
I. Introduction

1. Ordinary Differential Equations.
In most introductions to ordinary differential equations one learns a variety of

methods for certain classes of equations, but the issues of existence and uniqueness
are frequently ignored. The objective of such a theory is to recognize some useful
sufficient conditions under which existence or uniqueness of a solution satisfying
appropriate additional conditions are guaranteed. We begin with the initial value
problem for an ordinary differential equation of the form

(1) u′(t) = f(t, u(t)), 0 ≤ t ≤ a.

Here we let a > 0, b > 0, and set Ia = [0, a] and Bb(u0) = {s ∈ R : |s − u0| ≤ b}
for a given u0 ∈ R. Assume we are given a function f : Ia × Bb(u0) → R. A
solution on Ia is an absolutely continuous function u : Ia → R with range Rg(u) ⊂
Bb(u0) and which satisfies (1) at almost every t ∈ Ia. On a first reading one may
replace ‘absolutely continuous’ with ‘continuously differentiable’ and ‘measurable’
by ‘continuous’ everywhere below, and the corresponding statements will follow
from essentially the same proofs. Note then that one can use the continuity of the
function on compact sets to obtain some of the boundedness assumptions.

Proposition 1. Assume there is a function K ∈ L1(Ia) for which

(2) |f(t, x)− f(t, y)| ≤ K(t)|x− y|, t ∈ Ia, x, y ∈ Bb(uo).

Then any two solutions u1, u2 of (1) on Ia satisfy the estimate

(3) |u1(t)− u2(t)| ≤ |u1(0)− u2(0)|e
R t
0 K(s) ds, t ∈ Ia.

Proof. Set u = u1 − u2. Then u(t) = u(0) +
∫ t

0
u′, so |u(t)| ≤ |u(0)|+

∫ t

0
|u′|. From

(1) and (2) it follows that u satisfies

|u(t)| ≤ |u(0)|+
∫ t

0

K(s)|u(s)| ds, t ∈ Ia.

The estimate (3) is a consequence of the following result with w(t) = |u(t)|.

Lemma 1. Assume k ∈ L1(0, a), k ≥ 0, g is absolutely continuous on [0, a] and
w ∈ L∞(0, a) satisfies

w(t) ≤ g(t) +
∫ t

0

k(s)w(s) ds, 0 ≤ t ≤ a.

Then we have

w(t) ≤ g(0)e
R t
0 k(s) ds +

∫ t

0

e
R t

s
kg′(s) ds, 0 ≤ t ≤ a.

Proof. Set G(t) =
∫ t

0
k(s)w(s) ds and note that

G′(t) ≤ k(t)g(t) + k(t)G(t),
1
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so we obtain

d

dt
G(t)e−

R t
0 k ≤ − d

dt
(e−

R t
0 k)g(t)

= − d

dt
(e−

R t
0 kg(t)) + e−

R t
0 kg′(t).

Integrate this over [0, t] to get

(G(t) + g(t))e−
R t
0 k ≤ g(0) +

∫ t

0

e−
R s
0 kg′(s) ds,

and then note that this yields the desired inequality. �

This is an example of a Gronwall inequality. A variation is given next. Much
more general versions are available, but these will suffice for our purposes.

Lemma 2. Assume k ∈ L1(0, a), k ≥ 0, g ∈ L∞(0, a) and w ∈ L∞(0, a) satisfies

w(t) ≤ g(t) +
∫ t

0

k(s)w(s) ds, 0 ≤ t ≤ a.

Then we have

w(t) ≤ g(t) +
∫ t

0

k(s)g(s)e
R t

s
k ds .

Proof. In the proof above we had

d

dt
G(t)e−

R t
0 k ≤ e−

R t
0 kk(t)g(t),

and from this we obtain by integrating (since G(0) = 0)

G(t)e−
R t
0 k ≤

∫ t

0

e−
R s
0 kk(s)g(s) ds,

and then multiplication by e
R t
0 k gives w(t) ≤ g(t) +

∫ t

0
e

R t
s

kk(s)g(s) ds. �

The assumption (2) is called a Lipschitz condition on the function; it essentially is
a uniform bound on difference quotients and follows by the Mean Value theorem of
calculus for continuously differentiable functions on bounded sets. It leads directly
to uniqueness results like the following.

Corollary. If f(·, ·) satisfies (2), there is at most one solution of the initial-value
problem

u′(t) = f(t, u(t)), 0 ≤ t ≤ a,

u(0) = u0 ,

and it depends continuously on the initial value.
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Proposition 2. Assume there is a function K ∈ L1(Ia) for which

(3) |f(t, x)| ≤ K(t)(|x|+ 1), t ∈ Ia, x, y ∈ Bb(uo).

Then any solution u of (1) on Ia satisfies the estimates

|u(t)|+ 1 ≤ (|u(0)|+ 1)e
R t
0 K(s) ds,

|u(t)| ≤ |u(0)|+ (|u(0)|+ 1)
∫ t

0

K(s)e
R t

s
K ds, t ∈ Ia.

Exercise 1. Prove Proposition 2. Hint: Use Lemma 1 or Lemma 2 with w(t) =
|u(t)|+1 and g(t) = |u(0)|+1 for the respective estimates. Show they are equivalent.

Proposition 3. Assume there are functions K1, K2, K3 ∈ L1(Ia) for which

|f1(t, x)| ≤ K1(t)(|x|+ 1),

|f1(t, x)− f2(t, x)| ≤ K2(t)|x|,
|f2(t, x)− f2(t, y)| ≤ K3(t)|x− y|, t ∈ Ia, x, y ∈ Bb(uo).(4)

Then any two solutions u1, u2 of the respective equations

u′1(t) = f1(t, u1(t)), u′2(t) = f2(t, u2(t)),

on Ia satisfy the estimate

(5) |u1(t)− u2(t)| ≤ g(t) +
∫ t

0

K3(s)e
R t

s
K3g(s) ds t ∈ Ia.

where g(t) = |u1(0)− u2(0)|+
∫ t

0
K2(s)(|u1(s) + 1)| ds.

Proof. The difference w(t) = u1(t)− u2(t) satisfies

|w(t)| ≤ |w(0)|+
∫ t

0

|w′(s)|ds ≤ |w(0)|+
∫ t

0

|f1(s, u1(s))− f2(s, u2(s))|ds

≤ |w(0)|+
∫ t

0

|f1(s, u1(s))− f2(s, u1(s))| ds+
∫ t

0

|f2(s, u1(s))− f2(s, u2(s))| ds

≤ |w(0)|+
∫ t

0

K2(s)|u1(s)| ds+
∫ t

0

K3(s)|w(s)| ds

and now apply Lemma 2. �

The assumption with K2 shows that this measures the closeness of f1 and f2.
Since the bound on f1 shows that u1 is bounded, we see that g(t) is small if K2

is small and the initial values are close. The estimate (5) shows that u1 and u2

are close when g(t) is small. In summary, these mean that if the initial values are
close and the functions f1 and f2 are close in the sense above, then the solutions u1

and u2 are close. The estimates make these assertions precise. In particular, they
show that any solution of the initial-value problem for (1) is unique and it depends
continuously on the initial condition u0 and the function f(·, ·).
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Exercise 2. In the situation of Proposition 2, show that f2 satisfies a linear growth
rate like the one on f1.

