2.3) for t € [0,b] and

ye R" can be written as
(2.4)  Z"(y,t) = R"(y,t) + W"(y,t)

where R" is given by (1.3.6) with z = t|y| and ﬁm is a "smooth"
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perturbation satisfying the estimate
(2.5 [P(.t)] € e (ragRem + 2! ft|c(g)|dg

|y| 0
for |y| > A, and 0 S t < b (k0 and A, are independent of {y,t)).
The corresponding unique resolvant ZT(t) € El has support con-
tained in the ball |x| < t and u™(t) = Zg(t) * T is the unique

solution of (2.2) in D .

Remark 2.2 The estimate (2.5) is useful in determining the
order of the distribution Zg(t); in particular for Rem + 1/2 >

n- 11t follows that ZT(t) will be continuous in x for 0 < t <b,

We will say now that (2.2) is of Huygens' type if and only
if the support of ZT(t) is concentrated on the sphere |x| = t.
Note here that this definition depends on the choice of initial
data when m = - 1/2 and n = 1 for example since the one dimen-
sional wave operator is not a Huygens' operator in the sense
previously delimited for arbitrary Cauchy data u{x,0) and
O)(1x 1242,

ut(x,o). Solomon uses the distributions & v =

0,1, 2, ..., defined for t > 0 and n > 1 by (cf. Ge]fand—gilov

(51)

(V) 141242 _ =DV 8, n-2:
(2.6) < ([x]7-t%), o(x)> = 5 { 70 30 lp ¢]}p=td§2n
Here |x| = p, 8 denotes the n - 1 angular variables (61, e
en_1) in polar spherical coordinates with ¢(p,8) = ¢(x), and o

is the surface of the unit sphere in R". For n = 1 one writes

240



4. SELECTED TOPICS

(V) 12 .y - 1 (1 v
(2.7) s\ (|x]°-t) = E_l—t_l{ﬂ a/ax] [8(x+t) + S(x-t)]

2 .2
Ix]%-

clearly the distributions &"( t®) are concentrated on the

sphere |x| = t. Then the main result in Solomon [1] is given by

Theorem 2.3 A necessary and sufficient condition for (2.2)
to be of Huygens' type is that n - (2m+1) = 2N + 1 with N 2 0 an
integer while there exists a resolvant Zg(t) of the form

N
¢2m av(t,m)é(N V) (1x|2-t2)
v=0

(2.8) Zg(t) = c,

where Cy = (-1)Nw'n/2F(m+1), a, = 1, and for v=1, ..., N (if

N > 0) one has E'm(aN) 0 with

(2.9)  4ta + va ) = £™(a

v-l)

\"4
Remark 2.4 We recall from Gelfand-Silov [5] that for v =
0, 1, 2, .

(2.10)  FstV(1x|%-t?) = E(v,n)|y|2“'"+zz‘/2("'2)'va1 (2)

§(n-2)-v

where c(v,n) = %(—1/2)“(2w)n/2 and z = t|y|. Then examples to
illustrate Theorem 2.3 can be given as follows. Suppose first
that Zg(t), expressed by (2.8), has precisely one term (i.e.,
a, =0 forv >1). Then by (2.9) E"m(ao) = c(t) = 0 since a, =

1 and we are in the EPD situation. Let N be the integer involved

n (2.8) with of necessity n - (2m+1) = 2N + 1 an odd positive
integer as indicated. To check the form of Zg(t) given by (2.8)

in this case we use (2.10) to obtain Zm(y,t) = cmt'zmaoFé(N) .

241



SINGULAR AND DEGENERATE CAUCHY PROBLEMS

%(n-Z) - N = m this yields Z"(y,t) =

ZmF(m+])z'me(z) = R™(y,t) as required by (1.3.6). Next suppose

(|x|2-t2) and since

that (2.8) has no more than two terms (i.e., a, =0 forv?2 2).

From (2.9) and the requirement E'm(a]) = 0 we have ta; + a; =

E_m(ao) = c(t) or c(t) = (ta;) and E'm(a]) -=ay + (1£2m)a] N
c(t) a,; = 0. Combining these two equations one has a; +
1 2 . .
1-2m) 2 2

] _ _'| ! B _
At (ta]+ a])a] =t [ta-2ma; + 2] = 0 or ta,

2ma] + Eé af = for o, any constant. Making a change of vari-

t N 1 [0
ables a](t) =-% w /w this becomes - Zﬂ%lw - —%-w = 0.

W
Now in terms of w we have a](t) = %—(109 w)' with c¢(t) = 2 (log

w)" and suitable w can be found as follows. If a, = 0 we get

w(t) = o+ Bt2m+2

where a and B are arbitrary constants but may
depend on m. In order that the resulting ay be such that (2.8)
satisfies the resolvant initial conditions we must have o % o
while for m = - 1/2 it is necessary that B = 0. If o/ $ 0 the
solutions w of the differential equation for w will be of the

/2 = om+1, and

form w = exp (-t/2) F(—-;; - k; t) where T = ta
F (vy; 8; t) is any solution of Kummer's confluent hypergeometric
equation tF" + (8 - t) F' + YF = 0. Upon examination of the be-
havior of such F(y;8; t) as t -~ o it follows that for the result-
ing a to satisfy the appropriate initial conditions F must be
taken in the form F = a]F1 (- %@ -k; )+ 8 F2 (- %; - k; 1)
where F2 is any solution of the Kummer equation independent of
1F1» @ + 0, and when m = - 1/2 (i.e. k = 0) B =o0. Further ob-

servations can be found in Solomon [1:2].
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Remark 2.5 We will deal here explicitly only with some work
of Fox [1] on the solution and Huygens' principle for singular

Cauchy problems of the type

A
m 2m+1 m 0 m k my _,m m_
(2.11) utt + T ut -k=1 (uxkxk + X—2 u’) = L)\ u =90
k

with data u"(x,0) = T(x) and u?(x,o) = 0 given on the singular
hyperplane t = 0. Except for some results of Giinther (loc. cit.)
most of the other work on Huygens' principle mentioned earlier
deals with nonsingular Cauchy problems so we will not discuss it
here; Giinther's work on the other hand is expressed in a more
geometric language which requires some background not assumed or
developed in this book and hence the details will be omitted.

