LECTURES ON
FLOW IN POROUS MEDIA

R. E. SHOWALTER

Department of Mathematics
The University of Texas at Austin
Austin, Texas 78712

May, 1997

1. MoDELS OoF POROUS MEDIA

A porous medium G in R™ is filled with a fluid, either liquid or gas, and this fluid
diffuses from locations of higher to those of lower pressure. We begin by modeling
this situation. Let p(x,t) denote the pressure of fluid at the point z € G and time
t > 0, and denote the corresponding density by p(z,t). The quantity of fluid in an
element of volume V' is [, ¢(x)p(x,t) dz, and this defines the porosity c(x) of the
medium at the point z. This is the volume fraction of the medium that is accessible
to the fluid. The flux is the vector flow rate J (z,t), so the rate at which fluid moves
across a surface element S with normal 7 is given by [ J(z,t) - 7dS. Then the

conservation of fluid takes the integral form

2/ c(x)p(m,t)d:v-l—/ J-7dS = f(z,t)dz GoCGqG,
ot Jg, 8Gy Go

in which f(x,t) denotes any volume distributed source density. When the flux and
density are differentiable, we can write this in the differential form

8 — -
ac(m)p(m,t)—kv-.](x,t):f(:v,t) , reqG .
The statement that the flux depends on the pressure gradient is Darcy’s law, and
it takes the form
k(z)

f(a:,t) = —Tpﬁp(x,t) :

This defines the permeability k(x) of the porous medium. The value of £k is a
measure of the ease with which the fluid flows through the medium, and p is the
viscosity of the fluid. That is, % is the resistance of the medium to flow, and pu
is a corresponding property of the fluid. Finally, the type of fluid considered is
described by the equation of state,

p=s(p) .

Typeset by AMS-TEX
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The function s(-) which relates the pressure and density is monotone, in fact, it is
usually chosen to be strictly increasing. However in problems with partial satura-
tion, it is necessary to let s(-) be a graph, since at p = 0 fluid may only partially fill
the pores and thereby give an effective density within the interval [0, p(0)] related
to the fraction of fluid present. By substituting the appropriate quantities above
we obtain

0 k(x)

5 C(@)s(p(, ) - V- 765@(3;,@) = f(z,t), z€G,t>0,

where we denote by S(-) the antiderivative of s(-). That is, we set S(p) = [J s(r) dr.
If we introduce the variable u = S(p) we obtain the generalized porous medium
equation

0 - k()=
(1.1) ac(x)a(u(x,t)) -V ﬂVu(a;,t) = f(z,t), reG,1>0,
7
with a(-) = s(-) o S71(-).
The classical case is obtained by choosing an equation of state that is specific to
the flow of gas. This corresponds to the choice of the function

s(p) = pop”

in the equation of state where py and « are positive constants with o < 1. If
the medium is homogeneous, so the porosity and permeability are independent of
z € G, then this leads to the classical porous medium equation

" ula+ oy

(1.2) Ap™ =T,

where m = 1+ 1. Other situations in which (1.2) arises include boundary layer
theory, where m = 2, population models, interstellar diffusion of galactic civiliza-
tions, and certain problems of plasma physics. The nonlinearity satisfies m > 1 in
all but the last of these examples, and there 0 < m < 1. The situation with m > 1
is called the slow diffusion case, and 0 < m < 1 is the fast diffusion case. In the
former case disturbances have a finite speed of propagation, unlike the linear case
m = 1, and any solution which initially has compact support will continue to have
compact support for all later times.

The simplest situation is that of a slightly compressible fluid. Here the equation
of state has the form s(p) = exp co p where co > 0 is the compressibility of the fluid.
Then (1.1) simplifies to the linear parabolic equation

(1.3) —cp— TAp: f.

This is formally the same as the heat equation, i.e., it is (1.2) with m = 1. The
corresponding initial-boundary-value problems for (1.3) will be discussed in Section
3.
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If we assume that the Darcy Law has the nonlinear form

7 _keVp) P

7

in which the permeability depends on the flux, then in terms of the variable u = S(p)
we obtain the quasilinear porous medium equation

E(Vu(z,t))

(1.4) 2c(:t:)a(u(a;,t)) —-V- Vu(z,t) = f(z,t) , reG,t>0,

ot

with a(-) = s(-) o S71(-) as before. Finally, if we specialize this to the case of a
slightly compressible fluid, we obtain

k(Vu(z,t)) =

15 Le@)eouls,t) — V- Vulz,t) = fwt), z€G,t>0.

ot 7

The flow of fluid through a fissured porous medium leads to some related systems.
A fissured medium consists of a matrix of porous and permeable blocks of pores or
cells which are isolated from each other by a highly developed system of fissures
through which the bulk of the fluid transport occurs. Due to this separation of the
cells by the fissure system, there is a negligible amount of transport directly from
cell to cell. Another feature of fissured media is that the volume occupied by the
fissures is considerably smaller than that occupied by the matrix of cells. Thus,
most transport occurs in the fissures and the bulk of the storage takes place in the
cells. The system is by nature very much unsymmetric in the structure and function
of its components. Specifically, the fissure system provides the primary transport
component and the cell system accounts for all storage. Thus, the exchange between
the fissure system and the matrix of cells is an important component of the model.

More generally, the parallel flow model is a classical description of diffusion in
heterogeneous media. The idea is to introduce at each point in space a density,
pressure or concentration for each component, each being obtained by averaging
in the respective medium over a generic neighborhood sufficiently large to con-
tain a representative sample of each component. The rate of exchange between
the components must be expressed in terms of these quantities, and the resulting
expressions become distributed source and sink terms for the diffusion equations
in the individual components. Thus, one obtains a system of diffusion equations,
one for each component. The classical linear double porosity model for the flow
of slightly compressible fluid in a general heterogeneous medium consisting of two
components is

0 k 1
8—61U1—1—COAU1+_(U1_U2):f7
t u a

(1.6)
2cu —@Au +l(u —uy) =
5 C2l2 " 2T (U2 1)=9 .

The first equation describes the flow in fissures — regions of small relative volume
but large permeability. The second describes the flow in the cell system — regions
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of large porosity or volume, but largely isolated from one another. Both of these
equations are to be understood macroscopically; that is, these equations are ob-
tained by averaging over neighborhoods containing a large number of cells (called
“blocks” of pores) and fissures. Although the components of (1.6) are structured
symmetrically, fissured media characteristics are modeled by very small coefficients
c1 and ko.

For the fissured medium model, the coefficient ¢; is almost zero because the
relative volume of the fissures is small, and k9 = 0 because there is no direct flow
from one block of pores to another, i.e., each cell is isolated from the adjacent cells
by the fissure system. The last term on the left of each equation represents the
exchange of fluid between the cells and the fissures. The parameter o represents
the resistance of the medium to this exchange. When a = oo, no exchange flow
is possible. An alternative interpretation is that 1/a represents the degree of fis-
suring in the medium. When the degree of fissuring is infinite, the exchange flow
encounters no resistance and uyo = u1. The external sources of fluid represented by
f and g are located in the fissures and in the cells, respectively.

Consider the analogous quasilinear situation in which the permeability is flux-
dependent. Then we obtain the system

0 = k1(Vus(z,t))
acl(x)a(ul(x,t)) -V- #

%@(m)a(w(x,t)) -V M%m(w,t) — 7(u; —u2) = g(z,t) ,

ﬁul(x,t) + 7(u1 —ug) = f(x,t),
(1.7)

in terms of the variables u; = S(p1) and up = S(p2). The fluid exchange rate
between the cells and fissures is assumed to be determined by a monotone function
7(-) of the pressure difference and the density, so it is given by 7(p(p1 — p2)). Here
we choose p to be the average density on the pressure interval [py, p2], so we have

P2

p(p2 —p1) = / s(r)ydr =ug —uq .
P1

In this way we have obtained an exchange term which is a function of the difference

of the components instead of a difference of functions of the two components. If we

specialize this to the case of a slightly compressible fluid we obtain the system

%cl(x)co(ul(x, ). V@D G o — ug) = f(mt)
(18) B ko (V u( t))
orca(@)eo(ua(e, 1) = V- 2'(“%%2(9;, t) — 7(ur — uz) = g(z,1) .

These provide examples of parabolic partial differential equations and systems with
multiple nonlinearities as well as a variety of types of nonlinearity that can arise.
See Section 7.

We shall show that by making an appropriate choice of the operator A and a
space of functions, the initial-value problem

du(t)
dt

+ Au(t) =0, 0<t, u(0)=up
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corresponds to an appropriate initial-boundary-value problem. In particular, we
shall show that many of our flow problems can be realized as such initial-value
problems in function spaces. For a preview of the types of hypotheses on the
operator A that are appropriate for the solvability of the initial-value problem, we
approximate it by the backward difference equation

u(t) — u(t —e)

+ Au(t) =0, 0<t, u(0)=up
from which the solution can be obtained from the equivalent identity
u(t) = (I +cA) " u(t —¢).