Exercise 3. Assume the more general condition

(2’) (f(t, x)− f(t, y))(x− y) ≤ K(t)(x− y)2

and obtain similar results.
Hint: Let u1(t) and u2(t) be solutions of (1) and set w(t) = (u1(t)− u2(t))2. Then
w′(t) = 2(u′1(t)− u′2(t))(u1(t)− u2(t)).

Exercise 3’. Let σ(s) = s+ =
{
s, s ≥ 0,
0, s < 0.

From (2’), show that w(t) = σ(u1(t)−

u2(t)) satisfies w′(t) ≤ K(t)w(t) and deduce that if u1(0) ≤ u2(0) then u1(t) ≤ u2(t)
for t ∈ Ia.

Exercise 4. Show that there are many solutions of the initial value problem

u′ = u
1
3 , t ≥ 0, u(0) = 0 .

Show that u(t) = 0 is the only solution of the problem

u′ = −u 1
3 , t ≥ 0, u(0) = 0 .

Hint: Use Exercise 3 with K(t) = 0.

Now we turn to the issue of existence of solutions.

Theorem 1 (Cauchy-Picard). In addition to the assumptions of Proposition
1, assume that f(·, x) : Ia → R is measurable for each x ∈ Bb(u0). Also, let
c > 0, c ≤ a with

∫ c

0
K ≤ b

b+1 and assume |f(t, u0)| ≤ K(t), a.e. t ∈ Ic. Then
there exists a (unique) solution of (1) on Ic with u(0) = u0.

Proof. First we note that for any measurable function u : Ia → Bb(u0), the com-
posite function f(·, u(·)) is measurable on Ic, and from (2) we obtain

|f(t, u(t))| ≤ |f(t, u0)|+ |f(t, u(t))− f(t, u0)| ≤ K(t)(1 + b).

Define X to be the set of u ∈ C(Ic,R) with each u(t) ∈ Bb(u0). It follows that the
function defined by

F [u](t) = u0 +
∫ t

0

f(s, u(s)) ds, t ∈ Ic,

maps X into itself and satisfies

|F [u](t)− F [v](t)| ≤
∫ t

0

K(s)|u(s)− v(s)| ds, t ∈ Ic, u, v ∈ X.

It follows that
‖F [u]− F [v]‖C(Ic) ≤

b

1 + b
‖u− v‖C(Ic),
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where we use the notation

‖u‖C(Ic) = sup{|u(t)| : t ∈ Ic)},

and this shows that F : X → X is a strict contraction on the closed, convex set X
in C(Ic), hence, F has a unique fixed point,

(4) u ∈ X, u(t) = u0 +
∫ t

0

f(s, u(s)) ds, t ∈ Ic.

This u is the desired solution of the initial value problem.

The iteration scheme used to obtain the fixed point result used above provides a
constructive method for solving the initial value problem. This can be numerically
implemented, but there are much more efficient methods for computing approximate
solutions. Theorem 1 is a local result, that is, it asserts the existence of a solution
on some possibly small interval.

Exercise 5. Let α ≥ 0 and consider the initial value problem

u′ = u1+α, u(0) = u0 .

Find the intervals Ic for which there exists a (unique) solution on Ic. Specifically,
show how c depends on u0 and α.

Here is an example of a global result: it asserts the existence of a solution on an
a-priori given interval.

Theorem 1’. Let K ∈ L1(Ia), u0 ∈ R, and f : Ia × R → R satisfy

f(·, x) is measurable for each x ∈ R,
|f(t, x)− f(t, y)| ≤ K(t)|x− y|, x, y ∈ R, a.e. t ∈ Ia,
|f(t, uo)| ≤ K(t), a.e. t ∈ Ia.

Then there is a unique solution of (1) on Ia with u(0) = u0.

Proof. As before the idea is to show that F : X → X has a unique fixed point.
First show by a calculation that the iteration FN (·) is a strict contraction on the
closed, convex set X in C(Ia), hence, FN (·) has a unique fixed point,

u ∈ X, FN (u) = u .

But then we note that FN (F (u)) = F (u), so by uniqueness of the fixed point it
follows that F (u) = u as desired.

The preceding results suffice for most purposes, but we mention in passing some
related results for the case in which the function f(·, ·) does not satisfy a Lipschitz
estimate (2) as above. Here we consider the case in which this function is only
continuous in the second argument. One says that a function which satisfies the first
two conditions below, i.e., measurable in t and continuous in x, is of Caratheodory
type.
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Theorem 2 (Cauchy-Peano). Let K ∈ L1(Ia), u0 ∈ R, and f : Ia×Bb(u0) → R
satisfy

f(·, x) is measurable for each x ∈ Bb(u0),

f(t, ·) is continuous for a.e. t ∈ Ia,
|f(t, x)| ≤ K(t), x ∈ Bb(u0), a.e. t ∈ Ia,

and
∫ c

0
K(s) ds ≤ b. Then there exists a solution of (1) on Ic with u(0) = u0.

Proof. As before, we first note that for any measurable function v ∈ X, the compo-
sition f(·, v(·)) is measurable, hence, integrable. Next, define for each integer n ≥ 1
the function βn(t) = max(0, t− 1

n ). Each βn is continuous and satisfies

|βn(t)− βn(s)| ≤ |t− s|,(5.a)

|βn(t)− t| ≤ 1
n
.(5.b)

Let’s show that there is for each n ≥ 1 a solution un ∈ C(Ic) of the equation

(6) un(t) = u0 +
∫ βn(t)

0

f(s, un(s)) ds, t ∈ Ic.

