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Abstract. A two-scale microstructure model of current flow in a medium with continuously
distributed capacitance is extended to include nonlinearities in the conductance across the
interface between the local capacitors and the global conducting medium. The resulting
degenerate system of partial differential equations is shown to be in the form of a semilinear
parabolic evolution equation in Hilbert space. It is shown directly that such an equation is
equivalent to a subgradient flow and, hence, displays the appropriate parabolic regularizing
effects. Various limiting cases are identified and the corresponding convergence results
obtained by letting selected parameters tend to infinity.

1. Introduction. As integrated circuits become smaller, distributed capacitors
receive correspondingly more attention; they have become the “big” components in
integrated circuits. An example of distributed capacitance is the tantulum capaci-
tor . A porous slug pressed out of tantalum powder is sintered to make the metal
particles cohere and then anodized to produce a film of tantalum oxide, which
serves as the dielectric of the capacitor. Next the slug is immersed in a solution
of manganese nitrate and heated; this process leaves deposits of semiconducting
manganese dioxide in its pores. The manganese dioxide serves as one electrode,
while the underlying tantalum serves as the other [24]. Due to the intricate fine
scale of its geometry, the real model for a capacitor of this type is too singular to be
useful. Thus we use the distributed capacitance model, in which a microcapacitor
is identified with each point of a larger domain, as a continuous approximation to
the actual situation. These microstructure models contain the fine scale geometry
of the microcapacitors as well as the current flux across the intricate interface by
which they are connected to the global field.

Another model for distributed capacitance is the layered medium equation. This
model represents a continuous approximation to a medium consisting of alternating
thin layers of conductive and dielectric materials and is given by the equation

− ∂

∂t
(∂zC(x, z)∂zu)− (∂zGV (x, z)∂zu)− ~∇x · (GH(x, z)~∇xu) = F (x, z, t) (1.1)

Instead of the thin layers of dielectic and conducting materials modeled by the lay-
ered medium equation, we shall consider small horizontally aligned microcapacitors
distributed continuously throughout the conducting medium. We will show that
the layered medium equation can be obtained as a singular limit of the microstruc-
ture model by approximating the distributed capacitors by single points of charge
storage.

This material is based upon work supported by a grant from the National Science Foundation.
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The actual system of equations for the distributed capacitance model will be
given in the next section. It will be shown that the system has the abstract form

d

dt
(Bu) + A(u) 3 f (1.2)

where the linear operator B is non-negative and symmetric but degenerate and the
nonlinear operator A is monotone. The operator B is necessarily degenerate, since
it arises as a consequence of the charging capacitor and thus is nonzero in the local
cell equations but zero in the global field equations of the system. The layered
medium equation (1.1) is also of this form.

In order to show that the Cauchy problem for the evolution equation (1.2) is
well-posed, we will use some techniques of convex analysis. For details, see [4] and
[9]. Let V be a Banach space, and let ϕ : V → (−∞, +∞] be convex, proper, and
lower-semi-continuous. Then w ∈ V ′, the dual space, is a subgradient of ϕ at u ∈ V
if

w(v − u) ≤ ϕ(v)− ϕ(u) for all v ∈ V

The set of all subgradients of ϕ at u is denoted by ∂φ(u). The subgradient is
a generalized notion of the derivative, comparable to a directional derivative. We
regard ∂φ as a multivalued operator from V to V ′; it is easily shown to be monotone.

Equations of the general form of (1.2) have been studied for a long time by
a variety of methods. These equations are of interest not only for the sake of
generalization but also because they arise naturally in a vast variety of applications.
The case of linear B may have degenerate behaviour due to a (possibly spatially
dependent) coefficient that vanishes somewhere. That situation is in essence the
type encountered here.

The earliest general treatment of semilinear and degenerate evolution equations
of the form of (1.2) in an abstract setting occurs in the work [22]. There the non-
linear B is monotone and continuous and A is structured after a family of linear
elliptic operators; both are permitted to be time dependent. In a similar but simpler
setting, results were obtained in [2] by a backward difference approximation tech-
nique, and such results were subsequently obtained directly from a characterization
of maximal monotone operators in [5]. Thereafter this situation was shown in [21]
to be attainable directly as an application of nonlinear semigroups in Hilbert space;
the solution was stronger but required smoother data initially. (The ‘parabolic’ case
with A being a subgradient could be handled this way if B were invertible, but this
does not cover the degenerate case. See [7,11,23].) For a review of work prior to
1976 and many examples, we refer to Chapter 3 of the book [8]. Perturbation and
continuous dependence results were demonstrated in [17,18] and [25], and additional
extensions were subsequently developed in the series of papers [12,13,14,15,16].

Our purpose here is to develop a nonlinear microstructure model for distributed
capacitance in a conducting medium, to formulate it in an abstract form of a system
of degenerate semilinear parabolic equations, and to show that this system is well-
posed. We will find that the operator A of (1.2) that arises from our distributed
capacitance model is the subgradient of a convex function, i.e., there exists a convex
function ϕ such that A = ∂φ. Then we will show in the abstract setting that there
exists another convex function Φ such that (1.2) is equivalent to an explicit equation
of the standard form

d

dt
w + ∂Φ(w) 3 g, (1.3)
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so this problem is parabolic and has the corresponding regularizing effects on the
data. See [4,6]. Our plan is as follows. In Section 2 we derive the equations in their
variational form involving the subgradient of a convex function. In Section 3 we
develop existence and uniqueness results for the Cauchy problem for (1.2); we then
prove results in Section 4 concerning limiting cases. In Section 5 we apply these
results to the distributed capacitance model.

2. The Distributed Capacitance Model. In this section we describe the
distributed microstructure model. Let Ω be a bounded domain in R3; this domain
represents the conducting material in which the capacitance is to be distributed.
For each point x ∈ Ω, there is given a bounded cylindrical domain of the form
Ωx = Sx × [−h

2 , h
2 ], where Sx is a cross section in R2 and h > 0 is the thickness.