This suggests that we should consider those unbounded operators A for which (I +
eA)~1 is stable for each € > 0. This leads below to the basic notion of an m-accretive
operator.

2. LINEAR STATIONARY PROBLEMS

We begin with a review of certain topics in Hilbert space and the formulation of
boundary value problems. Here we illustrate the ideas with special cases, and one
can see [1] or the first Chapter of [2] for more complete treatments of the material
of this section and the next.

Let V be a linear space over the reals R, and let the function z,y — (z,y)
from V x V to R be a scalar product. That is, (z,z) > 0 for non-zero z € V,
(z,y) = (y,x) for z,y € V, and for each y € V the function z — (z,y) is linear
from V to R. For each pair z,y € V it follows that

2
(2.1) (z,9)]” < (z,2)(y,y) -
To see this, we note that
0< (tx+y,te+y) =t2(z,z) + 2t(z,y) + (v,9) , teR,

and so the discriminant of the quadratic must be non-positive. From (2.1) it follows
that ||z|| = (z,2)/2, € V, defines a norm on V : ||z|| > 0, ||tz|| = |t| ||z||, and
Iz + y|| < ||z|| + ||lyl| for z,y € V and ¢ € R. Thus every scalar product induces a
norm and corresponding metric d(x,y) = ||z — y||. A sequence {z,} converges to
z in V if lim, ||z, — z|| = 0. This is denoted by lim,, ,o z, = . A convergent
sequence is always Cauchy: limy, n—so0 ||Zm — 2| = 0. The space V' with norm || -||
is complete if each Cauchy sequence is convergent in V. A complete normed linear
space is a Banach space, and a complete scalar product space is a Hilbert space.

Some familiar examples of Hilbert spaces include Euclidean space R™ = {# =
(z1,22,...,2m) : ¢; € R} with (&,9) = Z;nzl z;y;, the sequence space {2 = {F =
{z1, 29,3, } + D052, 757 < oo} with (7,9) = X272, 5y, and the Lebesgue
space L?(Q2) = {equivalence classes of measurable functions f: Q@ = R: [, |f]*du
< oo} with (f,9) = [, f(w)g(w) du, where (€, ;1) is a measure space.
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Another example is the Sobolev space H!(a,b) given by
H'(a,b) = {u € L*(a,b) : Ou € L*(a,b)}

where Ou denotes the distribution derivative of the function u. Thus each u €
H'(a,b) is absolutely continuous with

u(a:)—u(y):/au, a<z,y<b.
y

This gives the Holder continuity estimate
(22)  Ju(@) —u)| < [z —y[V20ull2qap . u€H (a,b),a<a,y<b.
If also we have u(a) = 0 then there follow

(2.3) u@)| < (0= a)?|0ull 2@y »  a<z <D,
(2.4) lull 2 (@) < (b= a)/V2)l|9ull2(a) |

and such estimates also hold for those u € H'(a,b) with u(b) = 0. Let A(z) =
(r—a)(b—a)"tand u € H(a,b). Then Au € H!(a,b) and d(\u) = Aou+(b—a) tu,
so [[0(Au)|[zz < ||0u||zz + (b — a)7Y||u||z2. The same holds for ((1 — A)u) so by
writing u = Au + (1 — A\)u we obtain

(2.5) max{|u(z)|: a < z < b} < 2(b — a)/?||0ul| 2
+20—a)"Y?||ul|z2, we H(a,b).

Such simple estimates will be very useful, and analogous ones can be easily obtained
in appropriate subspaces. To verify that this space is complete, let {u,, } be a Cauchy
sequence, so that both {u,} and {du,} are Cauchy sequences in L?(a,b). Since
L?(a,b) is complete there are u,v € L?(a,b) for which limu,, = u and lim du,, = v
in L%(a,b). For each ¢ € C§°(a,b) we have

b b
—/ un-acp:/(?uncp, n>1,
a a

so letting n — oo shows v = Qu. Thus u € H!(a,b) and limu, = u in H'(a,b).
More generally, we define for each integer k£ > 1 the Sobolev space

H*(a,b) = {u € L*(a,b) : ¢u € L?(a,b), 1 <j < k}.

Let V7 and V2 be normed linear spaces with corresponding norms || - ||1, || - ||2-
A function T : Vi — V4 is continuous at x € V1 if {T(z,)} converges to T(x) in Vs
whenever {z,,} converges to z in V4. It is continuous if it is continuous at every x.
For example, the norm is continuous from V; into R. If T is linear, we shall also
denote its value at z by Tz instead of T'(x).
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Proposition 2.1. If T : Vi — V5 is linear, the following are equivalent:

(a) T is continuous at 0,
(b) T is continuous at every x € Vy,
(c) there is a constant K > 0 such that | Tz||2 < K||z||1 for all x € V4.

Denote by £(V1, V) the set of all continuous linear functions from V; to Va; these
are called the bounded linear functions because of (¢). Additional structure on this
set is given as follows.

Proposition 2.2. For each T € L(V1,Va2) we have
IT[] = sup{[|Tzl]2 : 2 € V1, [[#]ly <1} = sup{|[ Tl : [[«[l, = 1}
=inf{K > 0: ||Tz|: < K||z|1 , xeW},

and this gives a norm on L(V1,V32). If Vo is complete, then L(V1,Va) is complete.

As a consequence it follows that the dual V' = L(V,R) of any normed linear
space V is complete with the dual norm

(2.6) [fllv: = sup{|f(2)]: 2 € V, |z]lv <1}
for f e V'.
Hereafter we let V denote a Hilbert space with norm ||-||, scalar product (-, -), and

dual space V'. A subset K of V is called closed if each z,, € K and limz,, = x imply
x € K. The subset K is convex if z,y € K and 0 <¢ < 1 imply tz + (1 —t)y € K.
The following minimization principle is fundamental. Let a : V XV — R be bilinear
(linear in each variable separately), continuous, symmetric (a(z,y) = a(y,x),z,y €
V) and V-elliptic: there is a ¢y > 0 such that

(2.7) a(z,z) > collz|]?, zeV.

Theorem 2.1. Let a(-,-) be a bilinear, symmetric, continuous and V -elliptic form
on the Hilbert space V, let K be a closed, convex and non-empty subset of V, and
let feV'. Setp(x)=(1/2)a(z,z)— f(x), z € V. Then there is a unique

(2.8) z € K :op(x)<eply), ye K .

The solution of (2.8) is characterized by

(2.9) reK:alzx,y—z)> fly—2x), ye K.
If, in addition, K is a subspace of V', then (2.9) is equivalent to

(2.10) z€K:a(z,y) = f(y), yeK .
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Corollary 2.1. For each closed subspace K of V and each xq € V there is a unique
zr€e€K:(xr—x9,y)=0, ye K .

Two vectors z,y € V are called orthogonal if (z,y) = 0, and the orthogonal
complement of the set S is St = {x € V : (x,y) = 0 for y € S}. Corollary
2.1 says each xg € V can be uniquely written in the form zg = x1 4+ x2 with
z1 € K and o € K+ whenever K is a closed subspace. We denote this orthogonal
decomposition by V=K @ K.

The Riesz map R of V into V' is defined by Rxz(y) = (z,y) for z,y € V. It is
clear that ||Rz||v: = [|z|lv; Theorem 2.1 with K =V shows by way of (2.10) that

R is onto V', so R is an isometric isomorphism of the Hilbert space V onto its dual
V'. Specifically, for each f € V' there is a unique x = E_l(f) eV.

Corollary 2.2. For each f € V' there is a unique

reV:(zy) =fy), yev.

Even when a(-,-) is not symmetric we can still solve the linear problem (2.10),
although it no longer is related to a minimization problem.

Theorem 2.2 (Lax-Milgram). Let a(-,-) be bilinear, continuous and V -coercive:
there is a cy > 0 such that

la(z, )| > col|z||?, rxeV.
Then for each f € V' there is a unique

(2.11) x€eVialz,y) = f(y), yev.

Proof. For each € V the function “y — a(z,y)” belongs to V', so by Corollary 2.2
there is a unique a(z) € V : (a(x),y) = a(z,y), y € V. This defines a € L(V, V),
and we similarly construct 8 € L(V,V) with (z, 8(y)) = a(z,y) for z,y € V. Since
(2.11) is equivalent to a(z) = 73_1( f), it suffices to show « is invertible. First, a is
one-to-one, since

collz]|* < |a(z, z)| = |(a(2), 2)| < [la()]| [l ,

and so a(z) = 0 implies z = 0. Also, col|z|| < ||a(z)|| for all x € V. Second, we
show the range of «, Rg(«), is closed. If lim,, , 2z, = z and z, = «a(x,), then
col|xn — Tm|| < ||2n — 2m|| so {xn} is Cauchy, hence, convergent to some z € V.
But « is continuous, so a(z) = z € Rg(a). Finally, since K = Rg(«) is a closed
subspace, hence V = Rg(a) ® Rg(a)*, we need only show Rg(a)t = {0}. But if
y € Rg(a)t then for every z € V, 0 = (a(z),y) = (z, B(y)), so B(y) = 0. As above,
B is one-to-one, so y = 0. Thus Rg(a) =V. O

Let H be a Hilbert space, D a subspace (algebraic) of H and let A: D — H
be linear. Such a map we call an unbounded operator on H with domain D. The
graph of A is the subspace

G(A) = {[z,Az]: z € D}
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of the product H x H. Note that H x H is also a Hilbert space with componentwise
addition and scalar multiplication, and its scalar product is

([‘,1717',172]7 [yl’y2])HxH = (xlvyl)H + ($27y2)H

The operator A is called closed if G(A) is a closed subspace of H x H. That is, A
is closed if whenever z,, € D, x, — x and Az, — y in H imply that z € D and
Az = y. This is a much weaker condition than continuity of A, since convergence
of {Az,} is an assumption, not a conclusion.