2 . E (xk - Ek)z be the square of the

Lorentzian distance between a point (x,t) € R" xR and a point

Thus let T =T (x,t; £} = t

(£,0) in the singular hyperplane t = 0. We denote by (2.11)_m
the equation (2.11) with index -m and observe that if u™™ satis-

Mo ¢72M "M satisfies (2.11) (cf. Remark

fies (2.11)_ then u
1.4.7). Fox composes the transformations z = F/4xk£k and Yy ©
(gk/xk) r (k=1, . . ., n) to produce new variables (z,T,y) in
place of (x,t,£) (suitable regions are of course delineated). A
solution of (2.11)__ is sought in the form u "= Fm'g' V(z)
where V(z) is to be determined. After some computation one shows
that such u™™ are solutions if V(z) satisfies a certain system of
n ordinary differential equations and such a V(z) can be found in

the form V = FB where FB is the Lauricella function given for
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|Zk| < 1 by (cf. Appell - Kampé de Fériet [11)

(2.12)  Fp=Fy (o, T-0, m - % +1, z)

© S
) s— I
= = P
p-l,...,ps 0 (m-%"'], Zpk) k ] k
1

Y
(akspk)(]'akspk)z k

1
i k

where ay = %-+ %-(1-4Ak)]/2 and (2,q) = r(2+q)/r(2). The series
defining FB converges uniformly in (a,m,z) on closed bounded
regions where |z, | <1 and m - %—+ 1#0, -1, -2, .... One notes
that since o and 1 - o, are complex conjugates for Ak real,

the products (ak,pk) (1-ak,pk) are real, and thus F, is real when

B
m and the A are real. If Rem > %—- 1and |x | > |t] >0 it
makes sense then to consider as a possible solution of the sin-

gular Cauchy problem for (2.11) the function.

(2.13) uT(x,t,T) =k T(g)vT(x,t,g)dE

" JS(x,t)
where k_ = F(m+1)/wn/2F(m-%~+1) and v?(x,t,g) = |t|'2mFm'%' Fg
is a solution of (2.11). We assume here that T{<) is suitably
differentiable and denote by S(x,t) the region of the singular
hyperplane t = 0 cut out by the characteristic conoid with

vertex (x,t) (thus S(x,t) is an n-dimensional sphere of radius
|t| and center x in this hyperplane determined by I'(x,t,£) 2 0).
As described, with |x | > |t| 2 0, S(x,t) does not intersect any
of the hyperplanes Xy = 0 and lies in an octant of the hyperplane
t = 0. Note here also that the factor F(m—%v#])'] in km can be
played off against (m-%~+1, zpk)'] in FB to remove any dif-

ficulties when m--% +1 = -p. Now for Rem > %—+ 1 one checks
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easily that LTUT = k T(g)L’;v’;(x,t,g)dg =0 when T (+) is

o]

S(x,t)
continuous, since all boundary integrals which arise will vanish.
Using analytic continuation and after several pages of interest-

ing analysis Fox shows that (for m # -1, -2, ...) if T(-) ¢

C{2+p} n

, where p is the smallest integer such that Rem 2 5 =P -1,
then uT, defined by (2.13), satisfies the singular Cauchy prob-
lem for (2.11) ({2+p} = 0 if 2 + p < 0). Uniqueness of the

solution u™ X,t,T) is proved for 2m + 1 2 0 and it is shown that

A
Huygens' principle holds when, for some nonnegative integer p,
the parameters m and A, satizfy m = % =p-1, = ak(]—ak)
where o, € {1,...,p+1}, and % @ Sn+p. Form# -1, -2, ...
the solution uT, although not unique for Rem < - 1/2, is the
unique analytic continuation of the unique solutions uT with
2m + 1 > 0 and the criteria above for Huygens' principle re-
main valid (in fact necessary and sufficient).

4.3 The generalized radiation problem of Weinstein. One
can read extensively on the subject of radiation for the wave
equation and we mention for example Courant-Hilbert (1], Lax-
Phillips [1], Sommerfeld [1], and references there. The usual
formulation (cf. Weinstein [6]) prescribes a function f(*) with
f(t) = 0 for t < 0 and asks for a function u satisfying Uy =

Au in R" x R with u(x,0) = u.(x,0) = 0 and such that

t(

. ou _
(1) lim [W do, = - w f(t)

, W = 2ﬂn/2/F(n/2), and the integral in

where r? = |x]2 R

n o2
1 1
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(3.1) is over a sphere of radius r in R". When n = 3 for
example one has the well-known solution u(x,t) = f(t-r)/r and
one is led to look for solutions which depend only on t and r.
This entails a radial form of A and yields a singular problem in

two variables

. _ n-1
(3.2) Ugg = Ypr ¥ T Uy

with u=0 for r 2 t and for r = 0> u should have a singularity

(n-2).

of the form r~ Now replace n - 1 by 2m + 1 and consider a

generalized radiation problem

m _ m 2m + 1 m
(3.3) Utg = Ypr ¥ 77 Up

where we recall that if u" satisfies (3.3) with index m then

Moo 2N catisfies (3.3) with index -m (cf. Remark 1.4.7).

u
If 2n+ 1 =n - 1 then 2m = n - 2 so that a solution u™" finite
near r = 0 corresponds to a solution u" with a singularity of
the desired type as r -~ 0. Thus, thinking of suitably negative
values of Rem (see Theorem 3.2 for the precise range Rem < 0),
"(

one looks for a solution u'(t,r) of (3.3) satisfying

(3.4) uM(t,0) = F(t); u"(t,t) = 0O

where f(t) = 0 for t < 0. This type of problem has been studied
in particular by Diaz and Young [1; 8], Lieberstein [1; 2],
Lions [4], Suschowk [1], Weinstein [6], and Young [6; 12].

We will follow Lions [4] here in treating the generalized
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radiation problem because of the generality of his approach and
the use of transmutation operators, which serves to augment
Section 1.7. First, as a sketch of the procedure, we consider

for Rem > - 1/2

(3.5 V(tr) = ey j 2(22-r2)" /2 (Mt 2)dz

Then, if u™ satisfies (3.3) with u"(t,r) = 0 for t < r, it
follows that vtt = VTr with vM(t,r) = 0 for t S r. Consequently
v(t,r) = F'(t-r) where FM(s) = 0 for s < 0. Now (cf. below)

(3.5) can be inverted in the form

(3.6) t r) _T_ﬁ:T7§7 [» (z -r -m-3/2 m(t z)dz

For Rem < - 1/2 (3.6) is valid in the usual sense while both
(3.5) and (3.6) can be extended by analytic continuation to
every m ¢ €. Putting F"(t-z) in (3.6) and integrating by parts

one obtains

1 '
(3.7) u"(t,r) = T(=m172) f:(zz_rz)-m-l/Z(Fm) (t-z)dz

For Rem 2 0 such um(t,r) do not converge when r -+ 0 unless Fm,
and hence um, is identically zero. For Rem < 0, on the other

hand, as r - 0

1 -2m-1 !
(3.8) u"(t,r) +Wf;z MMy (t-2)dz

so that, recalling the definition of the R - L integral in

Section 1.6 (cf. (1.6.20) for example),
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r'(-2m)

T(-m+172 ENET) = ()

(3.9) u™(t,0) =

is required. Since I_Zm(Fm) = I-2m-1(Fm) we have F™ determined
uniquely by M= (r(-m+1/2)/T(-2m)) 12m+](f) and putting (3.9)

n (3.7) one obtains

(3.10)  u™t,r) = —(—;ﬂf (22-p2)™M=1/2(12Mey (4 7y 47

which is equivalent to Weinstein's solution (cf. Weinstein {6])
and demonstrates uniqueness also.