Each Ωx represents the generic horizontally oriented microcapacitor embedded in
the conductor Ω in the vicinity of the point x. Each x ∈ Ω represents a point in real
space, and y ∈ Sx is the local variable in the small scale. Let u(x, t) be the voltage
distribution in the global region Ω. We will represent the voltage difference across
the capacitor Ωx by U(x, y, t); specifically, at any time t and point y ∈ Sx, U(x, y, t)
is equal to the voltage at the point (y, h

2 ) on the top minus the voltage at the bottom
point (y,−h

2 ). Using the approximation u(x1, x2, x3+ h
2 )−u(x1, x2, x3− h

2 ) ≈ h ∂u
∂x3

,
we have the voltage difference across the interface between the microcapacitor and
the surrounding conducting medium given by h ∂u

∂x3
− U.

In each cell Ωx, the horizontal voltage gradient induces a current density given
by Ohm’s law as −K~∇yU, where K is the horizontal conductance of the capacitor
surfaces. We use the subscript y on the gradient symbol to indicate that the gradient
is taken with respect to the local variable y. The gradient symbol with no subscript
will be used to indicate a gradient taken with respect to the global variable x. The
capacitor charges in time at a rate of C(x, y)Ut, where C(x, y) is the distributed
capacitance. A vertical current input to Ωx from the surrounding conductor is
induced by the voltage drop h ∂u

∂x3
− U ; we will assume that this current is given

by ∂ψG(h ∂u
∂x3

− U), where ∂ψG is the monotone nonlinear conductance function
obtained as the derivative or subgradient of a convex function ψG. The principle of
conservation of charge then yields

∂

∂t
(C(x, y)U)− ~∇y · (K~∇yU)− ∂ψG

(
h

∂u

∂x3
− U

)
3 F, y ∈ Sx (2.1)

where the function F denotes any additional distributed current sources. Similarly,
the surrounding conductor induces a current of magnitude h∂ψg(h ∂u

∂x3
− U) across

the boundary of the capacitor in the horizontal normal direction n, where ∂ψg is
the subgradient of a convex function ψg. Thus we have

K
∂U

∂n
− h∂ψg

(
h

∂u

∂x3
− γU

)
3 0, s ∈ ∂Sx (2.2)

At the global level, the distributed current arises from two sources: the global
voltage, u(x, t), and the normal current exiting the microcapacitor at the point x.
This current is given by

~ = −k~∇u− ~e3

|Sx|
(∫

∂Sx

K
∂U

∂n
ds +

∫

Sx

∂ψG

(
h

∂u

∂x3
− U

)
dy

)
,
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where k is a positive definite and symmetric matrix representing the conductance
of the surrounding material. This matrix will reflect the fact that the current will
flow more easily in the horizontal directions than in the vertical one. Conservation
of charge on the global scale gives ~∇ · ~ = 0. Thus we have

−~∇ · k~∇u− ∂

∂x3

(
1
|Sx|

∫

Sx

∂ψG

(
h

∂u

∂x3
− U

)
dy +

∫

∂Sx

K
∂U

∂n
ds

)
3 0, x ∈ Ω

(2.3)
We will assume a grounded boundary at the global level,

u(x) = 0, x ∈ ∂Ω, (2.4)

although any one of the usual boundary constraints can be handled similarly. Fi-
nally, we need to specify initial values for the charge distribution U,

C(x, y)U(x, y, 0) = C(x, y)U0(x, y), x ∈ Ω, y ∈ Sx. (2.5)

The system given by (2.1)–(2.4) is our distributed RC network model for dis-
tributed capacitance. This system of partial differential equations is of mixed de-
generate parabolic-elliptic type. It consists of a family of diffusion equations, given
by (2.1), each of which describes the conduction and storage of charge on the local
scale of an individual capacitor at a specific site on the global conduction medium,
and the single elliptic equation (2.3) which governs the interconnection by conser-
vation of charge on the global scale of the conductor. This model contains the
geometry of the individual capacitors and the current flux across the intricate in-
terface by which they are connected to the global current field.

Notice that the total charge rate of the capacitor is given by

d

dt

∫

S∗
CU dy =

∫

S∗

(
F + ∂ψG

(
h

∂u

∂x3
− U

))
dy +

∫

∂S∗
h∂ψg

(
h

∂u

∂x3
− γU

)
dy

=
∫

S∗
F dy +

∫

∂Ωx

J dS,

in which the function

J =





∂ψG

(
h

∂u

∂x3
− U

)
/2 at ȳ =

(
y,±h

2

)
, y ∈ Sx

∂ψg

(
h

∂u

∂x3
− γU

)
at ȳ = (y, y3), y ∈ ∂Sx

(2.6)

is the current flux across the boundary ∂Ωx.
In this development we have permitted the current flux in (2.6) to be driven

by a nonlinear conductance. Our hypotheses below require that the convex func-
tions have at most quadratic growth, so the nonlinear terms in (2.6) will be linearly
bounded. These restrictions are only technical and convenient; one can easily in-
clude more general nonlinearities and also quasilinear models arising from nonlinear
conductances in (2.1) and (2.3).

In order to obtain the variational formulation of the distributed capacitance
model, we specify the spaces to be used. Let L2(Ω) be the Lebesgue space of
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equivalence classes of functions that are square-integrable on Ω, and let H1(Ω) be
the Sobolev space consisting of those functions in L2(Ω) having each of their partial
derivatives also in L2(Ω). Denote by C∞0 (Ω) the space of infinitely differentiable
functions with support contained in Ω; the space H1

0 (Ω) is the closure in H1(Ω) of
C∞0 (Ω). For more information on these spaces, see [1].

Let Q ⊂ Ω× R2 be a measurable set in R5, and set Sx = {y ∈ R2 : (x, y) ∈ Q};
this provides an explicit contruction of the measurable family of cells mentioned
above. By zero-extension, we can identify L2(Q) as a subspace of L2(Ω× R2) and
each L2(Sx) as a subspace of L2(R2). Thus we have the identification L2(Q) ∼=
{U ∈ L2(Ω, L2(R2) : U(x) ∈ L2(Sx) for a.e. x ∈ Ω}. We will denote this space by
L2(Ω, L2(Sx)), with the inner product

(U,Θ)L2(Ω,L2(Sx)) =
∫

Ω

{
1
|Ωx|

∫

Sx

U(x, y)Θ(x, y)dy

}
dx.