Definition. An (unbounded) operator A : D — H is accretive if
(Az,z)g >0, r €D,

and it is m-accretive if, in addition, A+ I maps D onto H, i.e., Rg(A+ 1) = H.

Proposition 2.3. The following are equivalent:

(a) A: D — H is accretive and there exists a p > 0 such that Rg(ul + A) = H,
(b) A is m-accretive, and
(¢) A is accretive, D is dense in H, and Rg(AIl + A) = H for every A > 0.

Such operators will occur frequently and play an important role in our work
below. We give some examples in H = L?(a, b).

Example 2.a. Set D = {v € H(a,b) : v(a) = cv(b)} and A = §. Then A is
closed, and A is accretive only if |c| < 1, and then it is m-accretive with

(I+Au= if and only if

where

—(z=s) ( egb—a <

e e a<ls<cx

G(z,s) = { ’ ’
c 7

eb—a —¢ r<s<b.

The integrand G(-,-) is the Green’s function for A 4 I, and it is characterized for
each s € (a,b) as the solution of

G(s)eD, (I+AG(,s) =3, ,

where d, is the Dirac functional at s.

Example 2.b. Set D = {v € H}(a,b) : 0*v € L?(a,b)} and A = —92. Then one
can show directly that A is closed. It is easy to check that A is accretive and from
Theorem 2.1 that A is m-accretive. This operator corresponds to the Dirichlet
problem.
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Actually Example 2.8 illustrates a general situation that occurs frequently. Let
V be a Hilbert space which is dense in another Hilbert space H, and assume the
identity V' — H is continuous. Let a(-,-) be a continuous bilinear form on V.
Then we define D to be the set of all u € V such that the function v — a(u,v)
is continuous on V with the H-norm. For each such w € D there is then a unique
Awu € H such that

a(u,v) = (Au,v)g , veD,veV,
and this defines a linear operator A : D — H. The special case of
H = L*(a,b) , V = Hj(a,b) , a(u,v) = (Ou, 0v)g

gives our last example.
Consider the adjoint form on V given by b(u,v) = a(v,u), u,v € V. This leads
likewise to an operator B : D(B) — H given by

a(u,v) = (u, Bv)g , u e V,ve D(B) .

Then we obtain the following.

Proposition 2.4. Assume there is a A € R and a ¢ > 0 such that
a(v,v) + Mol > cllolly, ,  veV.

Then D is dense in H, the operator A+ M\l : D(A) — H is one-to-one and onto
and its inverse is continuous, and A is closed.

Proof. If F € H then v — (F,v)y is continuous and linear on V', so by Theorem
2.2 there is a unique

u€eV:a(u,v)+ ANu,v)g = (F,v)m, veV.

Thus u € D and (A + A)u = F, so A+ X maps D one-to-one onto H. Similarly,
B + A maps D(B) one-to-one onto H. If w € D+ in H then there is a v € D(B)
with (B 4+ A)v = w, and so

0= (u,w)m = (u,(B+A)v), = (A+ Nu,v), , ueD.

Since A + AT is onto, v = 0 and w = 0, so D+ = {0}. This shows D is dense. We
can deduce that A is closed from the fact that (A + A)~! is continuous. O

Corollary 2.3. Assume that a(-,-) is non-negative, i.e.,
a(v,v) >0, vevV,
and that there is a ¢ > 0 for which
a(v,v) + vlf > clolly, ,  veV.

Then A s m-accretive.

Here is another example to illustrate the situation, the Neumann problem.
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Example 2.c. Set H = L%*(a,b), V = H'(a,b) and define
b
a(u,v):/ oudv , u,v €V .

As above this determines an unbounded operator A on L?(a,b) : Au= F € L*(a,b)
is equivalent to

uweV:a(u,v)=(F,v)L:, veV,
and this weak Neumann problem is equivalent to
ueV, —*u=F, Ou(a) = du(b) =0 .

Thus, we find
D ={ueV:0% € L*a,b) ,0u(a) = du(b) = 0}

and A = —0%: D — L?(a,b). From Corollary 2.3 it follows that A is m-accretive,
and that A + A is a bijection of D onto L?(a,b) for every A > 0. The situation is

different at A = 0. Specifically, it is clear that Au = F' is possible only if f: F =0,
i.e., F'is orthogonal in L? to the constant functions. Conversely, one can show that
this condition on F' is sufficient for the existence of a solution. (For example, solve

the mixed problem
—Pu=F, u(a) = du(b) =0,

and then note that f; F = 0u(a).) In summary, we find the range of A and kernel
of A are given by
Ker(A) = { constant functions } ,

Rg (A) = Ker(A4)* .

We have seen that (2.10) arises as the weak formulation of certain boundary value
problems. Specifically, when V = H} or H!, (2.10) is the Dirichlet or Neumann
problem, respectively. This weak formulation is the special case of a wvariational
inequality (2.9) which is the characterization of the solution of the minimization
problem (2.8).

It is easy to see how the unbounded operator A with domain D in H constructed
as above from the continuous bilinear form a(-,-) on V is related to the continuous
A € L(V,V") which is equivalent to a(-,-). In fact, the graph of A is the restriction
of the graph of A to V x H. That is, note that H' < V'’ by “restriction to V”
of functionals on H, so D = {u € V : Au € H'} and then Au € H is just that
Au € H' which corresponds through the identification of H with H' by its Riesz
map. Thus, with this identification H = H' in the proof of Proposition 2.4, it is
clear that A+ A is an isomorphism of V onto V'’ and A+ AI is just its (necessarily
onto) restriction to H C V'. (More generally, if R is the Riesz map of H onto H’,
then A = R7!A.) Finally, note that A is accretive on H exactly when the linear
operator A satisfies

Av(v) >0, veV.

This property of A is called monotone. Not every m-accretive A corresponds to a
monotone A as above; those which do are a special class.
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Definitions. Let V, H be Hilbert spaces with H & H' and let A € L(V,V') be
monotone:

Av(v) >0, veV.

The corresponding unbounded operator on H, A = Alyxg, is then accretive and
we shall call it regular accretive when it is so determined by a triple {A,V, H}.
Assume further that for every ¢ > 0, A+ el is V-elliptic. (This implies that A is
monotone.) Then Rg(A +¢el) = V' for each € > 0 and so Rg(A + e¢I) = H, hence,
A is m-accretive, and we shall call it regular m-accretive.

3. THE CAUCHY PROBLEM

Let H be a Hilbert space, D a subspace, and A : D — H an unbounded linear
operator. The Cauchy Problem for the evolution equation

(3.1) u'(t) + Au(t) =0, t>0,

is to find a solution u € C([0,00), H) N C1((0,00), H) such that u(t) € D(A) for
t > 0 and u(0) = ug, where ug € H is prescribed. The continuity or differentiability
of the vector-valued function u : [0,00) — H is defined exactly as in the real-valued
case H = R, but with absolute-value replaced by the H norm.

Suppose that for each uy € D there is a unique solution u(-) of the Cauchy
Problem; then define S(t)ug = u(t) for ¢ > 0, ug € D. Since A is linear it follows
each S(t) : D — D is linear for ¢ > 0. Furthermore, since the translate u(t + 7) is
a solution of (3.1) for each 7 > 0, we find from the uniqueness that

St + m)ug = S(t)S(1)ug , t,7>0;50)=1.

We also have y
1/2EIIU(t)|I2 = —(Au(t),u(t)) 4 »

so if A is accretive then ||u(t)|| is decreasing for ¢ > 0, hence, ||S(¢)uo|| < ||uo|| and
thus each S(t) is a contraction on D. If D is dense in H each S(t) has a unique
extension to a contraction on H and we obtain the following.

Definition. {S(t) : t > 0} is a linear contraction semigroup (or LCS) if S(t) :
H — H is a linear contraction for each ¢ > 0,

St+7)=8t)S(r) for t,7>0, S(0)=1,
and S(-)z € C([0,00), H) for each z € H .