In Lions [4] the formal calculations above are rephrased
and justified in terms of transmutation operators as follows.
(We recall from Section 1.7 that B transmutes P into Q if QB =
BP.) Now Let 2 = (0, ) and D:(Q) = D+(Q)I be the space of
distributions on Q with support Timited to the right (cf
Schwartz [1] and note that D _(Q) signifies C” functions with
not necessarily compact support but equal to zero near the
origin). For simplicity we will occasionally use a function
notation for distributions in what follows in writing for
example <T,¢> = <T(x),¢(x)>. Then for T ¢ D Q) set MT(g) =

2

T(VE) which means that <MT,¢> = <T(x), 2x¢(x")> for ¢ ¢ D(Q

(

)
it is easy to see that M is an isomorphism D (Q ) - I(Q
(or D.(a,) > D.(2,)) with inverse M''S(x) = S(x°) (i.e.,
s 00> = <s(e), 5 €78y (VE)> for v e May)). A simple
calculation yields M[ﬁT = (4 ¢ Dé + ZDg) MT for T ¢ D'(QX) (here

= d/dx, etc.). Now referring to the standard spaces D ,
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D+, and D_ over R as in Schwartz [1], we set for p € C, Yp =

p-1
(/7)) PEOPT) [
Schwartz [1]). Then Yp = o for x < 0, Y-z = D“a for % a non-

[l
e D, (the notation Pf is explained in

negative integer, p > Yp H D, is analytic and Yp * Yq =

Yp+q' Set now Zp(x) = Yp(-x) so that Zp e D » Zp =0 for x > 0,
Z-z = (-1)2026 for 2 a nonnegative integer, etc.; in particular
DZp = -Zp_1 and pr = -pr+1. Finally one notes that T » S*T is

a continuous Tinear map D (@) » D_(Q) when S € D_ is zero for

x > 0 (formally (S*T) (x) = I S{x-y)T(y)dy) and we denote by
' ' X
z; e L (D.(0), D.(a)) the map T » Z*T..

2 ,2m+ 1

_ X
Now let Lm = DX + "

D, (Lm =L in Chapter 1) and note

that Lm : D_(@) » D_(Q) is continuous. For m e € Lions con-

- *
structs a transmutation operator f_ =M 1o Z_m_]/2 ° Mof D

2

2

[l
into Lm on D_(Q) (i.e., HD" = LmHm) such that Hp

] '
D_(@) ~ D_{Q) is an isomorphism and m + H_ is an entire analytic
-1

) )
function with values in L(D_(Q), D_(Q)). The inverse Hm = Hm =

Ml Z;+1/2 o M, which necessarily satisfies DZHm =HL_ on

[l
D_(Q), enjoys similar properties and in function notation one

can write

(3.11) H T(x) =.TT:%TT7§T Ixy(yz-xz “m=3/27(y)dy; Rem < - 1/2

00

(3.12) HT(x) = TTH%T7§T Ixy(yz-xz)m-1/2T(y)dy; Rem > - 1/2

For other values of m € ¢ one extends these formulas by analytic

continuation. It is important to note that if T e D_(Q) is
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zero for x > ar then HmT = HmT = 0 for x > ar- Lions phrases

the generalized radiation problem as follows.

Problem 3.1 Let PR x R be the open half plane (t,r)
where r > 0 and Q€ P be the set @ = {{t,r) e P; t 2 r}. For
Rem < 0 find u™ € DI(P) satisfying (3.3) with supp u" < Q and
um(-,r) -~ f in D; as r > 0 where f ¢ D; is given with f = 0 for
t <0.

The problem is restricted to Rem < 0 since it is shown not

to be meaningful for other m € ¢ (cf. Lions [4]). There results

Theorem 3.2 Problem 3.1 has a unique solution um depending
1 [}
continuously in D (P) on . f ¢ D, (f as described).
Formally the proof goes as follows. One writes VU=

(1 Qme)um so that v™ is given by (3.5) for Rem > - 1/2 say

. m _.m
(cf. (3.12)). Applying 1 ® H, to (3.3) one has Vit = Vep and

v e D.(P) has its support in Q. Consequently VI(t,r) = F'(t-r)
as before with F" ¢ DI and F"(s) = 0 for s < 0. Since Hp is an
isomorphism with H;] = Hh we have u" = (1® Hm)vm and for Rem <
- 1/2 say we obtain formally by {(3.11) (cf. {3.6))

m 2 ® 2 2\-m-3/2
(3.]3) u (t,Y‘) = ﬂ—m frZ(Z -r )

= (S * FM)(t)

FM(t-z)dz

2)-m—3/2

where <S;,¢> = (2/F(-m-1/2))f z(zz-r ¢(z)dz for r > 0,

r
Rem < - 1/2, and ¢ € D_. The function m » S; can in fact be

extended by analytic continuation to be entire with values in
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! r
D, and, for Rem < 0, asr~0, Sm > (2r(-2m-1)/r(-m=-1/2)) Y—Zm-]
[}

in D,. Hence from (3.13) as r > 0

m, ., 2F(—2m-1) - m
(3.14) u(*,r) Tem172) T-em1 * F

and this limit must equal f (cf. (3.9)). Consequently the ex-

plicit solution of Problem 3.1 for Rem < 0 is

m _ r(-m-1/2) r
(3.18)  u'(t,r) = é%IT?ETTT Sm* Yomer * f

which can be rewritten in a form equivalent to (3.10) (cf.

Lions [4]).

4.4 Improperly posed problems. Improperly posed problems
such as the Dirichlet problem for the wave equation or the
Cauchy problem for the Laplace equation have been studied for
some time and have realistic applications in physics. For a
nonexhaustive list of references see e. g., Abdul-Latif-Diaz
[1), Agmon-Nirenberg [3], Bourgin [1], Bourgin-Duffin [2],
Brezis-Goldstein [5], Dunninger-Zachmanoglou [2], Fox-Pucci [2],
John [2], Lavrentiev [2], Levine [1; 5; 10; 111, Levine-Murray
[12), Ogawa [1:;2), Pucci [2), Sigillito [4), and a recent survey
by Payne [3] (cf. also - Symposium on nonwellposed problems and
logarithmic convexity, Springer, Lecture notes in mathematics,
Vol. 316, 1973). In particular there has been considerable
investigation of improperly posed singular problems by Diaz-
Young [10], Dunninger-Levine [1], Dunninger-Weinacht [3],

Travis [1), Young [4; 5; 7; 8; 11], etc. and we will discuss
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some of this latter work.

The most general abstract results seem to appear in
Dunninger-Levine [1] and we will sketch their technique first.
Let E be a real Banach space and A a closed densely defined
linear operator in E (as is well-known the use of spaces E over
R instead of ¢ involves no loss of generality). We shall denote

by op(A) the point spectrum of A.

Definition 4.1 The E valued function um(-) is said here to

be a strong solution of

(4.1) ul, - gﬂfi—l u? 4 A" = 0

on (0,b) if u™(+) is norm continuous on (0,b), u™(+) € CZ(E)

weakly, and for any e ¢ E

2m + 1 moa's 4 <Aum, e s> =0

T Yeo
1 2 1

g2 e> = g—f <", e >, etc., and writing

(4.2) <urgt, e > +

on {o0,b}, where <u$
o(t) = t2™1 || au™t)l| form > - 1/2 with o(t) = t || Au™(t)]|
for m < - 1/2, one has p(*) € L](o,b).