This is a continuous direct sum of Hilbert spaces, since a function that is in
L2(Ω, L2(Sx)) takes values in a different Hilbert space at each point x ∈ Ω. We
define Sobolev spaces in a similar manner. Define

L2(Ω, H1(Sx)) ≡
{

U ∈ L2(Ω, L2(Sx)) : U(x) ∈ H1(Sx) a.e. x ∈ Ω,

and
∫

Ω

‖U(x)‖2H1(Sx) dx < ∞
}

;

this direct sum is a Hilbert space. The state space for our problem will be the
product H ≡ L2(Ω) × L2(Ω, L2(Sx)), and the energy space will be V ≡ H1

0 (Ω) ×
L2(Ω,H1(Sx)). We will denote an element of these product spaces by ũ = [u,U ].
In order to define trace maps on these spaces, we require that each Sx is a bounded
domain in R2 which lies locally on one side of its boundary, ∂Sx, and that ∂Sx be
a smooth curve in R2. Let γx : H1(Sx) → L2(∂Sx) be the trace map from each cell
to its boundary. We assume these maps are uniformly bounded so that we may
define the distributed trace γ : L2(Ω,H1(Sx)) → L2(Ω, L2(∂Sx)) by γ(U)(x, s) =
(γxU)(s); in this case, γ is bounded and linear.

These definitions enable us to state precisely the weak formulation of our system.
Suppose [u,U ] is an appropriately smooth solution of (2.1)–(2.4), and let [θ, Θ] ∈ V
be corresponding test functions. Multiply (2.1) by Θ and integrate over Sx. Using
Green’s Theorem and (2.2), we obtain

1
|Ωx|

∫

Sx

{
∂

∂t
(C(x, y)U)Θ + K~∇yU ~∇yΘ− ∂ψG

(
h

∂u

∂x3
− U

)
Θ

}
dy

− 1
|Sx|

∫

∂Sx

∂ψg

(
h

∂u

∂x3
− U

)
γΘ ds =

1
|Ωx|

∫

Sx

FΘ dy

(2.7)

(Technically, an equation like this is an abuse of notation since ∂ψG may be multival-
ued. When an equation like this is used, we mean that there exists a representative
from the multivalued operator such that equality holds. We will use this notational
convenience hereafter.)

Similarly, multiply (2.3) by θ and integrate over Ω to obtain
∫

Ω

{
k~∇u~∇θ +

1
|Sx|

(∫

Sx

∂ψG

(
h

∂u

∂x3
− U

)
dy +

∫

∂Sx

K
∂U

∂n
ds

)
∂θ

∂x3

}
dx = 0

(2.8)
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Finally, use (2.2) and add the integral of (2.7) over Ω to (2.8) to obtain

∫

Ω

{
k~∇u~∇θ +

1
|Ωx|

∫

Sx

(
∂

∂t
(C(x, y)U)Θ + K~∇yU ~∇yΘ

+∂ψG

(
h

∂u

∂x3
− U

)(
h

∂θ

∂x3
−Θ

))
dy

+
1
|Sx|

∫

∂Sx

∂ψg

(
h

∂u

∂x3
− γU

)(
h

∂θ

∂x3
− γΘ

)
ds

}
dx

=
∫

Ω

1
|Ωx|

∫

Sx

FΘ dy dx

(2.9)

In Section 3 we shall define a generalized solution of (2.1)–(2.4) to be a pair
of appropriate functions u and U such that (2.9) holds for all corresponding test
functions θ and Θ. Conversely, a generalized solution ũ = [u, U ] ∈ V of (2.9) can
be shown to satisfy (2.1)–(2.4).

We have shown that the variational form of the system (2.1)–(2.4) can be written
succinctly as

d

dt
(Bũ(t)) + Aũ(t) 3 f̃(t) in V ′ (2.10)

Bu(0) = Bu0 ,

where B : H → H ′ and A : V → V ′ are the operators given by

Bũ(θ̃) =
∫

Ω

1
|Ωx|

∫

Sx

C(x, y)UΘ dy dx, and,

Aũ(θ̃) =
∫

Ω

{
k~∇u~∇θ +

1
|Ωx|

∫

Sx

[
K~∇yU ~∇yΘ + ∂ψG

(
h

∂u

∂x3
− U

)(
h

∂θ

∂x3
−Θ

)]
dy

+
1
|Sx|

∫

∂Sx

∂ψg

(
h

∂u

∂x3
− γU

)(
h

∂θ

∂x3
− γΘ

)
ds

}
dx .

We assume that C(x, y) is a bounded, nonnegative function, that k is a positive
definite and symmetric matrix, and that K is a positive constant. We also assume
that the convex functions ψG and ψg are lower semi-continuous, and that each
satisfies the conditions

(i) ψ(0) = 0 = min(ψ), and
(ii) there exists c > 0 such that ψ(s) ≤ c(1 + |s|2), for s ∈ R.

Under these assumptions, it follows that the operator A can be written as the
subgradient of the convex function ϕ : V → R given by

ϕ(ũ) =
∫

Ω

{
1
2
k(~∇u) · ~∇u +

1
|Ωx|

∫

Sx

(
K

2
|~∇yU |2 + ψG

(
h

∂u

∂x3
− U

))
dy

+
1
|Sx|

∫

∂Sx

ψg

(
h

∂u

∂x3
− γU

)
ds

}
dx .

We state this as the following.
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Proposition 2.1. The subgradient of ϕ, ∂φ : V → V ′, is given by

〈∂φ(ũ), θ̃〉 = Aũ(θ̃) ,

where A is given as above.

The proof follows by standard methods of convex analysis [4,9].

3. The Abstract Cauchy Problem. Let V be a separable reflexive Banach
space, dense and continuously embedded in a Hilbert space H. Let B be a continuous
linear operator from V to V ′; we will assume that B is positive and self-adjoint.
Define the semi-normed space Wb to be the completion of V with respect to the
seminorm induced by the semiscalar product (u, v)Wb

= Bu(v). Then the dual
space W ′

b is a Hilbert space, and B is a strict homomorphism from Wb into W ′
b.

Let ϕ : V → [0,∞] be a proper, convex, and lower semi-continuous function. We
consider the degenerate Cauchy problem

d

dt
(Bu(t)) + ∂φ(u(t)) 3 f(t) for a.e. t ∈ [0, T ] (3.1)

Bu(0) = Bu0 .

A solution of (3.1) is a function u ∈ C([0, T ],Wb) such that u is absolutely contin-
uous on [δ, T ] for all δ > 0, and (3.1) holds in W ′

b for almost every t ∈ [0, T ].
We will show that (3.1) is equivalent to an evolution equation in H in the explicit

form
d

dt
w(t) + C(w(t)) 3 g(t)

in which the operator C is the subgradient of a convex function, i.e., C = ∂Φ.
Standard results on maximal monotone operators in Hilbert space will then apply
directly to yield existence and uniqueness results.