The generator of the LCS {S(¢) : ¢ > 0} is the operator B defined by Bz =
D*(S(0)z) for each z belonging to

DB)={z € H: lim h™'(S(h)z —z) = D" (S(0)z) exists} .

h—0t

Our preceding remarks verify most of the following.
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Proposition 3.1. Let A € L(D,H) be closed and accretive, D dense in H, and
assume for every ug € D there exists a solution u € C1([0,00), H) of (3.1) ont >0
with u(0) = ug. Construct {S(t) : t > 0} as above, so u(t) = S(t)ug, t > 0. Then
{S(t):t >0} is a LCS on H whose generator is an extension of —A.

Proof. Since A is accretive, each Cauchy problem has at most one solution, so the
construction of {S(¢) : t > 0} is done as above. For each ug € D we have

t ¢
S(t)uo—u():/u':—/ Au(s)ds , t>0,
0 0

and the integrand is continuous on [0, 0c), so DT (S(0)ug) = —Aug. O

Our objective is to find sufficient conditions on an operator A in order that
the Cauchy problem for (3.1) will have a solution. These are contained in the
following characterization of the operators which are generators of linear contraction
semigroups.

Theorem 3.1 (Hille-Yosida). A necessary and sufficient condition for B to be
the generator of a linear contraction semigroup is that D(B) is dense and A\(A—B)~!
18 a contraction on H for every A > 0.

Its proof contains the following:

Corollary 3.1. A necessary and sufficient condition for —A : D(A) — H to be the
generator of a linear contraction semigroup is that A be m-accretive. If ug € D(B)
and u(t) = S(t)ug, t > 0, then

u € C'([0,00), H) satisfies u'(t) + Au(t) =0, t > 0, and u(0) = up.

Example 3.a. Let H = L?(0,1) and A = 8 on D(A) = {u € H*(0,1) : u(0) =
cu(1)} with |e| < 1. We showed in Section 2 that A is m-accretive, so by Corollary
3.1 we see the initial-boundary-value problem

(3.2.a) Opu(z,t) + Ozu(x,t) =0, 0<z<l1l,t>0,
(3.2.b) u(0,t) = cu(1,t)
(3.2.c) u(z,0) = up(z)

has a unique solution for each ug € D(A). This is a linear transport equation for
a purely convective flow. An explicit representation for this solution can be easily
found. Since any solution of (3.2.a) is of the form u(z,t) = F(x —t), it follows that

u(z,t) =up(xr —t) , 0<t<z<1,
and then (3.2.b) implies
u(z,t) = cug(l4+z —1t), r<t<z+1.
By an easy induction we obtain

u(z,t) = c"ug(n + . —t) n—1l4+z<t<n+4+z,n>1.
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This representation of the solution gives some additional information. First, the
Cauchy problem can be solved only if ug € D(A), because u(-,t) € D(A) implies
u(+,t) is (absolutely) continuous and this is possible only if ug satisfies the boundary
condition (3.2.b). Second, the solution satisfies u(-,t) € H'(0, 1) for every ¢t > 0 but
will not belong to H%(0,1) unless dug € D(A). That is, we do not in general have
u(-,t) € H?(0,1), no matter how smooth the initial function uy may be. Finally,
the representation above defines a solution of (3.2) on —oo < ¢t < oo by allowing n
to be any integer. Thus, the problem can be solved backwards in time as well as
forward. This is related to the fact that —A generates a group of operators.

Example 3.b. For our second example we take H = L?(a,b), V = H}(a,b) and
define a(u,v) = (Ou, 0v) g for u,v € V. Corollary 2.3 shows that the operator

A=-0%*, D(A) = H}(a,b) N H*(a,b)

is m-accretive. Thus by Corollary 3.1 we obtain existence and uniqueness for the
initial-boundary-value problem

(3.3.a) Oyu(z,t) = 02u(z,t) , a<zx<b,t>0,
(3.3.b) u(a,t) =u(b,t) =0,
(3.3.c) u(z,0) = up(z) ,

for each up € D(A). This is the linear diffusion equation (1.3).

Due to the parabolic equation in this problem, this last example illustrates some
reqularizing effects that occur with evolutions governed by regular m-accretive
operators. Consider the case of such an operator A which arises from a triple
{a(-,-),V,H} for which a(-,-) is symmetric. Let {S(¢) : t > 0} be the semi-
group generated by —A, uy € D(A), and u(t) = S(t)up. Thus, (3.1) holds and
u(0) = ug. We seek estimates which imply “regularity” of the solution u(t). First,
from (Au(t), u(t))g = —1 || (u(t)||%, we obtain

—_

(3-4) /Oa(u(t)vu(t))dt:§(||“0”H lu(T)IIZ) -

Foreachh >0and ¢t > 7 >0, u(t+h)—u(t) =S{t—7)(u(r+h)—u(r)),so S(t—7)
being a contraction shows ||u/(¢)||g < ||v/(7)]|, hence, ||u/(-)||z is non-increasing.
We have

t

. (300010 + Jau(v),u(v)

since a(-,-) is symmetric, and this yields

T T 1 (T
65 [ A @+ Go(uT)um) =5 [ oult)ue) dr
0 0
Using the non-increase of ||u'(-)||z and (3.4), we obtain
T2

o () - < ol
and this leads to the following parabolic reqularizing property of the LCS.



LECTURES ON FLOW IN POROUS MEDIA 15

Theorem 3.2. If A is reqular m-accretive and the associated bilinear form is sym-
metric, then the generated LCS satisfies the following:

S(t) maps H into D(A) , and |[[tAS(t)||zm) < % , t>0.

Proof. Let w € H and w,, € D(A) for n > 1 with w,, — w. We have S(t)w,, —
S(t)w and ||AS(t)(wm — wp) |5 < || Wm — wal|lz/V2t, so {AS(t)w,} converges in
H. But A is closed, and so the desired result follows. [

Corollary 3.2. For everyt > 0 and integer p > 1
P
S(t) maps H into D(AP) , and ||APS(t) car) < <L> .
tv/2
This gives the spatial regularity of the solution u(t) of the Cauchy problem.

Corollary 3.3. For every ug € H there is a unique solution u € C([0,00), H)
NC*((0,00), H) of (3.1) with u(0) = ug, and it satisfies u(t) € D(AP) for every
t>0andp>1.

For any m-accretive operator, A + I is a bijection of D(A) onto H, and if we
define a norm on D(A) by

lzlp = (el + 1Az2)? . @€ D(A),

it follows that D(A) is a Hilbert space isomorphic to H. Similarly, D(AP) is a
Hilbert space with scalar-product

(z,y)pr = (z,y)u + (APz, APy) g | z,y € D(AP),

and (A + I)P is an isomorphism of D(AP) onto H. For the special case of a self-
adjoint regular accretive operator as above we can deduce from the identity
u(t+h)—ut) Sit—e+h)—S{t—c¢)

AP . = 3 APS(e)ug , 0<e<t,h>0,

that limy,_,o+ (M) = o/(t) in the space D(AP). When A is a differential
operator this shows u/(t) agrees with the partial derivative with respect to time and
a corresponding temporal regularity of the solution of (3.1). The preceding shows
that (3.3) has a smooth solution for each ug € L?(a,b).

Similar results hold also for the corresponding non-homogeneous equation.

Theorem 3.3. Let the operator A be m-accretive on the Hilbert space H. Then for
every ug € D(A) and f € C1([0,00), H) there is a unique solution u € C*([0,0), H)}}
of the initial-value problem

u'(t) + Au(t) = f(t) , t>0,

(3.6) u(0) = up .

If additionally A is symmetric, then for each ug € H and Holder continuous
f e C%0,00),H), 0 < a < 1, there is a unique solution u € C([0,00),H) N
C1((0,00), H) of (3.6).
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Example 3.c. For our final example we take the product spaces H = L%(a,b) x
L?(a,b), V = H}(a,b) x H}(a,b) and define the bilinear form

U 1
(i, ¥) = (k10u1,0v1)12(ap) + (k20Uz2, 0V2) 2(ap) + a(m — U, V1 — V2)L2(q,b)
for 4 = [u1, ug], 0 = [v1,v2] € V. For the scalar-product on H we take

(@, 9) g = (C1u1,91)12(ap) T (C2U2,V2)[2(a,b) -

Here we assume that ki, kg, c1, co are positive numbers. Corollary 2.3 shows that
we obtain an m-accretive operator A in H, for which the resolvent equation

GeV:(@,d)g+ala,i)=f@), €V,

corresponds to

1
ciul — k182u1 + a(m - Uz) = f1,

1
ColUg — ]{IQBZUQ + a(uz - U1) = fa2,

ui(a) = u1(b) = us(a) = uz(b) =0,

on the domain D(A) = {& € VN (H?(a,b) x H*(a,b))}. Then from Theorem 3.3 we
obtain existence and uniqueness of a solution of the initial-boundary-value problem

CI% (2, 1) — £y 0%us (2, 8) + é(ul(x,t) —un(@,t)) = fu(z,1) |
o gy ua(a, ) = ka5, 0) + ~ (uale,6) = v (5,0)) = fole 1)
Ul(aa t) = Ul(b, t) = U2(aa t) = U2(b, t) =0 3

u1(z,0) = u1(x) ,u2(x,0) = ug(x) , a<z<b,t>0,

for each iy = [u1,us) € H and f = [f1(t), f2(t)] € C([0,00), H). This system is
the parallel flow model (1.6). We can easily modify the above to allow k; or k2 to
be zero, and by a different construction even to permit c; or cy to be zero.