The nonsingular case m = 1/2 is encompassed in forthcoming
work of Dunninger-Levine and will not be discussed here. Set
now p = |m| and let {An} denote the positive roots of
Jp(/ig b) =0form20orm< - 1/2; if - 1/2 <m< 0 let
{),} denote the positive roots of J_p(/X; b) = 0. Then there

results
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Theorem 4.2 Let u™ be a strong solution of (4.1) as in
Definition 4.1 with u™b) = 0. If m> - 1/2 assume

2m+1
™)

u$||+ t{|u"||)> 0 as t > 0 while for m < - 1/2 assume
that t[j ufll + |lu" || > 0as t +0. Then u" = 0 if and only if
the sequence {i } satisfies A ¢ op(A) for all n.

The proof can be sketched as follows. Consider the eigen-

value problem

. 2
(4.3) o+ %-w + (X - 970 g =0

0; tl/zw(t) bounded

(4.3) ¥(b)

and take for m 2 0 or m < - 1/2 the solutions

(4.5) v, (L) = Jp(/X;t); Jp(fﬁgb) =0

n,p

while for - 1/2 < m < 0 choose the solutions

(4.6)  wy o(8) =3 (R ): I_(/b) = 0

n,-p

Assume first that, for some n, A_ ¢ op(A) with Avn = )2 v_and

n nn

set

t'me(/ﬁht)vn; m20orm<-1/2

(4.7)  u"(t) = { P
t J_p( Athvps -1/2 <m <0

Such u™ are strong solutions of (4.1) in the sense of Definition

4.1 and their behavior as t + 0 is correct, as specified in the

hypotheses of Theorem 4.2. Hence An e o (A) for some n implies

Y
the existence of nontrivial u™ satisfying the hypotheses of
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Theorem 4.2 which means that u™ = 0 in Theorem 4.2 implies
Ap ¢ cp(A) for all n,
On the other hand suppose An ¢ cp(A) for all n and denote

by , the appropriate functions y p OF v - from (4.5) - (4.6).

Suppose u™ s a strong solution of (4.1) satisfying the condi-
tiosn of Theorem 4.2 and for some & € (o,b) set

b
(4.8) V() = J ™1y (£)u"(t)dt
I}

The uﬂ(é) are well defined by virtue of the hypotheses on "

™1y () = of

t2m+1)
n

and one notes easily that, as t - 0, t for

m> - %whﬂe t"'”wn(t) = 0(t) form < - T+ Hence t

>
tm+1¢ (t)Hum(t)|| £ L](o,b) and vﬁ = lim vﬂ(a) exists in the

norm topology of E as:§ -~ 0. Since A is closed it can be

n

passed under the (Riemann type) integral sign in (4.8) so that
vﬂ(a) e D(A) and furthermore yg = lim A vﬂ(a) exists as § > 0

under our hypotheses on p(t) in Definition 4.1 with Avﬂ = yw by
1

[}
the closedness of A, For e e E fixed a routine calculation
yields now

b .
(3.9)  <afio)e’s = [ ™y (£)ae) e sat
§

b 2
_ m+1 d~ m ! 2mtl d .m !
= ‘J(St \Un(t){‘d_t?'<u (t),e > + '—t—‘d—t<u (t),e >}dt

= 1™y (1) <aM(t) e > ™)

] 1 b
) b ()<m(t) e’ >,

b .
F A J ™1y (£)<u™(t),e >dt
n S n
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1
and in view of the hypotheses one obtains as § = 0 <Av2,e > =

. m ! m ! m '
Tim A?<vn(6),e > = A <V,se >, Therefore <(A-A_)v,se > = 0 for
]
any e € E which implies Av? = Anvﬂ which by our assumptions
means vg = 0. But one knows that the Bessel functions Yy form
a complete orthogonal set on (o,b) relative to the weight func-
1
tion t(cf. Titchmarsh [3]) and hence from <vﬂ,e > =
m
(

b m+1 m ' !
J t wn(t)<u (t),e >dt = 0 for all n it follows that <u (t).e >

0 ] ]

=0 for any e € E from which results um(

t) = 0.

Other boundary conditions of the type u?(b) + aum(b) =0
are also considered in Dunninger-Levine [1] and uniqueness for
weaker type solutions is also treated. One notes that very
little is required of the operator A in the above result., The
technique does not immediately extend to more general locally
convex spaces E because of the norm conditions.

We go now to some more concrete problems which are related
to Theorem 4.2 in an obvious way. First we sketch some results
of Young [4] on uniqueness of solutions for the Dirichlet prob-

lem relative to the singular hyperbolic operator defined by

nn .. ..
- 2m+1 - ij iJ
LU U + U % % (a uxi)xj + cu where ¢ and the a

are suitably smooth functions of x = (x], o oes xn) and m is
real. Let @ ¢ R" be bounded and open, Q =2 x{o,b), c{x) 20
for x € Q, and assume the matrix (aij) is symmetric and positive
definite; sufficient smoothness of the boundary T of Q will be

taken for granted.
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Theorem 4.3 Let Lmum =0 in Q with u" = 0 on I'x[o,b) and
u"(x,0) = 0. Suppose m > - %—and assume u" ¢ CZ(Q)/7 C](ﬁ).
Then u™ = 0 in Q.

The proof uses the fact that any solution u™ of Lmum =0
belonging to C2 for t > 0 and to C] for t 2 0 necessarily satis-
fies u?(x,o) =0 for any m # - %—(cf. Fox [1], Walter [1]). Now

integrate the identity

(4.10) 2u L u = (U2 ) a1ju u +cu2) + gigmillﬂz
tm t isj X'i Xj t t t
-2 (aiju u,)
P43 X3 t xj

over the region QS = ox{o0,s), s < b, and use the divergence

theorem to obtain, when Lmu =0,

(4.11) f [(u§+ ) aijuX u +cu2)vt-2 ) aldy utvj]do
80, i, i%j ii X
f

+ 2(2m+1)J

2 -
tdxdt =0

d-é—' (_‘><

Qs

where v = (v], . s s vn,vt) is the exterior normal on BQS =
boundary Qs' Putting our u™ in (4.11) and using the boundary
conditions plus u?(x,o) = 0 we have the equation J [(urz)2 +

ijm m my24 1,
)} a uxiuxj + c(u) ]Lt=s

1, m2 2 .
dx + 2(2m1) J E(ut) dxdt = 0. Since
(aij) is positive definite, ¢ 2 0, and

Sm> - %—both of these

integrals are zero and by continuity the first term then van-

m

ishes for 0 < s < b. Hence u™ = 0 in Q since u"(x,0) = 0.