We will use the square root of the operator B [10]. Define the Hilbert space Vb

to be the completion of V with respect to the scalar product

(u, v)Vb
= (u, v)H + Bu(v) .

Since ‖u‖Wb
≤ ‖u‖Vb

for all u ∈ V, we have Vb ⊂ Wb, and Vb is dense in Wb.
Also, the space V is dense and continuously embedded in Vb, which is dense and
continuously embedded in H. Therefore, by extension, we can regard B as a con-
tinuous linear operator from Vb to V ′

b . Since the bilinear form (u, v)Wb
= Bu(v) is

densely defined, closed, and symmetric on Vb, there exists a positive, self-adjoint,
closed linear operator B : dom(B) ⊂ Vb → H such that

Bu(v) = (Bu, v)H for u ∈ dom(B) , v ∈ Vb .

Thus, B is obtained from B by restricting the range to H ⊂ V ′
b ; the domain of B is

dense in Vb.
Next one constructs the positive, self-adjoint, continuous, linear operator B1/2 :

dom(B1/2) = Vb → H such that B1/2B1/2 = B, and

(B1/2u,B1/2v)H = Bu(v) = (u, v)Wb
for u, v ∈ Vb .
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It is the operator B1/2 which will be of primary interest to us. Since B1/2 ∈
L(Vb,H), we can define the Banach space adjoint, B1/2∗ ∈ L(H, V ′

b ), by

B1/2∗w(v) = (w, B1/2v)H .

It follows that B1/2∗B1/2 = B on Vb. For v ∈ Vb, |B1/2v|H = ‖v‖Wb
, so B1/2

is continuous on Vb with the Wb seminorm. Thus B1/2 has a unique continuous
extension (which we also denote by B1/2) to a strict homomorphism from Wb to
H, and so the adjoint B1/2∗ : H → W ′

b is continuous and onto. Since Vb is dense in
Wb, the identity B1/2∗B1/2 = B also extends to Wb.

These properties of B1/2 and B1/2∗ permit us to reformulate (3.1) in an explicit
form.

Proposition 3.1. Let g ∈ B−1/2∗f. Then the equation

d

dt
(w(t)) + B−1/2∗∂φB−1/2(w(t)) 3 g(t) for a.e. t ∈ [0, T ] (3.2)

is equivalent to (3.1) in the following sense:
• If w ∈ C([0, T ];H) is a solution to (3.2), then there exists u ∈ B−1/2w such that

u ∈ C([0, T ]; Wb) is a solution of (3.1).
• If u ∈ C([0, T ];Wb) is a solution to (3.1), set w = B1/2u. Then w ∈ C([0, T ]; H),

is a solution to (3.2).

Next we show that the explicit operator B−1/2∗∂φB−1/2 is the subgradient of a
convex function. Recall from [9, p.17] that the polar function of ϕ, ϕ∗ : V ′ →
(−∞,∞], defined by

ϕ∗(f) = sup
v∈V

{f(v)− ϕ(v)} ,

is proper, convex, and lower semi-continuous; the relationship ∂ϕ∗ = (∂φ)−1 holds
in the sense of multifunctions; and (ϕ∗)∗ = ϕ. We will use the chain rule for subgra-
dients, [9, p.27], on the composition ϕ∗ ◦B1/2∗. The following coercivity condition
on the function ϕ will guarantee the required continuity: there exist constants c > 0
and k > 0 such that

if v ∈ V with ‖v‖V ≥ k, then ϕ(v) ≥ c‖v‖V .

Lemma 3.1. If ϕ satisfies the coercivity condition, then ϕ∗ is continuous at some
point of the range of B1/2∗.

Proof. We will show that ϕ∗ is continuous at 0. It suffices to show that ϕ∗ is
bounded on the neighborhood N = {f ∈ V ′ : ‖f‖V ′ ≤ c}, where c is the constant
from the coercivity estimate. Define V1 = {v ∈ V : ‖v‖V < k}, and V2 = {v ∈ V :
‖v‖V ≥ k}, and let f be an element of N . Since ϕ(v) ≥ 0,

sup
v∈V1

{f(v)− ϕ(v)} ≤ sup
v∈V1

(‖f‖V ′‖v‖V ) ≤ k‖f‖V ′ ≤ c · k .

Using the coercivity condition,

sup
v∈V2

{f(v)− ϕ(v)} ≤ sup
v∈V2

{‖f‖V ′‖v‖V − c‖v‖V } ≤ 0 .

Hence ϕ∗(f) ≤ c · k on the neighborhood N . ¤
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Proposition 3.2. The function Φ ≡ (ϕ∗ ◦B1/2∗)∗ : H → [0,∞] is proper, convex,
and lower semi-continuous with ∂Φ = B−1/2∗∂φB−1/2.

Proof. Consider the composite function ϕ∗◦B1/2∗ : H → (−∞,∞]. Using Lemma 3.1,
an application of the chain rule yields

∂(ϕ∗ ◦B1/2∗) = B1/2∂ϕ∗B1/2∗ .

But the subgradient of the polar is given by

∂((ϕ∗ ◦B1/2∗)∗) = (∂(ϕ∗ ◦B1/2∗))−1

= B−1/2∗(∂ϕ∗)−1B−1/2

= B−1/2∗∂φB−1/2 .

Finally, note that Φ is proper, convex and lower semi-continuous , and

rg(Φ) ⊂ rg((ϕ∗)∗) = rg(ϕ) ⊂ [0,∞] . ¤

Thus we can write (3.2) in the form

d

dt
w(t) + ∂Φ(w(t)) 3 B−1/2∗f(t) in H . (3.3)

We now relate the initial conditions for (3.1) to those appropriate for (3.3).

Lemma 3.2. B1/2(dom(ϕ)
Wb) ⊂ dom(Φ)

H
.

Proof. We first show that B1/2(dom(ϕ)) ⊂ dom(Φ). Suppose that h = B1/2u for
some u ∈ dom(ϕ). Then for every g ∈ H,

ϕ(u) = ϕ∗∗(u) = sup
f∈V ′

{f(u)− ϕ∗(f)}

≥ B1/2∗g(u)− ϕ∗(B1/2∗g) ,

and so
(ϕ∗ ◦B1/2∗)∗(h) = (ϕ∗ ◦B1/2∗)∗(B1/2u)

= sup
g∈H

{(B1/2u, g)H − (ϕ∗ ◦B1/2∗)(g)}

≤ sup
g∈H

{(B1/2u, g)H + ϕ(u)−B1/2∗g(u)}

= ϕ(u) .