On the interval [0, 1
n ] we have βn(t) = 0 so the solution there is identically equal

to u0. If the solution is known on [0, j−1
n ], then the values of un(t) for t ∈ [ j−1

n , j
n ]

are determined recursively from the formula, due to the definition of βn, and the
solution of (6) is thereby extended to all of Ic.

The sequence {un} satisfies the estimates

|un(t)| ≤ |u0|+
∫ c

0

K(s) ds,(7.a)

|un(t)− un(s)| ≤ |
∫ βn(t)

βn(s)

K(s) ds| .(7.b.)

Since K is integrable, for each ε > 0 there is a δ > 0 such that

|
∫ t

s

K(s) ds| < ε whenever |t− s| < δ,

and so from (7.b) and (5.a) we see that

|un(t)− un(s)| < ε whenever |t− s| < δ.

Thus, from (7.a) the sequence {un} is equibounded and from the preceding it is
equicontinuous on Ic. Ascoli’s theorem asserts that from such a sequence we can
extract a uniformly convergent subsequence, which we denote by un′ , and it con-
verges to a u ∈ C(Ic). Finally, by writing

un′(t) = u0 +
∫ t

0

f(s, un′(s)) ds−
∫ t

βn′ (t)

f(s, un′(s)) ds, t ∈ Ic,

we can take the limit as n′ →∞ to get (4) as before. Thus, the limit function u is
a solution of (1) with u(0) = u0 as desired.
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Exercise 6. Explain why the iteration scheme of Theorem 1, un+1 = F [un], would
not work in the proof of Theorem 2.

As before, the preceding gives existence of a local solution; the following is an
example of a corresponding global existence result which applies to functions which
are linearly bounded in the second argument.

Theorem 2’. Let K ∈ L1(Ia) and f : Ia × R → R satisfy

f(·, x) is measurable for each x ∈ R,
f(t, ·) is continuous for a.e. t ∈ Ia,
|f(t, x)| ≤ K(t)(1 + |x|), x ∈ R, a.e. t ∈ Ia.

Then for each u0 ∈ R there exists a solution of (1) on Ia with u(0) = u0.

Extensions. All of the results above are true also for vector valued functions,
i.e., for solutions u : Ia → RN of (1) in which f is a function from Ia × RN into
RN . Moreover, the results through Theorem 1’ hold also with R replaced by any
Banach space. The calculus of such vector valued functions is essentially the same
as that for R valued functions; the Mean Value Theorem is the notable exception.

Finally, we consider the continuous dependence of the solution of the initial value
problem on the data in the problem that is implicit in the function f(·, ·). A solution
u(t) of the problem is certainly continuous in t. Moreover, if f(·, ·) is continuous, it
follows from the equation (1) that the solution is also continuously differentiable in
t. Suppose that the function also depends continuously on a parameter α ∈ R, that
is, fα(t, u). Regard this parameter as another unknown, so we have the formally
equivalent system

u′(t) = fv(t)(t, u(t)), u(a) = u0 ,

v′(t) = 0, v(a) = α .

for the unknown pair u(t) , v(t), and the parameter now appears as initial data.
From our estimate (3), it follows that u(t) is continuous in α as well as u0. Suppose
now that the function fα(·, ·) depends analytically on the parameter α. Since the
solution is obtained as the uniform limit of a sequence, and since each member of
that sequence depends analytically on the parameter α, it follows that the solution
itself depends analytically on the parameter α. These remarks hold as well for a
family of parameters, α = (α1, α2, . . . , αm).
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2. First Order PDE.
The general partial differential equation of first order in two variables is an

equation of the form

(1) F (x, y, u, ux, uy) = 0

for which a solution is a function u = u(x, y) which satisfies (1) in the appropriate
sense. Here we shall discuss the case of quasilinear equations, that is, equations
which are linear in the highest order derivatives. For equations of first order as
above, such an equation is of the form

(2) a(x, y, u)ux + b(x, y, u)uy = c(x, y, u)

determined by the three functions, a(·, ·, ·), b(·, ·, ·), c(·, ·, ·) . We shall begin with
an intuitive discussion of the solvability of (2). Our approach is geometric. The
graph of a solution of (2) is a surface S in R3 given by u = u(x, y). Let (x0, y0, u0)
be a point on S. The normal direction to the surface at (x0, y0, u0) is given by
(p, q,−1) , where p = ux(x0, y0, u0) , q = uy(x0, y0, u0) . The equation (2) requires
only the single constraint,

(3) a(x0, y0, u0)p+ b(x0, y0, u0)q = c(x0, y0, u0) ,

so there is a one-parameter family of such directions. The direction (a, b, c) is
tangent to any graph of a solution of (2) at (x0, y0, u0), that is, it is a common
tangent to all such solution surfaces. We define the characteristic curves to (2)
to be those curves (x(τ), y(τ), u(τ)) which are solutions of the system of ordinary
differential equations

(6)

dx

dτ
= a(x(τ), y(τ), u(τ)) ,

dy

dτ
= b(x(τ), y(τ), u(τ)) ,

du

dτ
= c(x(τ), y(τ), u(τ)) .

It follows from the above that any such curve either remains in a solution surface
or is completely disjoint from it. These observations suggest a technique for con-
structing the solution to an initial value problem for (2); this technique is called
the method of characteristics.

Suppose we are given an initial curve

C :


x0(s)
y0(s)
u0(s)

.

The initial value problem for (2) and C is to find a solution u of (2) whose graph
contains C, that is, a solution satisfying

(7) u(x0(s), y0(s)) = u0(s) .
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We construct the desired solution as follows. Pick a point (x0(s), y0(s), u0(s)) on
the curve C. Using this as the initial value, solve the system (6) for a solution
(x(·), y(·), u(·)) satisfying the initial condition

(x(0), y(0), u(0)) = (x0(s), y0(s), u0(s)) .

This solution depends on the parameter s, so it consists of a triple of functions
which we denote by

(8) x = x(τ, s), y = y(τ, s), u = u(τ, s) .

The system (8) will be the parametric representation of the desired surface, S, in
which the curve C corresponds to τ = 0. The solution u is recovered by resolving
the first two equations in (8) for

τ = τ(x, y), s = s(x, y)

and then substituting these into the third to obtain the desired solution in the form
u(x, y) = u(τ(x, y), s(x, y)), the function whose graph is S.