Theorem 4.4 Ifm < - %~then any solution u" ¢ CZ(Q) n

¢\ (@) of Lmum =0, with u"

0 on the boundary of Q, vanishes
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identically if and only if J_ (/K—b $ 0, where the An are the
nonzero eigenvalues of the problem Av = - X .jvx.)x + cv in
Q with v = 0 on T. = t

There is an obvious relation between Theorems 4.4 and 4.2
where A corresponds to the operator determined by Aw = cw -
- § (@Yw ) in E = L%(2) with w = 0 on I. The proof of
T;egrem 4.3 gges as follows. First suppose there is a nonzero
eigenvalue A such that J_m(/igb) = 0 with corresponding eigen-
function v (x). Then uM(x,t) = t_md_m(/igt)vn(x) satisfies
Lmum = 0 and the specified boundary conditions. Conversely if
(/Tgb) + 0 for any A one integrates the identity wlou -

uM w = (u w—uwt‘fgﬂLluw z [zalJ (u, w-uw, )1, over the cy-
i i

linder Q enclosed by Q between the planes t = s and t = b (0 <
s < b). Here M is the formal adjoint of Lm given by me = Wy -
(2m+1) ( w/t - Z(ale ) + cw. By the divergence theorem one

obtains

(4.12) JQb(wLmu-ume)dxdt
S

= 2m+1 _
= Jaqb[(utw-uwt-+————uw N Xa (u 1w uw, )vj]do

i
Now let Lmum =0 with U™ = 0 on the boundary of Q and set
wm(x,t) = tm+]J_m(J7;t)vn(x) where A is a nonzero eigenvalue
of the problem indicated in the statement of Theorem 4.4, It
is easily checked that mem = 0 so that the left hand side in

(4.12) vanishes and since w" = 0 on T we have

257



SINGULAR AND DEGENERATE CAUCHY PROBLEMS

t=b
mm mm, 2m+l mm _
(4.13) JQ(utw U Wyt U )|t=S dx = 0

Now as s = O wT and %wm are bounded with um(x,o) = 0 (and
u?(x,o) =0 form# - %0; the evaluationin (4,13) at t = s tends
to zero and we obtain
(4.14) ™1y (/X’b)f uM(x,b)v_(x)dx = 0
-m'n Q t n

since um(x,b) = 0. Consequently forn=1,2, ...
J uT(x,b)vn(x)dx = 0 and by the completeness of the vn(cf.

9]
Hellwig [3]) it follows that u?(x,b) = 0. Now one may integrate
m

(

(4.10) over Qg and since u (x,b) = u?(x,b) = 0 there results

(4.15) JQ[(u$)2+zaiju2iu2j+c(um)2] t=sdx

- 2(2m+1)f ; %(UT)dedt
Q

Since m < - %-it follows that for any s, 0 < s £ b,

S

. X
1]
theorem is immediate.

J [(u?)2+2a13u$ um +c(um)2]l dx = 0 and the conclusion of the
9] j t=s

Young also treats the Neumann problem by similar techni-
ques. Travis [1] uses a different method with more general
boundary conditions and breaks up the range of m into parts
corresponding the the Weyl Timit circle and Timit point situa-
tions (cf. Coddington-Levinson [1]). Thus one considers the

singular eigenvalue problem
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(t2m+1¢ )

+ t2m+1A

(4.16) =05  0<t<b;

b
[ o)1t < = 8(b) = 0
o}

It can be shown that for m £ -1 or m 2 1 the problem (4.16) has

a pure point spectrum and the eigenfunctions form a complete

orthogonal set on (o,b) relative to the weight function t2m+].

+1

Furthermore if f has finite t2m norm on (o,b) (i.e.,

b
;
J t2m+]|f(t)[2dt < ®) then the Fredholm alternative (cf. Hellwig

) ]
t2m+1

0
[3]) holds for the nonhomogeneous equation ( ¢ ) +

At2m+]¢ = t2m+]f. In the 1imit circle case - 1 <m < 1 there is
always a pure point spectrum with a complete orthogonal set of

2m+1)

eigenfunctions ¢n(re1at1ve to the weight function t for the

problem
(4.17)

Tim t2™ (o, 7.t) = 0
t->0
] ] .
where W(¢,¥,t) = ¢p - ¢ ¥ and ¥ = Y(t,A ) is a possibly complex
valued solution of the differential equation in (4.17) for A =

2m+]w(w,@}t) - 0 as t » 0 (such y exist)., The

Ao satisfying t
Fredholm alternative also holds again for the corresponding
nonhomogeneous problem,

We take now aij(-) € C] in a bounded open set Q CRn with

sufficiently smooth boundary ' where a'd = ad' and fa1J£1£j 2

u|g|Z while c(+) is continuous in Q. Let 3/9v denote the
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transverse derivative 3/3v Za x) cos (v,xj) a/axi where v
i ; - 2mt1
is ?he exterior normal to T and Tet Lmu = Ugy + =T U
ij
NE! uxi)x. + cu as before.

Theorem 4.5 Let m ¢ (-1,1) and Lmum =0 in @ x (0,b) with

me Cz(ﬁ'x (o,b)), aum/av + o(x)um =0onT x (o,b), and

b
um(x,b) = 0 for x € Q while J 2m+1| t)| dt < », Then
= 0 if and only if J /X"b) $ 0 where p |m| and {An} is
the set of positive e1genva1ues of -} (a Vy )x + cv = v in
LN

Q with 9v/3v + ov = 0 on T.

The proof is similar in part to that of Theorem 4.4. Thus,
if there exists a positive eigenvalue An of the elliptic problem
indicated in the statement of Theorem 4.5 such that Jp(vﬁ;b) =
0 then set u™(x,t) = t'me(JX;t)vn(x) where v is the eigen-
function corresponding to An. Evidently u" satisfies Lmum =0
and the required boundary conditions. On the other hand suppose
Jp(/xgb) $ 0 for all A, as described. Let U™ be a solution of
Lmum = 0 satisfying the conditions stipulated in Theorem 4.5.
Let ¢n(t) and vn(x) be the normalized eigenfunctions for the
(4.16) and the elliptic eigenvalue problem in the statement of
Theorem 4.5 respectively. Then the set {¢n(t)vk(x)} is a
complete orthonormal set for the real Hilbert space H =
Li(Q x (0,b)) = {h; Jb { 2m+1 2(x t)dxdt < «} and since u" €
H we can write um(x,t? =Q Zaij¢j(t)vi(x) with the standard for-

mula for %0 Now define hi(t) = J um(x,t)vi(x)dx so that
Q
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' 1
(£ Thy(£)) + 2, t2™Th.(t) = 0, h.(b) = 0, where 1, is the
eigenvalue corresponding to Vi By the Parseval-Plancherel

b
formula f t2m+]h$(t)dt = Z|aij]2 < o and therefore hi(t) =0 if

0
Ai is not an eigenvalue for the problem (4.16), i.e., if
Jp(/i;b) + 0. Consequently u™(x,t) = 0 since the vi(x) are com-

plete in LZ(Q) and u™ is continuous in Q x (o,b).