Since u ∈ dom(ϕ), we have h ∈ dom((ϕ∗ ◦ B1/2∗)∗). Thus B1/2(dom(ϕ))
H ⊂

dom(Φ)
H

.

Next, we show that B1/2(domϕ
Wb) = B1/2(dom(ϕ))

H
; this will complete the

proof. Let {un} be a sequence in dom(ϕ) such that un → u in Wb, and suppose
that h = B1/2u, i.e., h ∈ B1/2(domϕ

Wb). Set hn = B1/2un. Then, since

‖hn − h‖H = ‖B1/2(un − u)‖H = ‖un − u‖Wb
→ 0 ,



68 B.L. HOLLINGSWORTH AND R.E. SHOWALTER

hn → h in H, and so h ∈ B1/2(dom(ϕ))
H

. The converse follows similarly. ¤
Finally, we note that if f ∈ L2(0, T ; W ′

b), then there exists g ∈ L2(0, T ; H) such
that g ∈ B−1/2∗f.

We have thus completed all the steps necessary to reduce the Cauchy problem
(3.1) to the form

w′(t) + ∂Φw(t) 3 g(t) in H for a.e. t ∈ [0, T ] (3.4)
w(0) = w0 ,

for which there is a complete theory [4, p.131].

Theorem 3.1 (Existence). Let u0 ∈ dom(ϕ)
Wb

, f ∈ L2(0, T ; W ′
b), and B and ϕ

be given as above. Then there exists a solution u ∈ C([0, T ]; Wb) to

d

dt
(Bu(t)) + ∂φ(u(t)) 3 f(t) in W ′

b, for a.e. t ∈ [0, T ] (3.5)

Bu(0) = Bu0 ,

and u(t) ∈ dom(∂φ) for a.e. t ∈ [0, T ].

Proof. By Lemma 3.2, if u0 ∈ dom(ϕ)
Wb then

w0 ≡ B1/2u0 ∈ B1/2(dom(ϕ)
Wb) ⊂ dom(Φ)

H
.

Also, there exists g ∈ L2(0, T ; H) such that g ∈ B−1/2∗(f).
Choosing Φ = (ϕ∗ ◦B1/2∗)∗ and g as above, we obtain the existence of a unique

solution w ∈ C([0, T ]; H) of (3.4). Proposition 3.1 and Proposition 3.2 show that
there exists a function u ∈ C([0, T ];Wb) satisfying (3.5) and we have

Bu(0) = B1/2∗B1/2u(0) = B1/2∗w(0) = B1/2∗w0 = B1/2∗B1/2u0 = Bu0 . ¤

Even though the solution to the explicit equation is unique, the choice of u(t) as
an element of the set B−1/2w(t) could introduce nonuniqueness. To insure unique-
ness, we impose an additional condition.

Theorem 3.2 (Uniqueness). In the situation of Theorem 3.1, if B+∂φ is strictly
monotone, then the solution u(t) is unique.

Thus we have sufficient conditions for existence and uniqueness for the Cauchy
problem (3.5). Continuous dependence on the data u0 and f can be shown using
standard methods. Also see [25].

In the next section, we will need the solution u to be slightly more regular. In
anticipation of this, we have the following result.

Theorem 3.3. If, in addition to the previous hypotheses, u0 ∈ dom(ϕ), then the
solution u satisfies

2
∫ t

0

d

ds
(Bu(s))u(s)ds = ‖u(t)‖2Wb

− ‖u(0)‖2Wb
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for t ∈ [0, T ].

Proof. From the proof of Lemma 3.2, we have B1/2(dom(ϕ)) ⊂ dom(Φ). Thus
w0 = B1/2u0 ∈ dom(Φ), and so we have dw

dt ∈ L2(0, T ; H). It follows that ‖w(t)‖2H
is absolutely continuous on [0, T ] and

d

dt
(‖w(t)‖2H) =

d

dt
(‖B1/2u(t)‖2H) = 2

〈
d

dt
(Bu(t)), u(t)

〉

W ′
b,Wb

. ¤

Note that the solution of (3.5) satisfies u(t) ∈ dom(∂ϕ) ⊂ V and the equation

holds in V ′
b ⊂ V ′ at a.e. t ∈ (0, T ], even though u(0) is given in dom(ϕ)

Wb . This is
the parabolic regularizing effect .

4. Limiting Cases. Suppose that ϕ = φ0 + φ1, with φ0 and φ1 proper,
convex, and continuous from V into [0,∞], and set φε = φ0 + 1

ε φ1 with 0 < ε ≤ 1.
In this section we will consider the limiting problem obtained by replacing ∂φ with
∂φε in (3.1) and letting ε → 0.

We assume that V0 = {v ∈ V : φ1(v) = 0} is a linear subspace of V. Let
V = L2(0, T ; V ), H = L2(0, T ; H), and V0 = L2(0, T ;V0); let H0 be the closure in
H of V0 and H0 = L2(0, T ;H0). Similarly, let W0 be the closure in Wb of V0 and
W0 = L2(0, T ;W0). In addition, we assume that ϕ (and hence φε) is V -coercive;
this implies that φε satisfies the coercivity condition of Section 3. We also assume
that B + ∂φ (and hence B + ∂φε) is strictly monotone.

Let f ∈ L2(0, T ; W ′
b) and u0

ε ∈ dom(φε) for each ε ∈ (0, 1). From Theorem 3.1
and Theorem 3.2, there exists a unique solution uε ∈ C([0, T ];Wb) of

d

dt
(Buε) + ∂φε(uε) 3 f in W ′

b for a.e. t ∈ [0, T ] (4.1)

Buε(0) = Bu0
ε .

Similarly, let f0 = f |W0 and let u0
0 ∈ dom(φ0). Then another application of Theo-

rem 3.1 and Theorem 3.2 gives a unique solution u0 ∈ C([0, T ];W0) of

d

dt
(Bu0) + ∂φ0(u0) 3 f0 in W ′

0 for a.e. t ∈ [0, T ] (4.2)

Bu0(0) = Bu0
0 .