The success of the preceding technique depends on the relationship between the
partial differential equation (2) and the initial curve C. We shall say that a curve
in R2 is characteristic if it is the projection into R2 ×{0} of a characteristic curve.
Intuitively, we expect the following three cases to occur:

If (x0(s), y0(s)) is nowhere characteristic, then for each u0(·) there will exist a
unique solution to the initial value problem.

If C is a characteristic curve, then there will exist many solutions to the initial
value problem. (One can be constructed as above from any nowhere characteristic
curve which intersects C at a single point.)

If (x0(s), y0(s)) is characteristic and C is not a characteristic curve, then there
will not exist any solution to the initial value problem. (In particular, the surface
S will not be the graph of a function u(·, ·).)
Example 1. Consider the initial value problem

ux + uy = 1 , u(x, 0) = f(x) .

We can represent the initial curve by

C :


x0(s) = s

y0(s) = 0
u0(s) = f(s)

,

and the characteristic curves are given by the system

dx

dτ
= 1,

dy

dτ
= 1,

du

dτ
= 1 .

The solutions of this system with initial values taken from the initial curve are just

x = τ + s, y = τ, u = τ + f(s) ,

and from these we calculate the unique solution

u = y + f(x− y) .
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Example 2. With the same equation as in Example 1, we consider the curve

C :


x0(s) = s

y0(s) = s

u0(s) = F (s)

for which the projection into R2 × {0} is characteristic. If there exists a solution
u of the partial differential equation which contains C, then from (7) we obtain
F ′(s) = u′0(s) = 1 as a necessary condition for existence. That is, F (·) must
be chosen so that C is a characteristic curve. In that case, there are many such
solutions of the initial value problem. One of these can be obtained from Example
1 by taking any function f for which f(0) = F (0).

Example 3. Consider the initial value problem

xux + yuy = u+ 1 , u(x, x) = x2 .

The characteristic curves for this partial differential equation are determined by
the system

dx

dτ
= x ,

dy

dτ
= y ,

du

dτ
= u+ 1

and the initial condition is specified by the curve

x0(s) = s , y0(s) = s , u0(s) = s2 .

Since the projection into R2×{0} is characteristic, it is no surprise that the solution
of this system, namely,

x = seτ y = seτ u = s2eτ + eτ − 1 ,

does not determine a function u(x, y).

Example 4. Consider instead the same partial differential equation but with the
initial condition u(x, x2) = x2. This can be written in parametric form as

x0(s) = s , y0(s) = s2 , u0(s) = s2 ,

and the curve on which the solution is specified is noncharacteristic, so we expect
to get a unique solution. It is easy to see that this solution is

x = seτ y = s2eτ u = s2eτ + eτ − 1 ,

and we can solve this for the solution u = y + x2

y − 1 of the initial value problem.

Theorem 3. Assume the functions a(x, y, u) , b(x, y, u) , c(x, y, u) are continu-
ously differentiable in a domain of R3. Assume that the curve C : (x0(s), y0(s), u0(s))
lies inside that domain and that it is continuously differentiable. Finally, assume
that

(9)
∣∣∣∣ a(x0(s), y0(s), u0(s)) x′0(s)
b(x0(s), y0(s), u0(s)) y′0(s)

∣∣∣∣ 6= 0 .
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Then there exists a unique continuously differentiable solution to the problem

(10)
{
a(x, y, u)ux + b(x, y, u)uy = c(x, y, u)
u(x0(s), y0(s)) = u0(s)

in a neighborhood of C.

Proof. The proof consists of verifying that the hypotheses are sufficient to carry
out the method of characteristics as outlined above. First, construct as above the
solution of the system (6) starting from the curve C. The smoothness assumptions
guarantee that the functions x = x(τ, s), y = y(τ, s), u = u(τ, s) are continuously
differentiable solutions in a neighborhood of C. The assumption (9) shows that on
C the Jacobian

∂(x, y)
∂(τ, s)

=
∣∣∣∣ ∂x

∂τ
∂x
∂s

∂y
∂τ

∂y
∂s

∣∣∣∣ =
∣∣∣∣ a(x0(s), y0(s), u0(s)) x′0(s)
b(x0(s), y0(s), u0(s)) y′0(s)

∣∣∣∣
is non-zero, so by continuity it is non-zero in a neighborhood of C. Then the
implicit function theorem shows that the transformation x = x(τ, s), y = y(τ, s)
has a continuously differentiable inverse, so we obtain the continuously differentiable
function u(x, y) as above by substitution. From the chain rule we obtain

ux = ussx + uττx , uy = ussy + uττy ,

and this leads to
aux + buy = (asx + bsy)us + (aτx + bτy)uτ .

From (6) we obtain

asx + bsy = sxx
′ + syy

′ =
∂

∂τ
s(x(τ), y(τ)) = 0 ,

aτx + bτy = τxx
′ + τyy

′ =
∂

∂τ
τ(x(τ), y(τ)) = 1 ,

so we have
aux + buy = uτ = c .

Finally, note that
u(x0(s), y0(s)) = u(s, 0) = u0(s) ,

so the initial condition is also satisfied. This shows that u is a solution of (10) and
establishes the existence of a solution.

Now, to show uniqueness, we let u(x, y) be any solution of (10). Construct a
curve on the graph of u by solving for each fixed s the pair of equations

dx

dτ
= a(x(τ), y(τ), u(x(τ), y(τ)))

dy

dτ
= b(x(τ), y(τ), u(x(τ), y(τ)))

with the initial conditions
(x(0), y(0)) = (x0(s), y0(s)) .

Then define u(τ) = u(x(τ), y(τ)) and note that

u′(τ) = uxxτ + uyyτ = aux + buy = c ,

u(0) = u(x(0), y(0)) = u(x0(s), y0(s)) = u0(s) .

This shows that (x(τ), y(τ), u(τ)) is a characteristic curve which which starts at
(x0(s), y0(s), u0(s)), so by the uniqueness of initial value problems for ordinary
differential equations, the graph of u is specified by this information. �
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Exercises. Solve each of the following initial value problems explicitly.
1.

ut + aux = 0 , u(x, 0) = f(x) , x ∈ R , t > 0 ,

where a is a constant.
2.

xux + uy = 1 , u(x, 0) = ex , x ∈ R , t > 0 .

3.
xux + uy = u+ 1 , u(x, 0) = u0(x) , x ∈ R , t > 0 .

4.
ut + aux = 0 , u(x, 0) = f(x) , u(0, t) = 0 , x > 0 , t > 0 .