Remark 4.6 We remark first (cf. Travis [1]) that for m < -1
the problem treated in Theorem 4.5 is equivalent to Lmum =0,
"

au™av + ou™=0on T x (o,b) and um(x,b) = u (x,0) = 0,

Remark 4.7 Let us note in passing that, in general, if L
is a singular second order ordinary differential operator in t
such that the numerical initial value problem Lu + Anu =0,
u(o) = 1, ut(o) = 0, has a solution un(t), when A is an eigen-
value of the (closed densely defined) operator A in a Hilbert
space E, while the corresponding set of eigenvectors {en} of A
forms a complete orthonormal set in E, then formally the E

valued function w(t) = J a u (t)e satisfies Lw + Aw =

n
Zan(Lunﬂnun)en = 0 with w(o) = Zanen and wt(o) 0. Choosing

the a  to be the Fourier coefficients of w(o) = e £ D(A) one has
a formal solution of Lw + Aw = 0 with w(o) = e and wt(o) = 0.
Uniqueness questions could then be handled in terms of the

2

] *
L™ formal adjoint L of L and the operator A ., Indeed given

that Ae = A(ja e ) = Ja Ae = ]a A e for ec D(A) witha =
(e,en) we have (Ae,ek) = Zanxn(en,ek) =a = Ak(e,ek) S0
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* * — *
e € D(A ) with A e = Akek' Hence A has a complete ortho-

normal set of eigenvectors ey with eigenvalues Xk. Assume then
' j—
that the problem L v + AV = 0, v(b) = 0, vt(b) = 1 has a solu-

[} ] ]
tion vn(t) on [o,b] for any b. Here, given Lu =u + au +

)
Bu with u{o) = u (o) =0 and v a C2 function satisfying v(b) =

) )
0 and v (b) = 0 we define L v=v =~ (av) + Bv and observe
b [} b [} b L} b 1
that J u v dt = -u(b) + J uv dt while J au vdt= - J u{av) dt.
(0] ~ 0 ~ Al 0 (0]

Now write w = anvn(t)en where e = w (b) = anen is an arbitrary
element of some dense set (e.g., D(A*)). Then if (L+A)w = 0

]
with w(o) = w (0) = 0 we consider formally the equation

(4.18) J ((LeAdw,w)dt = T J (Lw.v e )dt
0

b *
+Ib Jo(w,vnA e )t = Ib {-(w(b),e )

b

b, _
+ Jo(w,L vnen)dt} + anJO(w,xnvnen)dt

b '
anfo(w,(L v e, dt - Ib (w(b) e )

~(w(b),fb e ) = ~(w(b),e)

It follows that w({(b) = 0 for any b and hence w = 0. The calcu-

lations have been formal but they apply to realistic situations.

Theorem 4.8 Assume m e (-1,1), Lmum =0, u" e Cz(ﬁk(o,b)),

Bum/Bv + o(x)um =0on T x (o,b),um(x,b) = 0, and

2m+1

Tim t W(u™,P,t) = 0 as t ~ O where ¥ is a possibly complex
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valued solution of the differential equation in (4.17) for some

2m+]w(w,$;t) =0ast-0. Thenu" =0

AO = ) satisfying 1im t
if and only if 2, i A where %, and X, are the eigenvalues of
(4.17) and the elliptic problem in the statement of Theorem 4.5
respectively.

The proof here is similar to that of Theorem 4.5. Finally

Travis [1] states some results related tp Theorems 4.3 and 4.4

and some comparison is instructive (see Remark 4.10).

Theorem 4.9 Let u ¢ Cz(ﬁk(o,b)) satisfy Lmum = 0 and
auM/ov + o(x)u™ = 0 on I x (0,b), while um(x,o) = um(x,b) =0

for x ¢ 2 when m < 0 or ]um(x,o)l <« and u™(x,b) = 0 for x € Q

when m > 0. Then u" = 0 if and only if Jp(/Anb) $ 0 where the
An are the eigenvalues of the elliptic problem in the statement

of Theorem 4.5 and p = |m

Remark 4,10 Theorem 4.9 (rephrased for u™=0onT x [o,b))
is independent of Theorem 4.3 for example even when - 1/2 < m <

m . . .=
0. In Theorem 4.3 one assumes u, is continuous in © x [o,b]

t
m

whereas Theorem 4.9 assumes only continuity of ug on 2 x (o,b).

Consider for example u™(x,t) = t-me(t) sin x for = 1/2 <m< 0

. .. m 2m+1. m m _ . m _m _
which satisfies uy, + =g - u, = 0 withu (0,t) = u (m,t)

_2m_]) as t - 0 so the hy-

0 and u"(x,0) = 0. But urE(x,t) = 0(t
potheses of Theorem 4.3 do not hold whereas Theorem 4,9 (re-
phrased) will apply. On the other hand Theorem 4.3 does not
require conditions att = b for m > -%—. Similarly Travis [1]

states a result for a Neumann problem (ut(x,o) = ut(x,b) = 0)
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related to a theorem of Young [4].

4.5 Miscellaneous problems. Various Cauchy problems with
boundary data for EPD equations have been studied and we will

mention a few results. First consider (cf. Fusaro [4])

m 2Zm+ 1 m m _
Ugg + T Up = Uy, = 0, where

m>-1/2,0<x<m, t >0, um(x,o) = f(x) (f ¢ C2), u? (x,0) =

Problem 5.1 Solve Lmum =

0, and u™(0,t) = u"(m,t) = 0. One assumes also f(o) = f(m) = O.
Then by separation of variables Fusaro [4] obtains a

solution in the form

o -m
(5.1) u™(x,t) = T(m+1) ) b, Fg% Jm(nt) sinnx
n=1
2 ™
where b_ = |= f(x) sinnx dx. Using the formula (1.3.7) with
n IR

a change of variables ¢ = n/2 - 6 and putting this in (5.1) one
obtains

(5.2) M(x,t) = sfl o+l -1 n/2[f( ot si + flxot si
i ,t) = Bl7 7, x+t sin ¢) + f(x-t sin¢)]

. cos2m ¢ d ¢

where B denotes the Beta function. There results (cf. Fusaro

(41)

Theorem 5.2 A unique solution of Problem 5.1 is given by
(5.2).

The proof of Theorem 5.2 is straightforward and will be
omitted. If one sets £ = sin ¢ and M(x,0,f) = % [f(x+o) +

f(x-c)] we can write (5.2) in the form
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-1
(53)  w"(xt) = 263, me g [ - AMix,et e
0

which coincides with {1.6.3). We remark here that f is extended
from (0,m) as an odd periodic function of period 2w.

Another type of such "mixed" problems is solved by Young
[9]; here mixed problem means mixed initial-boundary value prob-
lem and does not mean that the problem changes type. Thus con-

sider

m 2Zm+ 1 m m m _
tt T Tt Ut T Uxx T Uy T

f(x,y,t) in the quarter space x > 0, t > 0, - @ < y < =, where

Problem 5.3 Solve Lmum =y

m>-1/2, u™(x,y,0) = u?(x,y,o) = 0, and u™0,y,t) = g(y,t) with
fe CZ, ge C2, and g(y.o) = gt(y,o) = 0.