References for Sections 2, 3.

[1] Hilbert Space Methods in Partial Differential Equations, Monographs & Studies
in Mathematics, Pitman Publishing, 1977 and Electronic Journal of Differential
Equations: http://ejde.math.swt.edu/mono-toc.html.

[2] Monotone Operators in Banach Space and Nonlinear Partial Differential Equa-
tions, Mathematical Surveys and Monographs #49, American Mathematical So-
ciety, Providence, 1997.
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4. DISTRIBUTED MICROSTRUCTURE MODELS

As a first approximation to flow in a region G which consists of a composition of
two finely interspersed materials, one can consider averaged solutions, one for each
material and both defined at every point x € G. This leads to a pair of partial dif-
ferential equations, one identified with each of the two components, and a coupling
term that describes the flow across the interface between these components. The
values at each point z of the two dependent variables in this system (the solutions)
have been obtained by averaging in the respective media over a generic neighbor-
hood, which is located at x € G and is sufficiently large to contain a representative
sample of each component. Since the two components are treated symmetrically in
the resulting system of two parabolic partial differential equations, such a double
porosity model is said to be of parallel flow type. Although appropriate for many
situations, this symmetric treatment of the two components can be a real limitation.
For a fissured medium, for example, such a representation is particularly restrictive,
since the porous and permeable cells within the structure have flow properties rad-
ically different from those of the surrounding highly developed system of fissures.
Moreover the geometry of the individual cells and the corresponding interface are
lost in the averaging process leading to such models. For layered media similar
remarks apply, and these could be supplemented by nonisotropic considerations.

The classical example of a parallel flow model for single phase flow in a composite
medium is the parabolic system

(4.1) %(aul)—ﬁ'(f‘%l”%(““”” =
: )

a(b?lq) -V (BV’UQ) + %(’U,g - Ul) = fz s
discussed in [8] for which wu; represents the density of fluid in the first material
and ug the density in the second. The coefficients a(x) and A(z) are porosity and
permeability of the first material, respectively, while b(x) and B(x) are correspond-
ing properties of the second material. The first equation quantifies the rate of
flow in the first component of the composite, and the second equation quantifies
the corresponding flow rate in the second. Both of these equations are to be un-
derstood macroscopically; that is, they were obtained by averaging over a generic
neighborhood sufficiently large to contain contributions from each component. The
third term in each equation is an attempt to quantify the exchange of fluid between
the two components. See [52] for a corresponding system which describes heat
conduction in such a composite medium.

A fissured medium consists of a matrix of porous and permeable material cells
through which is intertwined a highly developed system of fissures. The bulk of
the flow occurs in the highly permeable fissure system, and most of the storage
of fluid is in the matrix of cells which accounts for almost all of the total volume.
One approach to constructing a model of such a medium is to regard the fissure
system as the first component and the cell matrix as the second component of
a general composite by adjusting the coefficients in (4.1) appropriately. These
fissured media characteristics are modeled by choosing very small values for the
coefficients a(z) and B(z) in (4.1). Since one component is essentially responsible
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for storage and the other for transport, the distributed exchange of fluid between
the two components is of fundamental importance. The parameter ¢ represents the
resistance of the medium to this exchange. (When 6 = oo, no exchange flow is
possible, and the system is completely decoupled.) An alternative interpretation
is that 1/§ represents the degree of fissuring in the medium. (When the degree of
fissuring is infinite, the exchange flow encounters no resistance and u; = us.)

In order to specialize the system (4.1) to a totally fissured medium in which the
individual cells are isolated from each other, one sets B = 0, because there is no
direct flow through the matrix of cells; only an indirect exchange occurs by way of
the fissures. Thus, the condition B = 0 corresponds to a totally fissured medium in
which each cell of the matrix is isolated from adjacent cells by the fissure system.
The resulting system of parabolic-ordinary differential equations

(4.2.a) %(am) v (Aﬁm) + %(ul —us) = f,
?
(4.2.5) o (bua) + %(u2 —uy) =0,

is called the first-order kinetic model, since the cell storage is regarded as an added
kinetic storage perturbation of the global fissure system.

The equation (4.2.b) models the delay that is inherent in the flow between the
fissures and blocks. It is precisely this delay that led to the introduction of such
models by Barenblatt, Zheltov, and Kochina [8] and Warren and Root [62] three
decades ago in order to better match observed reservoir behavior. See [2], [18],
[15], [39], [26], [13], [22], [38], [67] for additional applications and mathematical
developments of such models.

If we further specialize this model by setting a = 0 in order to realize that
the relative volume of the fissures is zero, we obtain the pseudoparabolic partial
differential equation

(4.3) 2b(ul V- (Aﬁul)) CV - (AVu) = f4 062
ot ot
See [12] for the development of such equations. Their solutions are determined
by a group of operators on appropriate spaces, and their dynamics is regularity-
Ppreserving.
See [53] for a discussion and development of partially fissured media, those in
which there are substantial flow paths directly joining the cells.

Distributed Microstructure Models. In general, essential limitations of the
parallel flow models are the suppression of the geometry of the cells and their cor-
responding interfaces on which the coupling occurs and the lack of any distinction
between the space and time scales of the two components of the medium. The intro-
duction of distributed microstructure models for diffusion in porous media represents
an attempt to recognize the geometry and the multiple scales in these problems in
order to better quantify the exchange of fluid across the intricate interface between
the components. We are given a domain G which represents the global region of
the model. At each point z € G there is specified a cell G, a magnified or scaled
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representation of the microstructure that is present near z. One partial differential
equation is specified to describe the global flow in the region GG, and a separate
partial differential equation is specified in each cell G, to describe the flow internal
to that cell. Any coupling between these equations will occur on the boundary of
G, denoted by I';. It is the collection {I'y, : z € G} which provides the interface
on which this exchange takes place. Now we use this concept to model the example
of single phase flow in a fissured medium.
The global flow in the fissure system is described in the macro-scale x by

0

(4.4.a) 5

(a(z)u(z,t)) — V- A(@)Vu +q(z,t) = f(z,t), z€G,
where ¢(z,t) is the exchange term representing the flow into the cell G;. The flow
within each local cell G, is described by

(4.4.b) %(b(m,y)U(x, y,t)) -V, B(z,y)V,U = F(z,y,t) , yeG, .
The subscript y on the gradient indicates that the gradient is with respect to the
local variable y. A gradient operator without any subscript will mean that the
gradient is taken with respect to the global variable x. Because of the smallness of
the cells, the fissure pressure is assumed to be well approximated by the “constant”
value u(z,t) at every point of the cell boundary, so the effect of the fissures on the
cell pressure is given by the interface condition

- 1
(4.4.c) B(z,s)V,U(z,s,t)-v+ E(U(a:, s,t) —u(z,t)) =0, sely,
where v is the unit outward normal on I';,. (When § = 0, this becomes (and con-
verges to) the matched boundary condition, u(z,t) = U(z, s,t) for s € T'y.) Finally,
the amount of fluid flux across the interface scaled by the cell size determines the
remaining term in (4.4.a) by

(4.4.d) q(z,t) = L/ B(z,s)V,U -vds
Gzl Jr,

where |G| denotes the Lebesgue measure of G, and this contributes to the cell
storage. The system (4.4) comprises a double porosity model of distributed mi-
crostructure type for a totally fissured medium. It needs only to be supplemented
by appropriate boundary conditions for the global pressure u(z,t) and initial con-
ditions for u(x,0) and U(x,y,0) in order to comprise a well-posed problem. See
[40], [51], [50], [19], [61], [9], [25], [6], [7], [3], [5], [19], [20], [23], [24], [28], [29], [30],
[31], [32], [33], [34], [36], [35], [43], [59], [58], [60], [56], [55], [54] for applications and
mathematical theory for (4.4) and various related problems. A typical development
of well-posedness results is given below in Section 5.

Finally, we remark that the system (4.4) can be rewritten as a single equation of
functional-differential type. By applying Gauss’ theorem to (4.4.b) we obtain from

(4.4.d)
0 oUu
il = B— F .
at/GmbUdy /I‘m 8Vds-i—/Gm dy
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Then by using the Green’s function for the problem (4.4.b) to represent the solution
U(z,y,t) as an integral over I'; of u(x,t), we substitute this into (4.4.a) to get the
implicit convolution evolution equation

0

o {a(x)u(x, )+ /Ot K, — 7)u(z, ) dT} Y A@@)Vu= [ t) .

The convolution term represents a storage effect with memory. See [37] for a direct
treatment of this equation and particularly [45], [48], [49] where this equation forms
the basis for an independent theoretical and numerical analysis. Also see [46], [47]
for related work.