5.

ut + aux = 0 , u(x, 0) = f(x) , u(0, t) = u(1, t) , 0 < x < 1 , t > 0 .

6. Generalize the method of characteristics to equations of the form

N∑
i=1

ai(x, u)
∂u

∂xi
= c(x, u) ,

where x = (x1, x2, ..., xN ).
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3. Second Order PDE.
We shall be concerned primarily with partial differential equations of the second

order whose solutions are real-valued functions of (at least) two real variables.
Letting R denote the set of real numbers and RN the N − dimensional Euclidean
space, we can determine such an equation by a function F : D → R, where D is a
subset of R8. The equation is given by

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0 .

Equations as well as systems in one or more variables can be indicated in a similar
manner. The order of the equation refers to the highest order of a derivative that
appears in the equation. Finally, a solution of the partial differential equation above
is a function u : G→ R, where G is a subset of R2, which is twice differentiable with
(x, y, u, ux, uy, uxx, uxy, uyy) ∈ D for every (x, y) ∈ G and such that the indicated
equation is satisfied at each point of G.

Example. Let f : G → R be continuous, where G is a disc in R2 with center
(x0, y0). Then every solution of the equation

uxy = f

can be given by the representation

u(x, y) = u(x0, y) + u(x, y0)− u(x0, y0) +
∫ x

x0

∫ y

y0

f(s, t) dt ds .

Another representation for solutions of this equation is given by

u(x, y) = u(x0 + y0 − y, y)+
∫ x

x0+y0−y

ux(s, x0 + y0 − s) ds

+
∫ x

x0+y0−y

∫ y

x0+y0−s

f(s, t) dt ds ,

and there are many such representations. The first of these will give us the solution
u if the values of u are known along the lines x = x0 , y = y0. Likewise, the
second representation determines u from known values of u and ux along the line
x+y = x0+y0. Thus each of these formulas or integral representations for solutions
is appropriate for a different type of boundary value problem associated with the
given equation.

A given partial differential equation may have many solutions. Our interest is
in describing those solutions which satisfy the equation together with additional
constraints, usually in the form of initial or boundary conditions. Specifically, we
shall classify the equations of second order in such a way that the classification
indicates what types of initial-boundary-value problems make reasonable or well-
posed problems for that equation type. Well-posed refers to those problems for
which there is exactly one solution, and it depends continuously on the data of the
problem. We shall find representations for these solutions to be very useful in the
discussion of initial- or boundary-value problems.

We begin with equations of the form

(1) L[u] = f(x, y, u, ux, uy)
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for which the principle part is given by

(2) L[u] = a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy ,

where a(·, ·) , b(·, ·) and c(·, ·) are continuous functions on the open set G in R2.
We shall assume that a2 + b2 + c2 > 0 in G. The equation is called degenerate at
a point in G where all the coefficients vanish; at such a point it is essentially an
equation of (at most) first order.

An equation of the form (1) is called semilinear since the non-linearities in u and
its derivatives occur only in those terms with at most first order derivatives; i.e.,
the principle part (2) is linear in u. If any one of the coefficients depends on u , ux

or uy, then (1) is called quasilinear . Finally, if f is of the form

f = −A(x, y)ux −B(x, y)uy − C(x, y)u+ F (x, y) ,

then (1) is linear , for it is then of the form T [u] = F , where T is a linear operator
between appropriate function spaces.

We investigate the effect on L[·] of a change of variable, (x, y) → (σ, τ), given by

(3) σ = φ(x, y) , τ = ψ(x, y) , (x, y) ∈ G ,
where φ and ψ are twice continuously differentiable functions for which the Ja-
cobian, φxψy − φyψx, is different from 0 in G. It follows then that the map
(x, y) → (σ, τ) carries G onto an open set and is locally invertible. From a di-
rect calculation by the chain rule we have

(4)

ux =uσσx + uττx ,

uy =uσσy + uττy ,

uxx =uσσσ
2
x + 2uστσxτx + uτττ

2
x + ... ,

uxy =uσσσxσy + uστ (σxτy + σyτx) + uτττxτy + ... ,

uyy =uσσσ
2
y + 2uστσyτy + uτττ

2
y + ... ,

where + ... denotes terms containing first order derivatives of u. Substitution of
(4) into (1) gives the transformed equation

M [u] = g(σ, τ, u, uσ, uτ )

with the principle part

M [u] = A(σ, τ)uσσ + 2B(σ, τ)uστ + C(σ, τ)uττ ,

whose coefficients are given by

(5)

A =aσ2
x + 2bσxσy + cσ2

y

B =aσxτx + b(σxτy + σyτx) + cσyτy

C =aτ2
x + 2bτxτy + cτ2

y .

Note that the system (5) may be written in the form(
A B
B C

)
=

(
σx σy

τx τy

) (
a b
b c

) (
σx τx
σy τy

)
.

Taking the determinant of both sides of this equation yields the identity

(6) B2 −AC = (σxτy − σyτx)2(b2 − ac) ,

and this shows that the sign of the quantity (b2 − ac) obtained from the principle
part of (1) does not change under smooth transformations.
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Definition. The quantity b(x, y)2 − a(x, y)c(x, y) is the discriminant of the equa-
tion (1) at the point (x, y) ∈ G.

The preceding discussion establishes the following result.

Theorem 4. The sign of the discriminant at a point for the semilinear partial
differential equation (1) of second order is invariant under a transformation (3)
whose component functions are twice differentiable with non-zero Jacobian in a
neighborhood of that point.

Theorem 4 shows that the sign of the discriminant does not depend on the choice
of coordinates in which the equation is expressed and, hence, that it provides a
reasonable means of classifying (1) at a point in G. Even better reasons for using
this classification will appear later.

Definition. The equation (1) is called hyperbolic, parabolic or elliptic at a point
whenever the discriminant, b2 − ac, is positive, zero, or negative, respectively, at
that point. The equation is of a given type in the region G if it is of that type at
every point of G. It is of mixed type on G if it has at least two types at (different)
points of G.

Example. The semilinear equation

uxx + xyuyy + u2
x = 0

is hyperbolic in the two quadrants where xy < 0, it is parabolic on the axes, xy = 0,
and it is elliptic where xy > 0. The equation is of mixed elliptic-parabolic type in
the region where xy ≥ 0.

