
II. The Potential Equation

1. Introduction.
Our objective here is to show that the Dirichlet boundary value problem is well-

posed for Poisson’s equation

(1) −∆u(x) = f(x)

which contains the Laplace operator ∆u ≡
∑n

i=1 uxixi . That is, in a domain G
in Rn we seek a solution of (1) which takes on prescribed values u|∂G = g on the
boundary ∂G. Thus, the data in the Dirichlet problem consists of the two functions,
f and g, and the domain G. It is this last condition, the domain G, which makes the
problem difficult, since a solution which agrees with g on the entire boundary ∂G is
demanded. In particular, it is rather easy to find solutions of the partial differential
equation itself, but the real problem is to satisfy the boundary conditions. Although
local solutions of (1) might seem interesting, or even a single global solution on all
of G, they usually represent very little progress towards solving the boundary value
problem.

In Section 2 we shall derive a representation for solutions of (1) in terms of f
on G and the function u and its normal derivative on ∂G. Various properties of
solutions of Laplace’s equation

(2) −∆u(x) = 0

will be derived in Section 3 from this representation. This representation will
be refined in Section 4 to construct a candidate for the solution of the Dirichlet
problem, and we shall use this to solve explicitly the Dirichlet problem for very
special domains. After examining some of the consequences of solvability on the
sphere, we turn finally to prove existence of a solution on general domains.

2. A Fundamental Representation.
Let G denote a normal domain in Rn. A harmonic function on G is a function

u ∈ C2(G) which satisfies Laplace’s equation

(1) ∆u = 0

in G. As is often the case with linear equations, certain special solutions which
depend only on the distance from some point can be useful in the construction
of other solutions. In particular, solutions of (1) of the form u(x) = w(r), where
r = ‖x− ξ‖ = (

∑n
i=1(xi − ξi)2)

1
2 is the distance from x to ξ, are given by

u(x) =
{

ln( 1
r ) , n = 2 ,

1
rn−2 , n ≥ 3 .

Each of these functions has a singularity at ξ characterized by the dimension n. It
will be convenient to define the singular solution of (1) by

s(x, ξ) ≡

{
1
2π ln( 1

r ) , n = 2 ,
1

(n−2)ωnrn−2 , n ≥ 3 ,
r = ‖x− ξ‖ ,

1
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where ωn denotes the surface area of the unit sphere in Rn. In particular, ω2 =
2π and ω3 = 4π. The coefficients are chosen to normalize the singularity for
calculations to follow below.

Recall that the Divergence Theorem∫
G

∇ · ~F dx =
∫

∂G

~F · ~ν dS

holds on G when ~F = (F1, F2, . . . , Fn) has components in C(Ḡ) ∩ C1(G) and ~ν is
the unit outward normal on the boundary, ∂G. If u, v ∈ C1(Ḡ) ∩ C2(G), then we
can set Fj = u vxj

in the divergence theorem to obtain the First Green’s Identity

(2)
∫

G

(u∆v +∇u · ∇v) dx =
∫

∂G

u
∂v

∂ν
dS

in which ∇v = (vx1 , vx2 , . . . , vxn) is the gradient of v and

∂v

∂ν
= ∇v · ~ν

is the normal derivative, the directional derivative in the normal direction, ν. A
corresponding result holds with u and v interchanged, and by subtracting these we
obtain the Second Green’s Identity

(3)
∫

G

(u∆v − v∆u) dx =
∫

∂G

(u
∂v

∂ν
− v

∂u

∂ν
) dS .

From (2) we obtain our first uniqueness result for Laplace’s equation. If u = v
is a harmonic function in G and belongs to C1(Ḡ), then from (2) follows∫

G

(‖∇u‖2) dx =
∫

∂G

u
∂u

∂ν
dS ,

so if additionally u = 0 on ∂G, it follows that u is constant on G, hence, identically
zero. This shows that there is at most one such solution in C1(Ḡ) ∩ C2(G) of the
boundary value problem for Poisson’s equation

(4)
−∆u(x) = f(x), x ∈ G ,

u(x) = g(x), x ∈ ∂G .

We shall show later that there is at most one solution of (4) in the larger class
C(Ḡ) ∩ C2(G). Note also that by setting v = 1 in (3) we obtain Gauss’ law

(5)
∫

G

∆u dx =
∫

∂G

∂u

∂ν
dS .

This is related to the conservation of mass in many applicatons, and it will be useful
in some computations below.