A related model for partially fissured medium was introduced in [14] to describe
the highly anisotropic situation in layered media and developed in [16] for more
general situations. See [4] for an earlier discrete version and numerical work, and
see [21] for such models which were derived by homogenization (see below) from
corresponding e-models.

(4.4)

5. A VARIATIONAL FORMULATION

We illustrate the mathematical formulation of microstructure models as evolu-
tion equations in Hilbert space. This provides a means of establishing directly that
they are well-posed problems, and it identifies the natural energy and state spaces
for these dynamical problems. Let G be an open, bounded domain in R?® and for
every x € G, let G, be a bounded region contained in R®. Identify the product
space HmEG G, = Q as a subset of R®; we require that Q be a measurable subset
of R®, hence, each of the cells G, = {y : (z,y) € Q} is a measurable subset of R3.
Here we will formulate the Cauchy-Dirichlet problem for the linear parabolic system

(5.1.a)
%(a(w)u(m, t)) — V - A(z)Vu(z, t) + / Bz, s)V,U(z, s, t) - 7 ds
f

T,
= f(=z,t), z€eqG
(5.1.b)
o (00U, ,0)) = By Bl n) Va0 (,,0)
= F(z,y,t), reG, yely,,
(5.1.c)
B(x,s)V,U(z,s) - 7 + %(U(x, s,t) —u(z)) =0, reG, s=€T,,

as an evolution equation in an appropriate Hilbert space. This is just the system
(4.4) in which the measure ds on I'; is used to absorb the extra factor of |G|
We shall assume a € L*°(G), b € L*°(Q), A and B are uniformly positive definite
and bounded measurable matrix functions, 7 is the unit outward normal on I', and
d > 0. We will further assume that each boundary T', is piecewise C' and that
the measures |I';| and |G| are uniformly bounded in z. We shall use the Lebesgue
space L?(Q) = L*(G, L*(G,)) with the norm

1/2
10l = (/ / xy>|2dydx) |
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and the Sobolev spaces H}(G) and
L3(G, HY(G,)) = {U € L*(G, L3(G,)) : V,U € I2(G, L2(G$))} .

See [1] for information on Sobolev spaces. For the norm on L?(G, H(G,)) we
employ the notation

2

1/
|U|2=(// IVyU(:v,y)\2dydx) :
G JG,

so U3 =|UJ3+ ||U||%2(Q). Denote by V = H}(G) x L*(G, H}(G,)) the indicated
product space with norm

1w, Ulllv = llull gy ) + 1U]l2 -

Let 7, be the usual trace map of H'(G,) into L?(T';), and define B = L?(G, L?(T';))}}
and the distributed trace v : L*(G, H'(G;)) — B by vU(z,s) = (7.U(z))(s). We
will require that the trace maps 7, be uniformly bounded, so v is continuous from
L?(G,H'(G,)) into B. Define X : H}(G) — B by: \u(z,s) =u(z)ly , 1€ G, s€
I, , where u(x)1; is the constant function on I', with value u(z). We will employ
the notation @ = [u, U].

Define the Hilbert space H = L%(G) x L?(G, L?(G,)) with the inner product

(5 @) = /G a()u(e)p(z) do + /G /G W)U ) () dyde
for 4 =[u,U], ¢=[p,P]€H.

Define Vi, = {tt € V : yU = Au in B}. Since vy and A are continuous, V} is a closed
subspace of V. Also define Vo = {U € L*(G, H'(G;)) : vU = 0}. It can be shown
that H}(G) x V, and V}, are dense in H.

We shall write the system (5.1) as an evolution equation over the spaces described
above. To obtain the variational form for the system, choose [p, ®] € V', multiply
(5.1.a) by ¢ and integrate over G. Multiply (5.1.b) by ® and integrate over both
G, and G. Add these equations and apply Green’s Theorem to obtain

/G{%(a(x)U(ac,t))w(a:)-l—/ aat(b( Z'J)U(x,y,t))@(ac,y)dy}dx

Gy

/ { 2)Vu(z,t) - Voo(z) + /F B(x, $),U(z,,t) - Do(x) ds

x

(z,y) V JU(z,y,t )-6y¢>(:c,y)dy

\

/ (z,y) V U(z,y,t) - 7y, P(x,s) ds}dq:

- [ r@p@aes [ | Pl )®(,y) dyds
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Combining the boundary integrals and substituting for B(z, s)ﬁyU (z,y,t) - Vyields

(5.2) [u®),U(t)] eV : /G %a(m)u(az, t)o(z) dz

+ /G /G w 2 bz, )U (. )(z,y) dyda

+ /G A(z)Vu(z,t) - Vo(z) dz

n /G /G w Bz, y)VyU(z, 1) - V,&(z,y) dy dz

+ /G /F x %('yU(m, 5,1) — Mulz, 5,8)) (19(x, 5, 8) — Ap(z, 5, 1)) ds da

=lﬁ@ﬂ@m+LLow@mwMM,W@MV-

A special case of the above is obtained when (5.1.c) is replaced by
(5.1.c)' yU (z, s,t) = Au(z, s, t) reG,sel, , t>0.

This is the formal result obtained by allowing 6 — 07, so that (5.1.c)’ is forced to
hold, and it corresponds to

(520 [u(t),U@®)] € Vi /G 9 a(w)ur, (o) da
+ /G /G z 9 b ) (2, )(z, ) dyda
+ /G A Vulz, t) - Vo(x) do
+ /G /G B )V (@.0) - ¥, 0(0) dyda

= [t@e@ s+ [ [ Fayeeydyds, o2l
G G JG,

The problem (5.1) will be called the regularized model, and (5.1), i.e., (5.1.a),
(5.1.b) and (5.1.c)’ will be called the matched model. Conversely, starting from

(5.2) it is not difficult to recover (5.1).
Define a bilinear form on V' by

a(t, P) :/GA(m)ﬁu-ﬁgodw+/C;/G B(a:,y)ﬁyU-§y<ded1:

1
+—//(7U—)\u)('y‘1>—)\<p)dsdac, u,peV.
0 JgJr,
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Let f € H be given in the form

f(¢):/c:f@d$+/c;/c;wF®dydm’ GeV.

In the situation described above, (5.5) and (5.5)" have unique solutions.

Theorem. Given the spaces and operators as above, suppose that iy = [ug, Up] €
H and f = [f,F] € C*([0,00),H), 0 < a < 1. Then for every § > 0 there is a
unique s € C([0,00), H) N C((0,00), H) which satisfies (5.2) for each t > 0 and
u5(0) = @g. Likewise, there is a unique u € C([0,00), H) N C*((0,00), H) which
satisfies (5.2)" for each t > 0 and 4(0) = .

The proof is a direct application of Theorem 3.3. Furthermore, one can show
that @s converges to 4 as § — 0.

We have shown that (5.2) and (5.2)" have unique solutions and that the two
models which they represent are related. In particular, allowing § — 07 formally
transforms the regularized model into the matched model.

Finally note that the models and results here could be generalized or extended in
several ways. In (5.1.c) we might choose 3 to be something other than a constant.
If, for example, % is assumed to be a monotone graph which is also a subgradient
operator, an approach similar to that in [17] might be used to show existence of
a solution. As stated earlier, Dirichlet boundary conditions on G are not neces-
sary, so some generalization is also possible in that respect. Finally, if additional
assumptions about the differentiability of A and B and the smoothness of I';, and
0G were made, then it might be possible to say more about the regularity of u and
U.

6. HOMOGENIZATION

So far we have given a direct but only heuristic justification of the microstructure
models. In order to employ them to simulate real phenomena, one must obtain re-
alistic values for the coefficients, e.g., by matching with data. Here we briefly recall
the derivation by homogenization of the distributed microstructure model of a to-
tally fissured medium following [4],[6]. This provides simultaneously a justification
of the model and a means to compute the effective coefficients in the microstructure
model from known coefficients in the ezact case.

We begin with the exact microscopic model of single phase flow in a fissured
domain G, a bounded open subset of R3. We assume that the geometry and the
physical parameters of the problem have e—periodic character. This implies that the
solution to the problem exhibits periodic behavior. It has also some macroscopic
(non—periodic) behavior which is seen on the scale of the whole region, G. The basic
problem is to investigate the asymptotics of the solution as ¢ — 0 in a family of
properly scaled problems posed on domains G¢ formed by a lattice of copies of cells
eY, where the unit reference cell is the cube Y = (0, 1)3. We use ¢ as a superscript
or subscript on coefficients or variables to denote objects periodic with respect to
eY'; we omit this notation when £ = 1.

The reference cell Y defines the double component structure of the fissured do-
main, and we write Y = Y; UY 5, with Y; and Y, denoting the fissure and matrix
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parts of the cell, respectively. Their respective boundaries are denoted by I'; and
I';. The fissure—matrix interface is given by I'yo = I'y N I's. Let I' be that part of
I'12 which is contained in Y, and let I'1; and I's5 denote the respective intersections
of Y with Y7 and Y5. In the totally fissured case, we assume Yy C Y, so the
matrix interface I'gg is empty and I' = I'15. We then refer to Yy as a block. By v
we denote the normal unit vector to I' which points in the direction out of Y5.