Exercises.
1. Verify (6) directly from (5).
2. Show that L degenerates at (x0, y0) if and only if M degenerates at s0 =

φ(x0, y0) , t0 = ψ(x0, y0).
3. Classify by type the following: Laplace’s equation, uxx+uyy = 0, the diffusion

equation, ut = uxx, and the wave equation, utt − uxx = 0.
4. Show that the transformation σ = x + y , τ = x − y transforms the wave

equation uxx−uyy = 0 to the form uστ = 0. Verify that every solution of the wave
equation is of the form u(x, y) = f1(x+ y) + f2(x− y).

5. Discuss well-posedness of the problem uxx + uyy = 0 for y > 0 with u(x, 0) =
f(x), uy(x, 0) = g(x), x ∈ R.
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4. Characteristics and classification.
Suppose we are given the semi-linear second order equation (3.1). Our objective

here is to find an appropriate pair of functions φ , ψ for which the change of variables
(3.3) will reduce (1) to an equation with a simpler principle part. We shall assume
that the coefficients in (3.1) are continuous and that a(x, y) is non-zero in the region
of our interest. Otherwise, we would either have c(x, y) 6= 0, in which case we do
a construction as below with x and y interchanged, or else c(x, y) = 0, and then
we can divide by the necessarily non-zero b(x, y) to obtain a hyperbolic equation.
(We assumed that (3.1) is non-degenerate, so not all of the coefficients can vanish.)
From the implicit function theorem it follows that the function φ is a solution of
the first order partial differential equation

(1) a(x, y)φ2
x + 2b(x, y)φxφy + c(x, y)φ2

y = 0

if and only if it is an integral of the ordinary differential equation

(2) a(x, y)
(
dy

dx

)2

− 2b(x, y)
(
dy

dx

)
+ c(x, y) = 0 .

(Recall that an integral of (2) is a function φ whose level curves, φ(x, y) = c, char-
acterize solutions of (2) implicitly.) Hence, we seek “ local” solutions, y1(x), y2(x),
respectively, of the pair of ordinary differential equations

(3)

dy

dx
=
b(x, y) + (b(x, y)2 − a(x, y)c(x, y))1/2

a(x, y)
,

dy

dx
=
b(x, y)− (b(x, y)2 − a(x, y)c(x, y))1/2

a(x, y)
,

which is equivalent to (2). The number and type of these solutions depend on the
discriminant.

Definition. An integral curve, φ(x, y) = c, of (2) is a characteristic curve, and (2)
is called the characteristic equation for the partial differential equation (3.1).

Example. The discriminant of the Tricomi equation

yuxx + uyy = 0

is given by b2−ac = −y, so the equation is hyperbolic where y < 0. The character-
istic equation is y(y′)2 + 1 = 0. By a separation of variables, it follows that there
are two characteristic curves through each point in the lower half-plane. These are
given by 3x ± 2(−y)3/2 = c, and they degenerate to a single characteristic direc-
tion (the vertical) through each point of the x-axis where the equation is parabolic.
There are no characteristics in the upper half-plane where the equation is elliptic.

We return to the equation (3.1). Suppose that (3.1) is hyperbolic in a region.
Since the discriminant is positive, there are two distinct solutions, y1(x) and y2(x),
of (2), and a corresponding pair of solutions of (1) is given by φ(x, y) = y1(x) −
y, ψ(x, y) = y2(x)− y. From the identity∣∣∣∣ φx φy

ψx ψy

∣∣∣∣ = y′2 − y′1 = −2
a

√
b2 − ac ,
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it follows that the transformation defined by (3.3) has a non-zero Jacobian in the
region. Comparing (3.5) with (1), we find that the coefficients satisfy A = C = 0
in the region, and Theorem 4 then implies that B2 > 0. Dividing the transformed
equation by the non-zero coefficient B then yields

(4) uστ = F (σ, τ, u, uσ, uτ ) .

An additional change-of-variable, ξ = σ + τ, η = σ − τ changes (4) to the form

(5) uξξ − uηη = G(ξ, η, u, uξ, uη).

Hence, equation (3.1) can be reduced to either of the forms (4) or (5) in any region
in which it is hyperbolic, and these equations are the canonical forms for hyperbolic
semi-linear partial differential equations of second order.

If the equation (3.1) is parabolic in a region, then (3) reduces to a single equation,
and there is only one characteristic curve through each point of the region. Let ψ
be a solution of (1), and let φ be any smooth function for which the Jacobian,
φxψy − φyψx, is non-zero. Then the coefficient C of the transformed equation is
identically zero, and the parabolicity condition, B2 −AC = 0, implies that B = 0.
Dividing the transformed equation by the remaining necessarily non-zero coefficient
A gives us

(6) uσσ = F (σ, τ, u, uσ, uτ ),

the canonical form for parabolic second-order semi-linear equations.

Example. The discriminant of the linear equation

xuxx + 2xuxy + |x|uyy = 0

is 0 where x ≥ 0 and 2x2 where x < 0. In the right half-plane the characteristic
equation is (y′ − 1)2 = 0 with the solution y = x+ c and integral ψ(x, y) = x− y .
Choose φ = x+ y, so the Jacobian is non-zero. The transformation σ = x+ y, τ =
x−y reduces the equation to the form uσσ = 0. Note that u(σ, τ) = f1(τ)+σf2(τ)
gives a family of solutions to the transformed equation, and the corresponding
solutions of the original equation are given by u(x, y) = f1(x−y)+(x+y)f2(x−y) ,
where f1 and f2 are arbitrary twice differentiable functions.

In the half-plane where x < 0, the characteristic equation (y′)2 − 2y′ − 1 has
the solutions y1(x) = (1 +

√
2)x+ c, y2(x) = (1−

√
2)x+ c and the corresponding

integrals φ = (1 +
√

2)x− y, ψ = (1−
√

2)x− y. The transformation (3.3) reduces
the equation to the canonical form uστ = 0. If g1 and g2 are twice-differentiable
functions, we obtain a solution u(σ, τ) = g1(σ) + g2(τ) of the transformed equation
and a corresponding solution of the original equation, u(x, y) = g1((1+

√
2)x−y)+

g2((1−
√

2)x− y), in the left half-plane.