At points (x,y,t) where x 2 t > o0 the presence of g is
not felt and Young takes the solution in the form given by Diaz-
Ludford (3]

o2m szﬂf(im,r)

m - £ -
(5-4) u (X,y,t) - T D R]/2§m+]/2

1

F(n+5, m, %, %)d«idndr

where D is the domain bounded by T = 0 and the retrograde char-
acteristic cone R = (t-r)2 - (x-g)2 - (y—n)2 = 0 (t-10) with
vertex at (x,y,t) while ﬁ = (t+r)2 - (x-g)2 - (y—n)z. In the
region where 0 < x < t formula (5.4) no longer gives the solution
since it does not involve g and Young uses a method of M. Riesz
as adapted by Young [1; 2] and Davis [1; 2] to adjoin additional
terms to the u™ of (5.4). We will not go into the derivation of

the final formula but simply state the result; for suitable m
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the technique can be extended to more space variables. The

solution is given by the formula

+
(5.5) My ot) = 2o < e F(m+ 5y my 3y R)dednd
. u (X,y,t) = — —5~—775— Fmt5, My 55 = ndt
T Jp RV/ZRMI72 2 2 3
22m sz”f(é,n,r) 1 R

S e Flmtg, m

1
= s By A )dgdndr
T D* R1/2 RTH/Z 2

Ry

22m+1 3 T2m+1

27 3 n, ]
T TE W jT T72Am+1/2 Fn+gs m 7> 7)dne

70

O

where R, = (t-r)2 - (x+£)2 - (y-n)z, R, (resp. Ro) denotes the
value of R (resp. R) for £ = 0, ﬁ* = (t+r)2 - (X+€)2 - (Y-n)z,
D* is the domain where £ > 0, T > 0, bounded by the retrograde
cone with vertex at (-x,y,t) (thus D*c: D), and T is the region
intercepted on the plane £ = 0 by the cone R = 0 (t > Q). Note
that for x 2 t > 0 D* and T are empty while as x > 0 the inte-

* * ~
grals over D and D cancel each other since D -~ D and (R,R) ~

(RysRy)
Theorem 5.4 The solution of Problem 5.3 is given by (5.5).

It is interesting to note what happens when all of the data

in an EPD type problem are analytic. Thus for example Fusaro

[3] considers for t >0, 1 < k<n, and x = (x], e oes xn)

m 2mtl m _ m
(5.6) Upp ¥ g Uy T F(x,t,u ,Dku ,ut,Dkut,DkDgu )s

um(x,o) = f(x); u?(x,o) =0
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where Dk = a/axk while F and f are analytic in all arquments.

Theorem 5.5 The problem (5.6) has a unique analytic solution

form# -1, -3/2, -2, . . . .

Corollary 5.6 If F(x,t,u, . . .) = 6(x,u,D u,D Dyu u) +
g(x,t) + h(t)ut with g even in t and h odd in t, then the problem
(5.6) has for all m ¥ -1, -3/2, -2, . . . a unique analytic solu-
tion and it is even in t. Ifm = -3/2,-5/2, . . . there exists
a unique solution in the class of analytic functions which are

even in t.

Fusaro [3] uses a Cauchy-Kowalewski technique to prove these
results and we refer to his paper for details. One should note
also the following results of Lions [1], obtained by transmuta-
tion, which illustrate further the role played by even and ¢
functions of t in the uniqueness question for EPD equations.

Let E, be the space of ¢” functions f on [0,®) such that
f(2n+])(o) = 0 (thus f ¢ E, admits an even C* extension to
(-~,»)) and give E, the topology induced by E on (-wo,o). Let H
be a Hilbert space and A a self adjoint operator in H such that
for all h ¢ D(A) (Ah,h) + aHlﬂlz 2 0 for some real a. Setting
2 2m+1

L =D

m D and putting the graph topology on D(A) Lions

proves

Theorem 5.7 For anyme ¢, m ¢ -1, -2, -3, . . ., there

exists a unique solution u" € E, @ D(A) of Lmum + A" = 0 for
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t 2 0 with um(o) = h e D(A”) and u?(o) = 0.

Here 7 denotes the projective limit topology of Grothendieck
(cf. Schwartz [5]) which coincides with the ¢ topology since E,
is nuclear. Ifm#% -1, -3/2, -2, . . . and E, is the space of
C” functions on [0,») with the standard E-type topology then any
solution u" ¢ E+_&% D(A) of Lmum +M" =0 satisfying um(o) =
h e D(A”) and u?(o) = 0 is automatically in E, é% D(A) so the
corresponding problem in E_ &% D(A) has a unique solution. For

the exceptional values m = -1, -2, -3, . . . Lions [1] proves

Theorem 5.8 Let m = -{p+1) with p 2 0 an integer so that

2m + 1 = -(2p+1). There exists a unique solution J" e E+<X%D(A)
of L + a" = 0, W"(0) = ul0) = . . . = 0ZP*"0) = 0,

D§p+2um(o) = he D(A”), and D§p+3um(o) = 0.

In connection with the uniqueness question we mention also
the following recent result of Donaldson-Goldstein [2]. Let H
be a Hilbert space and S a self adjoint operator in H with no
nontrivial null space. Let Lm = 02 + gﬂ%l D again and define u"

to be a type A solution of
(5.7) Lmum + 52um = 0; um(o) = he D(SZ); um(o) =0

if U7 e Cz([o,m),H) and a type B solution if u" ¢ C]([o,m),H)f7
C%((0,%) ,H).

Theorem 5.9 The problem (5.7) can have at most one type A

solution for m 2 -1,
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Further, by virtue of (1.4.10) and the formula u™ = t2",™

{cf. Remark 1.4.7), for m < -1/2 not a negative integer there is

no uniqueness for type B solutions. We note here that for -1 <

t-2mu-m - O(t—Zm)

~2m-
m 2)

m< -1/2 we have 1 < -2m < 2 and u™ = -+ 0 as

t > 0 with u] = 0(t2™ 1y 5 0 put ufl, = ot + o s0 such a

t
-1 we Took at u'] = tzu] with

u™ is not of type A. For m
u'](o) = uE](o) = 0 and uzl £ Co([o,w),H). However from Remark
1.4.8 we see that the solution u-] arising from the resolvant

R—] (which could be spectralized as in Section 1.5) does not have
a continuous second derivative in t unless the logarithmic term
vanishes, which corresponds to 52h = 0 in the present situation.
Thus in general (5.7) does not seem to have a type A solution for

m= -1 and if it does the solution arises when 52h = 0. Indeed

if L_]u'] + 52571 = 0 with u'](o) = h and uzl(o) is well defined
“Teoy = 14 -1 R S I B T I
then utt(o) lim 1/t uy (t) as t ~ 0 so LU = Uy U =

2 -1 2 2

-s24"1 - 0 which means that S%u”'(0) = S%h = 0 (cf. Weinstein

[3]), which is precluded unless h = 0. MNote that if h % 0 with

s%h = 0 then u”! T(t) = h + t%h will both be solu-

(t) = hand u~
tions of (5.7).