The system of fissures and matrix blocks in G° are denoted by G§ and G35,
respectively. The exact (but singular) e—model consists of a pair of differential
equations, one on each of the subdomains G§ and G% for the density, which will
be denoted by u®. These equations are coupled by standard interface conditions
on I'j, to insure conservation of mass and momentum across the fissure-matrix
interface I'75. An exterior boundary condition and an initial condition must also be
specified, but they do not enter into the derivation of the limit model. In order to
preserve the magnitude of the flux crossing the interfaces contained within a fixed
volume of the medium as € — 0, it is necessary to scale the permeability in the
blocks by the factor €2. Thus, the e-model of diffusion in a totally fissured medium
has the form

8 €
(6.1.2) o1 ;t V- (MVeE(z,t) =0, 1z €GE,
(6.1.b) - 85; _V (€AY (@, 1) = 0, 7€ GE,
(6.1.c) u®|gs (s, 1) = ulgz (s, 1), s € I'q,
(6.1.d) MVUs|ge v =e* A Vullgg - v, s € I's,.

If u® is expanded in powers of ¢ and the formal analysis of this expansion is carried
out, it will be seen that the leading terms for the density u®|g: in the fractures
and the density u®|gs in the matrix blocks will be a pair of functions, u(z,t) and
U(z,y,t), z € G, y € Yo, t > 0, respectively, which satisfy the system of equations

(6.2.a) \Yﬂ% — V- (A Vu(z,t)) + q(z,t) =0, z€Gq,

ou
(6.2.b) P2 — Vy - (AVyU(z,y,t)) =0, y € Ya(z), z € G,
6.2.c U(x,s,t) = u(x,t), sel, z € G,
(6.2.c) (z,5,t) = u(z,1)
(6.2.d) q(z,t) = / X V,U -vdS, r€eq.
r

This is just the matched microstructure model (6.4). Here |Y;| denotes the ¢;—
weighted volume of the reference set Y;. The effective permeability tensor A; is
Ow;
Y1| + Z>dya

given by
A1) = A1 | 0i
( 1) J /};1 1 ( »J 8y_7

with the auxiliary functions wy, k = 1,2, 3, being Y -periodic solutions of the cell
problem

vjwkzo, y € Yy,
Vywg v =—e,-v, yel,
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where e, is the unit vector in the direction of the k—axis.

Equation (6.2.a) is the macroscopic equation to be solved in G for the (macro-
scopic) density u. The distributed source term ¢ accounts for the flux across the
boundary I" of the block Ys; we denote it here by Ya(x) to emphasize that a copy
of it is identified with each point = € GG. Blocks over different points in G' are dis-
connected; thus, no flow can take place directly from one such block to another. It
is this feature that limits this model to flow in a totally fissured medium. If the €2
scaling of the permeability in the blocks had been omitted, then the limit process
would have led to a single diffusion equation with effective or averaged coefficient
that fails to represent the desired delayed storage effects. Vogt [61] appears to
have been the first to have recognized this idea in the development of a model for
chromotography.

All of the models and results we have presented here could be generalized or ex-
tended in several ways. In fact, most are special cases of what is already available
in the literature. For example, the linear elliptic operators in the above exam-
ples can be replaced by quasilinear operators of divergence type, such as p-Laplace
operators, and one can include semilinear operators such as the porous medium
equation. We have not even mentioned results for equations of other types, such as
hyperbolic. Furthermore, we have restricted discussion to problems with the sim-
plest geometry, and we have not mentioned those involving, e.g., flow on boundaries
with concentrated capacity, or, more generally, manifolds arising from periodic cells
that have a non-flat geometry.

Experience suggests that the distributed microstructure models are conceptually
easy to work with, they provide accurate models which include the fine scales and
geometry appropriate for many problems, and their theory can be developed in a
straightforward manner using conventional techniques. The numerical analysis of
these systems provides a natural application of parallel methods.
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7. NONLINEAR PROBLEMS

Porous medium equation. We normalize the generalized porous medium equa-
tion (1.1) to obtain the initial-boundary-value problem

(7.1.a) aa(u(m,t)) — Au(z,t) = f(z,t), z€qG,
(7.1.b) u(s,t)=0, se€dG,te(0,T],
(7.1.c) a(u(z,0)) =we(z) , x € G,

in which v = u(z,t) is a function defined on a bounded domain G in Euclidean
space R™, and T' > 0 denotes the length of the time interval. We will show that the
dynamics of problem (7.1) is determined by a nonlinear semigroup of contractions on
an appropriate Banach space X. The negative of the generator of this contraction
semigroup is constructed as an operator C which realizes the initial-boundary-value
problem (7.1) as a Cauchy problem

(7.2) w'(t) + C(w(t)) = f(t), 0<t, w(0)=uwp

in X. Then one needs to show that C is an m-accretive operator on this Banach
space. We will see that it is useful to extend the above to cover the case in which
the operator C is actually multivalued. (It is the monotonicity of the operator that
is important but limiting for the applications.) Thus, we shall extend the above to
allow the “=" sign to be replaced by an inclusion symbol 3 in the equations above.

A (possibly multi-valued) operator or relation C in a Banach space X is a collec-
tion of related pairs [z,y] € X x X denoted by y € C(x); the range Rg(C) consists
of all such y. The operator C is called accretive if for all y; € C(x1), y2 € C(z2)
and € > 0

1 — 22| < |lz1 — 22 +e(yr — y2)|| -

This is equivalent to requiring that (I + eC)~! is a contraction on Rg(I + £C)
for every € > 0. If, in addition, Rg(I + ¢C) = X for some (equivalently, for all)
¢ > 0, then C is called m-accretive. For such an operator, one can approximate the
derivative in the evolution equation by a backward-difference quotient of step size
h > 0 and the function f(t) by the step function f*(t) (= f} for kh <t < (k+1)h)
and get a unique solution {w! : 1 < k} of

wy — w4

. + Clwhy > fh | k=1,2,...,

with w® = wy. Since C is m-accretive, this scheme is uniquely solved recursively to
obtain w and, hence, the piecewise-constant approximate solution w”(t) (= w for
kh <t < (k+1)h) of the Cauchy problem. The fundamental result is the following.

Theorem 7.1(Crandall-Liggett). Assume C is m-accretive, wy € D(C), f €
LY([0,T],X) and that f* — f in L'([0,T],X). Then w" — w(-) uniformly as
h—0 and w(-) € C([0,T],X).

Thus, w(-) is an obvious candidate for a solution of the Cauchy problem. It can be
uniquely characterized as an integral solution. Moreover, if fi, f» € L*([0,T], X)
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and wy, wy are integral solutions of w’; + C(w;) > f;, 0<t, j=1,2,then

[w(t) — wa(B)]] < [Jw1(0) — w2(0)] +/0 [f1(s) = fa(s)l ds , O <t.

However, this rather technical characterization does not even require any differen-
tiability of the solution. For an introduction to the abstract Cauchy problem in
Banach space and its applications to initial-boundary-value problems for partial
differential equations, see [2], [3], [6], [22] and their included references.

We would like to indicate the types of estimates that are involved for the appli-
cation of these abstract results to problem (7.1), and we will do this for simplicity
in the case of a monotone function, a(-). We seek (the closure of) an operator C
for which the resolvent equation, (I +eC)(a) > f with € > 0, takes the form

3.a) a(u(z)) —eAu(z) > f(z), z€qG,
u(s) =0, s€0G.

To get a variational formulation of the operator C, multiply the equation by a
smooth function ¢ on G which vanishes on 0G, and integrate to obtain

/ (a(u)go—i—aﬁu . ﬁ(p) dx = /f(pda: .
G G

Thus, one seeks u € Hj(G) for which the above holds for each ¢ € Hg(G). In order
to obtain estimates on the difference of solutions, suppose that fi(x), fa(x) are
given and that we have corresponding solutions w1 (), ua(z) of (7.3). Subtract the
two equations, multiply the difference by a smooth function ¢ on G which vanishes
on 0G, and integrate to obtain

/ ((a(ur) — a(uz))p + e (ur — uz) - V) da = / (i - fa)pda .
G G

This leads to the essential a-priori estimates. For example, if we choose ¢ =
sgn(u; — ug) and can obtain simultaneously ¢ = sgn(a(u;) — a(usg)), then we (for-
mally) obtain the contraction estimate

(7.4) la(u1) — a(u2)llLr @) < Ifr = follre -

(To make this precise, we first do this with a smooth approximation sgn,(-) with
sgn,.(0) = 0 and let € — 0.) This establishes the accretiveness of the operator C on
the Banach space L'(G). One can then verify the range condition to show that C
is m-accretive as desired. The estimate above depends on the monotonicity of the
function a(-), and it shows that we must work in the Banach space X = L1(G).
(Specifically, sgn(-) is the duality map for L', and this forces us to work in this
particular space.) Moreover, it can be extended to the degenerate case a(-) = 0,
which reduces (7.1) to an elliptic equation, as well as the cases of multivalued
relations, a(-) (which we develop below) and gradient nonlinearities of p-Laplacean
type as in (1.4).
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Porous Media System. We next describe a system consisting of a parabolic
equation and an ordinary differential equation which are coupled by terms which
depend on the difference of the unknowns. This system takes the form
(7.5.a)
aa(u(x, t)) o Au(xat) - C(U(x,t) - U(.T,t)) 2 f('Tﬂ t) ’
(7.5.b)
ab(v(x,t)) + C(U('Tat) - ’U,(:l?,t)) 2 g(xﬂt) y T E G SRS (OaT] 3
(7.5.¢)
0
— —u(s,t) € d(u(s,t)), s€0G,
ov
in which v = u(z,t) and v = v(z,t) are functions defined on the domain G. See
(1.7) and (4.2). Note that (7.5) contains a generalized porous medium equation,
and we make no assumptions of strict monotonicity of a(-). In particular, we allow
the degenerate case a(-) = 0, and this reduces (7.5) to a pseudoparabolic equation
(4.3) [7].