Consider finally the case in which the equation (3.1) is elliptic in a region. There
are no real solutions of the characteristic equation (2), but we can apply the pre-
ceding technique if we assume further that the coefficients have analytic extensions
to complex variables, x, y. Then we obtain a pair of complex-valued integrals, φ, ψ
of (2) determined as above by a pair of complex-valued solutions of (3). The co-
efficients in (2) take real values for real x, y, so the same is true of y1, y2. But
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integrals are determined up to constants, so taking the conjugate of the identity
φx +φyy

′
1 = 0 and noting that ȳ′1 = y′2, we have ψ = φ̄+c on the real plane. Hence,

the transformation (3.3) introduces the complex variables σ = φ(x, y), τ = ψ(x, y)
in which the equation (3.1) appears in the form (4). To obtain a form in real
variables, introduce ξ = Re(σ) = 1

2 (σ + τ), η = Im(σ) = 1
2i (σ − τ) to obtain the

canonical form for elliptic semi-linear equations,

(7) uξξ + uηη = G(ξ, η, u, uξ, uη) .

The preceding discussion is summarized in the following.

Theorem 5. Let the semi-linear partial differential equation (3.1) be given with
twice continuously differentiable coefficients in a neighborhood of the point (x0, y0).
If (3.1) is hyperbolic at (x0, y0), there is a transformation (3.3) whose component
functions are twice continuously differentiable with non-zero Jacobian in a neigh-
borhood of that point and which reduces (3.1) to the form (4). If (3.1) is parabolic
at (x0, y0), there is a transformation as above which reduces (3.1) to the form (6).
If (3.1) is elliptic at (x0, y0), and if its coefficientrs are analytic at (x0, y0), then
there is a transformation as above which recuces (3.1) to the form (7).

Proof. It suffices to show that the transformation (3.3) exists and is twice con-
tinuously differentiable at (x0, y0). This follows from the differentiability of the
coefficients and the regularity of the solutions of the ordinary differential equations
(2).

Example. The elliptic equation

uxx + 2uxy + 5uyy = 0

has the characteristic equation (y′)2−2y′+5 = 0 with complex-conjugate solutions
y1(x) = (1 − 2i)x + c, y2(x) = (1 + 2i)x + c. We introduce the real variables
σ = Re(y − y1(x)) = y − x, τ = Im(y − y1(x)) = 2x to obtain the canonical form
uσσ + uττ = 0.

Exercises. Reduce each of the following to a canonical form in regions where it is
of a given type. Sketch the (real) characteristic curves in both the original and in
the new coordinate planes.

1. uxx + 2uxy + uyy + ux − uy = 0
2. uxx + 2uxy + 5uyy + 3ux − uy = 0
3. 3uxx + 10uxy + 3uyy = 0
4. yuxx + uyy = 0
5. Show that a characteristic curve is invariant under the transformation (3.3).
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5. Characteristics and Discontinuities.
Consider the situation of Section 3 in which we studied the effect of a change of

variable (3.3) on the semilinear equation (3.1). This led to the new equation whose
principle part has the coefficients A, B, C given by (3.5). Suppose now that φ(x, y)
is a solution of

(1) aφ2
x + 2bφxφy + cφ2

y = 0 ,

i.e., the curves φ(x, y) = k are characteristic. Then the coefficient A of uss in the
transformed equation is identically zero, so the new equation takes the form

(2) 2Bust + Cutt = F (s, t, u, us, ut) .

Note that (2) does not depend on the second order derivative uss in the direction
normal to the characteristic curve φ(x, y) = k, but it is an equation containing only
directional derivatives of u and us in the direction determined by t = ψ(x, y) with
a non-zero component in the tangent direction. In particular, it may happen that
some solution of (3.1) has a discontinuity in the second derivative in the direction
normal to the characteristic curve.

Example. For any twice continuously differentiable function f : R → R, there is
exactly one solution of

uxx − uyy = 0, u(x, 0) = f(x), uy(x, 0) = 0 .

It is given by u(x, y) = 1
2 (f(x + y) + f(x − y)). However, if f(x) = x|x|, then the

second derivative f ′′(x) does not exist. The function u given by our formula

u(x, y) =


x2 + y2, for x ≥ 0, y ≥ 0,
2xy, for |x| < y,

−(x2 + y2), for x ≤ −y ≤ 0

is once continuously differentiable in the half-plane where t ≥ 0 and is twice differ-
entiable except on the lines x = t, x = −t. The second order derivatives are given
by

uxx(x, y) = uyy(x, y) =


2, for x ≥ 0, y ≥ 0,
0, for |x| < y,

−2, for x ≤ −y ≤ 0.

In order to examine these derivatives more carefully, we introduce the characteristic
coordinates s = x+ y, t = x− y to obtain the representation

u(s, t) =


1
2 (s2 + t2), for s ≥ 0, t ≥ 0,
1
2 (s2 − t2), for s ≥ 0, t < 0,

− 1
2 (s2 + t2), for s < 0, t < 0.

The second order derivatives are given by

uss(s, t) =


1, for s > 0, t > 0
1, for s > 0, t < 0 ,
−1, for s < 0, t < 0

utt(s, t) =


1, for s > 0, t > 0
−1, for s > 0, t < 0 .
−1, for s < 0, t < 0
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Along the line s = 0, the normal derivative uss exhibits a jump of magnitude 2,
as does also the derivative utt along the line t = 0. Thus, the discontinuity in the
initial data f at the origin is propogated along the characteristics x± t = 0.

This example illustrates that certain discontinuities in certain derivatives of the
solution of (3.1) may exist along characteristic curves. We shall next show that
this propogation of such discontinuities can occur only along characteristic curves.
Namely, we consider discontinuities in the second order derivative in the direction
normal to the curve. Let C be a curve given in the form φ(x, y) = k which separates
the region into the two sets {(x, y)|φ(x, y) < k} and {(x, y)|φ(x, y) > k}. Let
s = φ(x, y) and choose t to be the parameter along C for which tx = φy, ty = −φx;
that is, (sx, sy) is orthogonal to (tx, ty). At each point of C, define [g] to be the
magnitude of the jump of the piecewise continuous function g in the direction
of increasing s. Let u be a solution of (3.1) for which u, ux, uy and each of their
derivatives in the tangent direction along C are continuous, but for which the second
order normal derivative uss takes a jump [uss] 6= 0. Consider the transformation
(3.3), and assume it is twice continuously differentiable. From the chain rule we
obtain the identities in (3.4) on either side of C. Use these to see that the jumps
in the various second order derivatives along C satisfy the identities

(3)

[uxx] =[uss]s2x + 2[ust]sxtx + [utt]t2x ,

[uxy] =[uss]sxsy + [ust](sxty + sytx) + [utt]txty ,

[uyy] =[uss]s2y + 2[ust]syty + [utt]t2y .