Our goal is to show that, with appropriate hypotheses on the initial conditions,
uε ⇀ u0 in V. Attaining this will require several lemmas.

Lemma 4.1. If {u0
ε} is bounded in Wb, then {uε} is bounded in V.

Proof. Apply (4.1) to uε and integrate to obtain:
∫ t

0

φε(uε) ds +
∫ t

0

〈
d

ds
(Buε)uε

〉
ds ≤

∫ t

0

〈f, uε〉 ds .

Theorem 3.3 yields

2
∫ t

0

φ0(uε) ds +
2
ε

∫ t

0

φ1(uε) ds + ‖uε(t)‖2Wb

≤ ‖f‖W′
b

(∫ t

0

‖uε‖2Wb
ds

)1/2

+ ‖u0
ε‖2Wb

.
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A Gronwall-type inequality then shows that ‖uε‖C([0,T ];Wb) is bounded. Since φε is
V -coercive, this implies that {uε} is also bounded in V. ¤

Thus there exists a subsequence, which we will also denote by {uε}, such that
uε ⇀ u1 for some u1 ∈ V. From the proof of Lemma 4.1 we see that

∫ T

0
1
ε φ1(uε) dt

is bounded, so Fatou’s Lemma and the weak lower semi-continuity of φ1 imply that
u1 ∈ V0.

Lemma 4.2. If { 1
ε φ1(u0

ε)} is bounded, then { d
dtBuε} is bounded in W ′

b.

Proof. Let wε(t) ≡ B1/2uε(t) and Φε ≡ (ϕ∗ε ◦B1/2∗)∗, so that

w′ε + ∂Φε(wε) 3 B−1/2∗f in H , for a.e. t ∈ [0, T ] .

Taking the scalar product in H with w′ε and integrating yields

‖w′ε‖2H + Φε(wε(T )) ≤ ‖g‖H‖w′ε‖H + Φε(wε(0)) .

Since infv∈V {φε(v)} ≥ 0, we also have infw∈H{Φε(w)} ≥ 0, so Φε(wε(T )) is positive.
Also, from the proof of Lemma 3.2, we see that Φε(wε(0)) ≤ φε(u0

ε), which is
bounded since {1

ε φ1(u0
ε)} is bounded, so we have ‖w′ε‖H bounded. Since B1/2 is an

isomorphism from H to W ′
b, the result follows. ¤

Thus we can choose a further subsequence of {uε} such that d
dtBuε ⇀ d

dtBu1 in
W ′

b and Buε(T ) ⇀ Bu1(T ) in W ′
b.

Lemma 4.3. Assume that Bu0
ε → Bu0

0 in W ′
b. Then the equation

d

dt
(Bu1) + ∂φ0(u1) 3 f0

holds in W ′
0 for a.e. t ∈ [0, T ].

Proof. For every v ∈ V and almost every t ∈ [0, T ], (4.1) yields
〈

f − d

dt
(Buε), v − uε

〉
≤ φε(v)− φε(uε) .

Restricting this to v ∈ V0, applying Theorem 3.3, and noting that φε ≥ φ0 gives
∫ T

0

〈f, v − uε〉 −
〈

d

dt
(Buε), v

〉
dt +

1
2
‖uε(T )‖2Wb

− 1
2
‖u0

ε‖2Wb

≤
∫ T

0

φ0(v) dt−
∫ T

0

φ0(uε) dt .

(4.3)

Using weak lower semi-continuity, we have
∫ T

0
φ0(u1) dt ≤ lim infε→0

∫ T

0
φ0(uε) dt

and ‖Bu1(T )‖2Wb
≤ lim infε→0 ‖Buε(T )‖2Wb

. Since Bu0
ε → Bu0

0 in W ′
b and B is an

isomorphism from Wb to W ′
b, u0

ε → u0
0 in Wb. Taking the lim inf of (4.3) thus gives

∫ T

0

〈
f0 − d

dt
(Bu1), v − u1

〉
dt ≤

∫ T

0

φ0(v)− φ0(u1) dt

for every v ∈ V0. Thus we obtain

f0 − d

dt
(Bu1) ∈ ∂φ0(u1) in V ′

0 , hence, in W ′
0 for a.e. t ∈ [0, T ] . ¤
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Theorem 4.1. Let uε and u0 be the generalized solutions to (4.1) and (4.2), re-
spectively. If { 1

ε φ1(u0
ε)} is bounded and Bu0

ε → Bu0
0 in W ′

b, then uε ⇀ u0 in V.

Proof. We have shown in the previous lemmas that a subsequence of {uε} converges
weakly in V to u1 ∈ V0 satisfying

d

dt
(Bu1) + ∂φ0(u1) 3 f0 in W ′

0 for a.e. t ∈ [0, T ] .

To show that u1 is a solution to (4.2), we assert that Bu1(0) = Bu0
0. Using the

continuous embedding of H1(0, T ;H) into C([0, T ],H), we have the estimate

‖B1/2uε(t)‖H ≤ c

(
‖B1/2uε‖H + ‖ d

dt
(B1/2uε)‖H

)

for a.e. t ∈ [0, T ]. This implies that the map from H1(0, T ; H) to H which takes
(B1/2uε,

d
dt (B

1/2uε)) to B1/2uε(0) is strongly continuous; it is also linear and hence
weakly continuous. The same reasoning shows that the operator B1/2 : V → H is
weakly continuous as well, so B1/2uε ⇀ B1/2u1 in H. Lemma 4.2 shows that the
derivatives also converge weakly in H, and so we have B1/2uε(0) ⇀ B1/2u1(0). It
follows that Buε(0) ⇀ Bu1(0) since B1/2 is weakly continuous. But

Buε(0) = Bu0
ε → Bu0

0 ,

and so, since weak limits are unique, Bu1(0) = Bu0
0. Thus u1 is a generalized solution

of (4.2), and, since the solution is unique, it follows that u1 = u0 and the original
sequence satisfies uε ⇀ u0. ¤

5. Examples. We will apply the preceeding results to the distributed ca-
pacitance model to obtain existence and uniqueness of a generalized solution and
characterize three limiting problems. As in Section 2, define the spaces V =
H1

0 (Ω) × L2(Ω,H1(Sx)) and H = L2(Ω) × L2(Ω, L2(Sx)). We have shown that,
with B : V → V ′ given by

Bũ(θ̃) =
∫

Ω

1
|Ωx|

∫

S∗
C(x, y)UΘ dy dx , ũ = [u, U ] , θ̃ = [θ, Θ] ,

and ϕ : V → [0,∞) defined by

ϕ(ũ) =
∫

Ω

{
1
2
k(~∇u) · ~∇u +

1
|Ωx|

∫

S∗

(
K

2
|~∇yU |2 + ψG

(
h

∂u

∂x3
− U

))
dy

+
1
|Sx|

∫

∂S∗
ψg

(
h

∂u

∂x3
− γU

)
ds

}
dx , ũ = [u,U ] ,

the distributed capacitance model can be written in the abstract form

d

dt
(Bũ) + ∂φ(ũ) 3 f̃ in V ′ (5.1)

Bũ(0) = Bũ0 .