If each of a(+), b(+), ¢(-) and d(-) were a monotone (non-decreasing) function, then
the inclusion symbols, 3, would be replaced by the corresponding equality symbol.
Such systems arise in many contexts, for example, in the diffusion of chemicals
through a saturated porous medium in which (7.5.b) models the local storeage or
adsorbtion in immobile nondiffusive sites. In that case, u is the concentration of a
chemical species in the fluid which occupies the pores and v is the concentration
on the surface of the medium. These are commonly called first order kinetic mod-
els, and they arise in many applications to describe diffusion through an adsorbing
medium. These systems can be regarded as a degenerate case of a corresponding
parabolic system like (1.7) which contains an additional term —Aw(z,t) in (7.5.b).
We saw earlier that these arise as parallel models of flow through a heterogeneous
medium consisting of two components with different diffusivities and an exchange
flux driven by the difference in concentration between the two components. In
(7.5.b) this diffusion term has been deleted because of the immobility of the con-
centration in the adsorbtion sites.

For our purposes it will be very useful to permit a(-),b(-), and especially c(-)
to be multi-valued. That is, we shall consider the case where these are maximal
monotone graphs in R x R [5]. In particular, if 5(0) = R, hence, b is the inverse of
the zero graph, then the system (7.5) reduces to (7.5.a) with v = 0. Likewise, if
¢(0) =R, then u = v, and the system reduces to

0
5 (a(u(@, 1)) + b(u(z, 1)) — Au(z,t) = f(z,t) + g(z,t)  2€G,te(0,T]
together with the boundary condition (7.5.c). But these are merely additive per-
turbations of the porous medium equation.

The generalization to multi-valued graphs permits a very elegant treatment of a
class of parabolic problems with hysteresis. These are of the form

0

(7.6) =

(a(u) +H(u)) — Au=f
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in which H denotes a hysteresis functional, that is, its value depends not only on the
current value of the input, u, but also on the history of the input in a very nonlinear
way. Due to the complex nature of the operators customarily used to represent
hysteresis [12], their addition to systems of differential equations leads to substantial
technical problems for the development of a good theory. An excellent introduction
to hysteresis is the monograph [20], and one should consult the recent survey [18].
The new book [28] is an excellent source for history and recent developments of
mathematical models of hysteresis as well as their addition to partial differential
equations, especially those of parabolic type. See also [11], [27]. The forthcoming
monograph [13] concerns quasilinear wave equations with elasto-plastic hysteretic
constitutive laws arising in mechanics.

We develop some estimates for solutions of (7.5). Let C be (the closure of) an
operator for which the resolvent equation, (I +eC)([a,b]) > [f, g] with € > 0, takes
the form

a(u(z)) — eAu(z) — ec(v(z) —u(z)) 3 f(z) ,
b(v(z)) +ec(v(z) — u(z)) 3 g(z) , z e,

x)
0
- a—yu(s) € d(u(s)) , sel,

in the state space L'(G) x L'(G). Multiply the respective equations by smooth
functions ¢ and ¥ on G and integrate to obtain

/ (a(w)p +eVu- V) dx + / (b(v)Y +ec(v —u)(¢ — ¢)) dz
e

G

—I—E/Fd(u)gods :/G(f<,0+g¢)dx.

This shows the variational form and leads to the essential a-priori estimates. For
example, if we choose ¢ = sgn(u), ¥ = sgn(v) and can obtain simultaneously
¢ =sgn(a(u)), ¥ = sgn(b(v)), then we (formally) obtain the stability estimate

la(u)llzr@ + 16()lIzr@) < Ifllzr@) + gl -

By estimating similarly the differences of solutions, we find that the resolvent map
[f,9] — [a(u),b(v)] is a contraction, and this yields the required accretiveness of
the operator C. Under some additional conditions on the monotone graphs a(-),
b(:), ¢(-), and d(-), we find that C is m-accretive as desired.

Dynamic Boundary Conditions. Next we describe a problem with the same
formal structure as (7.5), the degenerate-parabolic initial boundary value problem

(7.7.a) %a(u) —Au> f, req,
0 ou

(7.7.b) ab(v) + 5 > Y and

(7.7.¢) Ou €c(v—u), s € 0G

ov
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with initial values specified at ¢ = 0 for a(u) and b(v). At each t > 0, u(t) is a
function on the bounded domain G in R" with smooth boundary 0G, and v(t) is
a function on 0G. Each of a(:),b(-),c(-) is a maximal monotone graph in R x R
[5]. Thus, the system (7.7) consists of a generalized porous medium equation in the
interior of GG subject to a nonlinear dynamic constraint on the boundary.

Because of the generality attained via our use of maximal monotone graphs,
this class includes boundary conditions of all the usual types, including Dirichlet,
Neumann, Robin, and the fourth type, i.e., the dynamic boundary conditions [7],
[24]. For example, if b = 0 we have an explicit Neumann boundary condition, and
if ¢ = 0 it is homogeneous. If b(0) = R (i.e., b=! = 0), then v = 0 and we have a
nonlinear Robin constraint, and if ¢(0) = R we get v = u on G, and this satisfies
a nonlinear dynamic boundary condition

(7.7.7) —b(u) + = 3 g.

If 5(0) = ¢(0) = R we have the homogeneous Dirichlet boundary condition. Ad-
ditional interest in (7.7) arises primarily from the fact that (7.7.b) together with
(7.7.c) can represent boundary hysteresis.

We have shown in [10] that the dynamics of the problem (7.7) is given by a
nonlinear semigroup of contractions on the Banach space L!(G) x L(8G)[11]. The
method works as well with the various multivalued relations as indicated. This is
merely a reflection of the power of the method as developed in [23]; the method
permits the extension to gradient nonlinearities of p-Laplacean type in (7.7.a) as
well as corresponding elliptic Laplace-Beltrami operators in (7.7.b) for the manifold
0G. See [19] for a treatment of the degenerate case a(-) = 0 corresponding to a
Stefan problem on the boundary 0G. Adsorption in porous media may be governed
by conditions on the surfaces of the solid material that are of hysteresis type. If
one assumes that the process is governed by certain thresholds, the adsorption rate
shows a hysteresis phenomenon of the kind discussed here. In [9] this idea is applied
to homogenization of reactive transport through porous media. See also [8], [23].

Finally we would like to indicate the types of estimates that are involved for the
problem (7.7), and we will do this for simplicity in the special case of functions
a(-), b(+), ¢(-). The resolvent equation, (I +eC)([a,b]) > [f,g] with € > 0, takes the
form

(7.8.a) a(u) —eAu> f | reqG,
(7.8.b) b(v) —I—E% >¢9, and

ou
(7.8.¢) £ €c(v—u), s € 0G

in the state space L'(G) x L1(0G). Proceeding as before to show how one obtains
the essential estimates that are needed, multiply the respective equations by smooth
functions ¢ on G and ¥ on G and integrate to obtain

(7.9)

/C;(a(u)go—l—sﬁu-ﬁgo) d:zc-i—/

ole

(b(v)yp+ec(v—u)(p—¢p)) ds = /chpdx—l-/aGglpds.
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This shows the variational form of (7.8) and leads to the essential a-priori estimates.
For example, if we choose ¢ = sgn(u), ¥ = sgn(v) and can obtain simultaneously
¢ =sgn(a(u)), ¥ = sgn(b(v)), then we (formally) obtain the stability estimate

(7.10) la(u)l|zy@) + 16(v) |z ae) < 1fllzi@) + 9]z aa) -

By estimating similarly the differences of solutions, we find that the resolvent map
[f,9] — [a(u),b(v)] is a contraction, and this yields the required accretiveness of

the operator C. Under some additional conditions on the monotone graphs a(-),

b(-), and ¢(+), we find that C is m-accretive as desired.
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