Note that all the lower order terms in (3.4) were continuous, so their corresponding
jumps were null, and the coefficients above are continuous, so they appear outside
the brackets. Now from our assumptions on the smoothness of u along C, it follows
that

[ust] = [utt] = 0 ,

so we obtain

(4) [uxx] = [uss]φ2
x, [uxy] = [uss]φxφy, [uyy] = [uss]φ2

y.

Assume that the coefficients a, b, c and the function f in (3.1) are all continuous.
Then we obtain from (3.1) the identity

a[uxx] + 2b[uxy] + c[uyy] = 0 ,

and with (4) this gives (1). This shows that the curve φ(x, y) = k is necessarily a
characteristic curve.
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6. PDE in Rn.
Consider the generalization of (3.1) to those semilinear second order partial dif-

ferential equations which have solutions u(x) which are functions of the n variables
x = (x1, x2, . . . , xn), and, hence, contain derivatives in n corresponding coordinate
directions ∂u

∂xi
= uxi , i = 1, 2, . . . , n. We shall denote the variable coefficients by

{ajl(x)}, and the principle part is then given by

(1) L[u] =
n∑

j=1

n∑
l=1

ajluxjxl
, x ∈ G

where G is an open set in Rn. From the identity of the mixed derivatives, uxjxl
=

uxlxj , it follows that we may assume with no loss of generality that the coefficients
in (1) are symmetric. Suppose now that x0 ∈ G and make a change of variable

yi =
n∑

j=1

cij(xj − x0
j ) .

From the chain rule we obtain the identities

uxj
=

n∑
i=1

uyi

∂yi

∂xj
=

n∑
i=1

cijuyi
, 1 ≤ j ≤ n ,

uxjxl
=

n∑
k=1

∂

∂yk
uxj

∂yk

∂xl
=

n∑
k=1

n∑
i=1

cijckluyiyk
, 1 ≤ j, l ≤ n .

Substitution of these quantities into (1) gives the transformed principle part

M [u] =
n∑

k=1

n∑
i=1

Akiuyiyk

with coefficients

Aki =
n∑

j=1

n∑
l=1

cijcklajl, 1 ≤ k, i ≤ n .

By introducing the matrices a = (aij) and c = (cij), the differential operators
∂x = ( ∂

∂x1
, . . . , ∂

∂xn
) and ∂y = ( ∂

∂y1
, . . . , ∂

∂yn
), and by denoting adjoints by a prime,

we can express the above computations as follows:

L = ∂xa∂′x y = (x− x0)c′ ,

∂x = ∂yc M = ∂y(cac′)∂′y .

The coefficients in the transformed differential operator M are thus given by the
matrix A = cac′. By the theory of symmetric quadratic forms, the matrix c can be
chosen so as to obtain the matrix A at y0 = 0 in a form with diagonal consisting
of +1, −1 or 0, and with only zeros in every position off of the diagonal. For any
such choice of c, the three numbers

n1 = number of Ajj with Ajj = 1,
n−1 = number of Ajj with Ajj = −1,
n0 = number of Ajj with Ajj = 0,

remain invariant . Thus, these three numbers provide a means of classifying (1)
independent of coordinates.
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Definition. Let the second order differential operator L be given in a neighborhood
of x0 ∈ Rn, and let the numbers n1, n−1, n0 be as given above. Then (1) is called
elliptic at x0 if n1 = n or if n−1 = n, parabolic at x0 if n0 > 0, n1n−1 = 0, properly
hyperbolic at x0 if n0 = 0 and either n1 = 1 or if n−1 = 1, ultra hyperbolic if n0 = 0,
n1 > 1 and n−1 > 1, and hyper-parabolic if n0 = 1, n1 > 1 and n−1 > 1.

Example. The equation

ux1x1 − 2ux1x3 + 2ux2x2 + 4ux2x3 + 6ux3x3 = 0

can be written in a symmetric matrix form with matrix

a =

 1 0 −1
0 2 2
−1 2 6

 .

The matrix

c =

 1 0 0
0 1√

2
0

1√
3

− 1√
3

1√
3


has the property that cac′ is the identity matrix, hence, the transformation y = xc
reduces the above elliptic equation to the form

uy1y1 + uy2y2 + uy3y3 = 0

The preceding discussion shows that there is a change of variable which reduces
(1) at the given point x0 to the form

M [u] =
n1∑

j=1

uyjyj
−

n2∑
j=n1+1

uyjyj

with n2 = n1 + n−1 at the corresponding point y0 = 0. An attempt to find a
transformation of the form y = φ(x) which will accomplish this in a neighborhood
of x0 leads to a system of partial differential equations in the components of φ
which is overdetermined if n ≥ 3, hence, an extension of Theorem 5 to higher
dimensions is not possible, in general. However, if (1) has constant coefficients, the
transformation y = xc′ introduces M with constant coefficients, and the indicated
form above is attained at all points of Rn. In particular, every linear equation with
constant coefficients can be reduced to the form

(2)
n∑

j=1

ajuxjxj +
n∑

j=1

bjuxj + cu = f(x)

where each of the coefficients aj is ±1 or 0.
Finally, we close with the following frequently useful observation. Suppose (2)

has been arranged so that those coefficients aj which vanish are those with n−n0 =
n2 < j ≤ n. Define the function

E(x) = e
Pn2

l=1
−bl
2al

xl
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and make the change of variable u(x) = v(x)E(x). Then we obtain for 1 ≤ j ≤
n1 + n−1

uxj
= E(x)(vxj

− bj
2aj

v) ,

uxjxj = E(x)(vxjxj −
bj
aj
vxj +

b2j
4a2

j

v) .

Hence, from (2) we get

(3)
n1+n−1∑

j=1

ajuxjxj +
n∑

j=n1+n−1+1

bjuxj + (c−
n1+n−1∑

j=1

(
b2j
4a2

j

))u =
f(x)
E(x)

.

Thus, every linear second order partial differential equation with constant coef-
ficients can be reduced to the form (3). The point is that we can eliminate all
of those first order terms bj for which there is a corresponding non-zero entry aj

in the principle part. Specifically, all first order terms can be eliminated from a
non-parabolic equation.

Exercises. Transform each of the following to the form (3).
1. uxx + uyy + aux + buy + cu = 0.
2. uxx + uyy + aut + bux + cuy = 0.
3. uxx − uyy + aux + buy + cu = 0.
4. ut + uxy + aux + buy + cu = 0.
5. Give an example of a hyper-parabolic equation in R3.