We go now to some work of Bragg [2; 3; 4; 5] on index shift-
ing relations for singular problems. This is connected to the
idea of "related" differential equations developed by Bragg and

Dettman, loc. cit., and described briefly in Chapter 1 (cf.

Section 1.7). Consider first for example (a 2 0, u 2 1)

(5.8)  w{@m) 4 2y (e, el (aa)
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This is a radially symmetric form of the EPD equation when v =
n for example since the radial Laplacian in R" has the form
1

= p2 4+ 0=l initi
AR Dr + - Dr' As initial data we take

(5.9) u(a’“)(r,o) = T(r); uia’“)(r,o) =0

From the recursion relations of Chapter 1 (cf. (1.3.11), (1.3.12),
(1.3.54), (1.3.55), (1.4.6), (1.4.10), and Remark 1.4.7) we

see that there are certain "automatic" shifts in the a index.

For example the Sonine formula (1.4.6) with ay = 2p + 1 and

a, + a, = 2m + 1 yields for a 20, a, > 0

1-a,-a %" 2 a

¢ 1% J 22y 2 !
0

(a]+a2aU)

(5.10) u (r,t) = .2

(ay5m)
‘u (r,n)dn

+1 a
where €l p = 2/8(—%——-, —%J. Bragg [5] obtains this result using

Laplace transforms and a related radial heat equation

(5.11) =M o+ E:l-v‘rf; W(r,o0) = T(r)

U
vt rr r

The connection formula for a 2 1 is given under suitable hypo-

theses by (cf. Bragg [5], Bragg-Dettman [6])

_(at]
(5.12) u(a’“)(r t) = F(a+1)L {s a; )v“(r 1)
. s 2 ’4s S+t2

2
(here L;] is the inverse Laplace transform with kernel eSt ) and
(5.10) follows directly by a convolution argument. Similarly,

setting Iv(z) = exp,(—%-vni) Jv(iz) and Ku(r,i,t) =
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(2 Tr "W/ 2gH/2 oyp [-(r2+52)/4t11u/2'1(

r(x)

that vu(r,t) = J Ku(r,i,t)T(E)dE satisfies (5.11), and using
0

(5.12) there results from known properties of I,

r&/2t), one can show

Theorem 5,10 Let a 2 0 with u(a’U) a continuous solution

of (5.8) - (5.9). Then

' t
(5.13)  ul@¥ gy = yl@W) ey o L %fou(a’m(r,n)ndn

satisfies (5.8) = (5.9) with index u + 2. On the other hand a

direct substitution shows that if u(a’4-U)(r,t) satisfies (5.8)

with index 4 - p and u(a’4—U)(r,o) = ru-zT(r) then u(a’U)(r,t)

rz'uu(a’4'U)(r,t) satisfies (5.8) - (5.9) except possibly at r
0.

Using the index shifting relations indicated on a and u
Bragg [5] proves a uniqueness theorem for (5.8) - (5.9) when
a2 0andyu21 and constructs fundamental solutions. The idea
of related differential problems such as (5.8) - (5.9) and (5.11)
(or (5.8) - (5.9) with index changes), having connnection for-
mulas 1ike (5.12) (or (5.10)), has been exploited by Bragg [2;

3; 4] to produce a variety of index shifting relations involving

at times the generalized hypergeometric functions

o H?(a.) n
(5.14) F (a,8,2) =1+ §J —L0Zo
Pq n='| H('I](Bj)n n:

where (o) = o(o+1) . . . (otn-1), TP (y,) =1 if p =0, and
n 1''3'n

none of the Bj are nonpositive integers (cf. Appell-Kampé’de
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Feriet [1]). We will mention a few results in this direction

without giving proofs and here we recall that if 8 = zDZ then
W= qu satisfies the differential equation
{en?(e+3j-1)-zn$(e+aj)}w = 0. Thus let P(x,D) =
A A
1 n - = <
Xa)\(x)D1 .« . D " where D = a/axk and |A]| = in <m. Let

= q - _ +P
8,(q,8,t,D,) = tD, H1(tDt+Bj 1) and 6,(p,a,t,0,) tn1(tot+aj).
Then given P(x,D) and Q(x,D) of the type indicated with orders
%, and 2, respectively and r = max (p+11,q+12) with p £ q one can

prove for example (cf. Bragg [4])

Theorem 5.11 Let u e C" in (x,t) for t > 0 with u and all
its derivatives through order r bounded and 1im u(x,t) = T(x) as
t > 0. Suppose Q(x,D)8;(q,8,t,D;)u - P(x,D)SZLp-l,a,t,Dt)u = 0.
Then for o > 0 the function v(x,t) = P(ap)_1(Oe'ooab'1u(x,to)do
satisfies 091(q,8,t,Dt)v - Pez(p,a,t,Dt)v = 0 and v(x,0) = T(x).

Similarly, under suitable hypotheses, if [Q8,(q-1,8,t,D¢) -

PO,(pooistyD,)Ju = 0 and w(x,t) = t qF(Bq)u;1[s- (x93,
then one has [091(q,8,t,Dt) - Pez(p,a,t,Dt)]w = 0, Index shift
formulas in (p,q), o, and B are also proved and when applied to
EPD equations for example will yield some of the standard recur-
sion relations. We note that under the change of variables

g = %-tz the EPD equation u,, *+ %—ut = Pu becomes [£D (€D, +

£
E%l-l) - gPJu = 0. Using the R-L integral, continuous index
shifts in o and B for similar abstract problems are treated in
Bragg [3] where a more systematic theory is developed; nonhomo-

geneous problems are studied in Bragg [2].
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We conclude with a few remarks about nonlinear EPD equations.
In Keller [1] it is shown that for m > 0 and certain nonlinear f

the Cauchy problem

a2

(5.15) Lmu =u,, * ug - ¢ Au = flu);

tt t

u{x,0) = uo(x); ut(x;o) =0

does not have global solutions in ]22 % (0,0) for arbitrary ini-
tial data Uge Levine [2] studies this problem for - %-< m<0
and x e @ c R" with u=0on T x [0,T) where @ is bounded with
sufficiently smooth boundary I'. Let f be a real valued C] func-
tion and for each real ¢ ¢ Cz(ﬁ) define G(¢) = J (J¢(X)f(z)dz)dx.
Set (¢,y) = fQ¢(x)w(x)dx and assume there is a cgnsgant a>0
such that for all ¢ ¢ Cz(ﬁ)

(5.16) 2(20+1)G(¢) < (¢,f(9))

It can be shown that if, for some o > 0 and some monotone in-
creasing function h, f{z) = |z|4a+]h(z), then (5.16) is valid.
Assuming the existence of a local solution for each Uy € Cz(ﬁ)

vanishing on T Levine proves

Theorem 5.12 Let - %—< m < 0 and assume (5.16) holds. If
u:Qx [o,T) + R] is a classical solution of Lmu = f(u) with

u{x,0) = uo(x), ut(x,o) =0,and u=0o0nT x [0,T), while

G(u.) > 1 | vu Izdx, then necessarily T < = and uz(x,t)dx _—
0 2 q O Q

as t T,
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