The generalized solution that we obtain for this equation will be in the sense of
that defined in Section 3. Notice that the space Wb is a set of pairs of functions
[u,U ] whose second component U satisfies C

1
2 U ∈ L2(Ω, L2(Sx)), and W ′

b is the
set of pairs of functionals of the form [0, C

1
2 f ] with f ∈ L2(Ω, L2(Sx)). A precise

statement of our notion of solution is found in the existence theorem below.
We will use two versions of Poincaré’s inequality.
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Lemma 5.1. Assume that G is an open set in Rn with sup{|x1| : (x1, x2, . . . , xn) ∈
G} = D < ∞. If v ∈ H1

0 (G), then
∫

G
|v|2 dx ≤ 4D2

∫
G
|∂1v|2 dx.

Lemma 5.2. Assume in addition that G lies locally on one side of its boundary,
∂G, and that ∂G is a smooth surface in Rn. If v ∈ H1(G), then

∫

G

|v|2 dx ≤ 2D

∫

∂G

|γv(s)|2 ds + 4D2

∫

G

|∂1v|2 dx .

Recall that each Sx satisfies the hypotheses for Lemma (5.2), and furthermore
these sets are uniformly bounded, say |Sx| ≤ d for all x ∈ Ω. Also, we have the
estimate

|∂Sx|
|Sx| ≥

|∂Sx|
d

≥ 2
√

π√
d
≡ d1 ,

since the boundary of minimum length enclosing a given area is a circle.

Theorem 5.1 (Existence for the Distributed Capacitance Model). Let the
measurable set Q in Ω × R2 and the corresponding sets Sx, x ∈ Ω, be given as in
Section 2. Let the positive definite matrix k, the constant K > 0, the non-negative
function C ∈ L∞(Q), and the convex functions ψG and ψg be given as in Section 2.
Suppose that there exists a number a > 0 for which either ψG(s) ≥ as2 for all s ∈ R
or ψg(s) ≥ as2 for all s ∈ R. Let T > 0 and assume the measurable functions
F : Q × (0, T ) → R and U0 : Q → R are given with C

1
2 F ∈ L2((0, T ), L2(Q)) and

C1/2U0 ∈ L2(Q). Then there exist measurable functions u : Ω × (0, T ) → R and
U : Q× (0, T ) → R for which

• u(t) ∈ H1
0 (Ω) and U(t) ∈ L2(Ω,H1(Sx)) for a.e. t ∈ (0, T ),

• C1/2U ∈ C([0, T ], L2(Q)) and is locally absolutely continuous,
• (2.9) holds at a.e. t ∈ (0, T ) for every θ ∈ H1

0 (Ω), Θ ∈ L2(Ω,H1(Sx)),
• and lim

t→0
C1/2U(t) = C1/2U0 in L2(Q).

Proof. This is a direct application of Theorem 3.1; we only need to show that ϕ
satisfies the coercivity condition of Section 3.3. We write ϕ in four positive parts as
ϕ = ϕ1 + ϕ2 + ϕ3 + ϕ4. Let k0 be the coercivity constant for the matrix k. That is,

k(~∇u)~∇u ≥ k0|~∇u|2 for all u ∈ H1
0 (Ω) .

From Lemma 5.1, we have

1
2
ϕ1(u) ≥ c1‖u‖2H1(Ω) .

Assume now that ψG(s) ≥ as2 for all s ∈ R. Then

1
2
ϕ1(ũ) + ϕ3(ũ)

≥
∫

Ω

{
k0

4
∂u

∂x3

2

+
a

|Ωx|
∫

S∗

((
h

∂u

∂x3

)2

− 2h
∂u

∂x3
U + U2

)
dy

}
dx

≥
∫

Ω

{
k0

4
∂u

∂x3

2

+
a

|Ωx|
∫

S∗

((
h

∂u

∂x3

)2

− h

(
ε

∂u

∂x3

)2

− h

ε2
U2 + U2

)
dy

}
dx

=
∫

Ω

{(
k0

4
+ ha− aε2

)
∂u

∂x3

2

+
a

|Ωx|
∫

S∗

(
1− h

ε2

)
U2 dy

}
dx
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If ε is chosen so that
√

h < ε <
√

h + k0
4a then this is bounded below by

c2

∫
Ω

1
|Ωx|

∫
S∗

U2 dy dx. Thus for each ũ = [u, U ] in V we have

ϕ(ũ) ≥ c1‖u‖2H1(Ω) +
∫

Ω

{
1
|Ωx|

∫

S∗

(
K

2
‖~∇yU‖2 + c2U

2

)
dy

}
dx

≥ c‖ũ‖2V .

If instead we assume that ψg(s) ≥ as2 for all s ∈ R, then, as above, we have by
another appropriate choice of ε

1
2
ϕ1(ũ) + ϕ4(ũ) ≥ c2

∫

Ω

1
|Ωx| (γ(U))2 ds dx .

Using Lemma 5.2 and the fact that |Sx| ≤ d for all x ∈ Ω, we obtain

ϕ(ũ) ≥ c1‖u‖2H1(Ω) +
∫

Ω

{
1
|Ωx|

∫

S∗

K

2
|~∇yU |2 dy +

c2

|Sx|
∫

∂S∗
(γ(U))2 ds

}
dx

≥ c‖ũ‖2V . ¤

Note that the solution is smooth enough for the equation to hold in W ′
b whereas

only the minimal requirements are asked of the initial function U0.
In order to insure that the solution is unique, it is sufficient for B+ ∂φ : V → V ′

to be strictly monotone.

Theorem 5.2 (Uniqueness for the Distributed Capacitance Model). If, in
addition to the hypotheses of Theorem 5.1, either ∂ψG or ∂ψg is strictly monotone,
or if

∫
S∗

C(x, y) dy > 0 for a.e. x ∈ Ω, then the solution to (5.1) is unique.

Proof. Assume that ũ and w̃ are elements of V, and that B(ũ− w̃)(ũ− w̃)+ 〈∂φũ−
∂φw̃, ũ− w̃〉 = 0. Since this expression is a sum of positive terms, we have

〈∂φj ũ− ∂φjw̃, ũ− w̃〉 = 0 (5.2)

for each j ∈ {1, 2, 3, 4}. When j = 1, this gives
∫
Ω
|~∇(u − w)|2 dx = 0, which

implies that u = w in H1
0 (Ω). Also the case j = 2 implies that U(x, y)−W (x, y) =

(U −W )(x), i.e., this difference does not depend on y. If ∂ψG is strictly monotone,
then (5.2) with j = 3 implies that U = W and thus ũ = w̃ in V . The same follows
from B(ũ − w̃)(ũ − w̃) = 0 if instead we assume the above condition on C(x, y).
Alternatively, assume that ∂ψg is strictly monotone. Then (5.2) with j = 4 shows
that γ(U) = γ(W ), and hence U = W, so in this case also ũ = w̃ in V . ¤

Notice that we could have equivalently assumed that either ψG or ψg is strictly
convex, since a convex function ψ is strictly convex if and only if its subgradient
∂ψ is strictly monotone.

Finally, apply the results of Section 4 to the distributed capacitance model.
Specifically, we will multiply ψg, ψG, or K by 1

ε and use Theorem 4.1 to characterize
each of the three corresponding limiting problems.

For the first case set

ϕ1(ũ) =
∫

Ω

1
|Sx|

∫

∂S∗
ψg

(
h

∂u

∂x3
− γU

)
ds dx ,
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and let ϕ0 = ϕ− ϕ1. We originally assumed that ψg(0) = 0; here we will also need
to assume that ψg(s) = 0 only if s = 0. (This is guaranteed if ψg(s) ≥ as2 as in
Theorem 5.1.) In this case, (4.1) is the weak form of the distributed capacitance
model with ψg replaced by 1

ε ψg, and Theorem 4.1 shows that, with appropriate
initial conditions, its solution converges to that of (4.2). Using the above assumption
on ψg, we see that

V0 ≡ ker(ϕ1) =
{

ũ ∈ V : h
∂u

∂x3
= γU in L2(Ω, L2(∂Sx))

}
.

From calculations similar to those in Section 2.4, we see that (4.2) is a weak form
of the system

∂

∂t
(C(x, y)U)−K4yU − ∂ψG

(
h

∂u

∂x3
− U

)
3 F, y ∈ Sx

h
∂u

∂x3
= γU , s ∈ ∂Sx

− ~∇ · k(~∇u)− ∂

∂x3

(
1
|Sx|

∫

S∗
∂ψG(h

∂u

∂x3
− U) dy

)
3 0, x ∈ Ω

u(x, t) = 0, x ∈ ∂Ω , t ∈ [0, T ].

That is, (2.2) is replaced by the Dirichlet condition above. This limiting problem
is the matched model in which the distributed voltage differences on the capacitor
boundaries, γU, are in perfect contact with the global voltage gradient, h ∂u

∂x3
.

Next we consider the case where ψG is replaced by 1
ε ψG; we set

ϕ1(ũ) =
∫

Ω

1
|Ωx|

∫

S∗
ψG

(
h

∂u

∂x3
− U

)
dy ds .

As above, we assume additionally that ψG(s) = 0 only if s = 0. Then

V0 ≡ ker(ϕ1) =
{

ũ ∈ V : h
∂u

∂x3
− U = 0 in L2(Ω, L2(Sx))

}
,

and we find that (4.2) is a generalized form of

−∇ ·
(

k∇u +
~e3

|Sx|
∫

S∗

∂

∂t

(
C(x, y)

(
h

∂u

∂x3

))
dy

)
= − ∂

∂x3

(
1
|Sx|

∫

S∗
F (x, y) dy

)
.

This is a degenerate form of the layered medium equation (1.1), and Theorem 4.1
shows that the solution of (4.1) converges to its solution as ε → 0.

Finally, we consider the case where K →∞. Define

ϕ1(ũ) =
∫

Ω

1
|Ωx|

∫

S∗

K

2
|∇yU |2 dy dx.

Then we have

V0 = {ũ ∈ V : U(x, y) = v(x) for some v(x) ∈ L2(Ω)}V0
∼= H1

0 (Ω)× L2(Ω).
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As above, we find that (4.2) is the weak formulation of the system

0 = −~∇ · k(~∇u)− ∂

∂x3

(
∂ψG

(
h

∂u

∂x3
− v

)
+

(∫

∂S∗
ds

)(
h∂ψg

(
h

∂u

∂x3
− v

)))
,

∂

∂t

(
1
|Sx|

∫

Sx

C(x, y) dy

)
v − ∂ψG

(
h

∂u

∂xe
− v

)

−
(

h

|Sx|
∫

∂S∗
ds

)(
∂ψg

(
h

∂u

∂x3
− v

))
=

1
|Sx|

∫

S∗
F dy.

Again, Theorem 4.1 guarantees that the solution of (4.1) converges to the solution
of this system as ε → 0 (i.e., as K →∞).

In summary, we have described a PDE model of current flow in a medium with
continuously distributed capacitance and nonlinear connections between the local
capacitors and the global conducting medium. Clearly one could obtain correspond-
ing results for more general situations. For example, one could permit monotone
nonlinearities in the conductance in both the capacitors and in the medium and
resolve as above the corresponding quasilinear system. Additionally, one could sup-
plement (2.1) and (2.3) with terms representing losses due to leakage of current
between capacitor plates or connections, and one could permit the convex func-
tions to be more general, specifically, to include unilateral constraints such as arise
in diode nonlinearities. Our techniques apply to such models after some technical
work to bring them to the form of the semilinear degenerate evolution (1.2).

Finally, our main result, Theorem 3.1, shows that (1.2) is really parabolic when
the operator A is a subgradient. The improvement over earlier work is to show that
a very strong solution is obtained when one begins the evolution with very general
data.
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