We want now to obtain a representation of a solution of the boundary value
problem (4) in terms of integrals over G and around ∂G. The identity (3) is our
starting point. We shall apply it to a smooth function u and choose v(x) = s(x, ξ),
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a singular solution of Laplace’s equation (1) with singularity at ξ ∈ G. Because of
the singularity we cannot apply (3) directly to the region G, but we shall instead
apply it to the region Gε obtained from G by deleting the sphere Sε of radius ε > 0
centered at ξ. Now since ∆s(·, ξ) = 0 in Gε, ∂Gε = ∂G− ∂Sε, and at x ∈ ∂Sε the
unit outward normal to ∂Gε is given by −x−ξ

ε , we obtain for n ≥ 3

−
∫

Gε

∆u(x)s(x, ξ) dx =
∫

∂G

(
u(x)

∂s(x, ξ)
∂ν

− s(x, ξ)
∂u(x)

∂ν

)
dSx

−
∫

∂Sε

(
u(x)

(
− 1

ωnεn−1

)
− 1

(n− 2)ωnεn−2

∂u(x)
∂ν

)
dSx .(6)

We consider the behaviour of each term as ε → 0. From (5) we get the estimate

|
∫

∂Sε

∂u(x)
∂ν

dSx| = |
∫

Sε

∆u(x) dx| ≤
(ωnεn

n

)
max
x∈Sε

|∆u(x)|

in which the coefficient on the last term is the volume of the sphere Sε. This gives
the first limit

lim
ε→0

{ 1
εn−2

∫
∂Sε

∂u(x)
∂ν

dSx} = 0 .

Since the surface area of Sε is given by ωnεn−1, we obtain

|
∫

∂Sε

u(x) dSx − ωnεn−1u(ξ)| = |
∫

∂Sε

(u(x)− u(ξ)) dSx|

≤ ωnεn−1 max
x∈∂Sε

|u(x)− u(ξ)| .

The continuity of the function u then yields the limit

lim
ε→0

{ 1
ωnεn−1

∫
∂Sε

u(x) dSx} = u(ξ) .

Thus, we have shown that the right side of (6) converges as ε → 0, and so it follows
that the left side does also, and we have obtained the integral representation

(7) u(ξ) =
∫

∂G

(
s(x, ξ)

∂u(x)
∂ν

− u(x)
∂s(x, ξ)

∂ν

)
dSx −

∫
G

∆u(x)s(x, ξ) dx .

This identity expresses the value of a function u ∈ C1(Ḡ) ∩ C2(G) at a point
ξ ∈ G in terms of ∆u in the interior G and both of u and ∂u

∂ν on the boundary ∂G.
Thus, the first term in (7) containing the normal derivative of u on the boundary
is a defect in the representation of a solution of the boundary value problem (4).
However the identity (7) will be very useful in the following discussion of properties
of harmonic functions, and we shall return in Section 4 to make the appropriate
modifications to eliminate the defect in the representation, i.e., to eliminate the
term involving ∂u

∂ν .
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Exercises.
1. If u is a function whose value at x depends only on the distance r = ‖x− ξ‖

from some point ξ, show that ∆u = r1−n(rn−1ur)r. Then show that such a function
is harmonic if and only if it is of the form c1+c2s(x, ξ), where c1 and c2 are constants
and s(x, ξ) is the singularity function.

2.a If ωn denotes the surface area of the unit sphere in Rn, then the surface area
of the sphere of radius ε is ωnεn−1, and its volume is given by

vn(ε) =
∫ ε

0

ωnεn−1 dε =
ωnεn

n
.

2.b Show that

vn+1(1) = 2
∫ 1

0

vn(
√

1− x2) dx .

Note that v2(1) = π = ω2
2 , so ω2 = 2π. Also v3(1) = 4π

3 , so ω3 = 4π. Show that
ω4 = 2π2.

2.c Note that

vn+1(1) = 2
∫ 1

0

ωn

n
(1− x2)

n
2 dx = 2

ωn

n

∫ π
2

0

cosn+1(θ) dθ ,

hence,

ωn+1 = 2ωn
n + 1

n

∫ π
2

0

cosn+1(θ) dθ .

Derive the equality ∫ π
2

0

cosn+1(θ) dθ =
n

n + 1

∫ π
2

0

cosn−1(θ) dθ

from which we get the recursive formula

ωn+1 =
n− 2
n− 1

ωnωn−1

ωn−2
n ≥ 3

2.d Show by induction that

ωn =
2π

n
2

Γ(n
2 )

, n ≥ 1,

where Γ(·) is the Gamma function.
3. Show that if u is harmonic in G and u ∈ C1(Ḡ), then∫

∂G

∂u

∂ν
dSx = 0 .

4.a State and prove a uniquenes result for the Neumann problem which asks for
a solution of

−∆u(x) = f(x), x ∈ G ,

∂u

∂ν
= g(x), x ∈ ∂G .
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In particular, show that any solution is determined up to a constant and that this
is the best that can be done.

4.b Show that a necessary condition for the Neumann problem to have a solution
is that the compatibility condition∫

G

f(x) dx +
∫

∂G

g(x) dSx = 0

hold.
4.c Discuss uniqueness for solutions of the Robin problem

−∆u(x) = f(x), x ∈ G ,

αu(x) + β
∂u

∂ν
= g(x), x ∈ ∂G ,

in which α2 + β2 > 0 and αβ ≥ 0.
5. Verify the formula (7) for the case n = 2.
6. The boundary value problem (4) in R1 can be stated as

−u′′(x) = f(x), 0 < x < 1,

u(0) = g1, u(1) = g2,

where G = (0, 1). Show that for any function f which is continuous on [0, 1] the
unique solution is given by

u(x) = (1− x)g1 + xg2 +
∫ 1

0

G(x, s)f(s) ds

where

G(x, s) =
{

(1− x)s, 0 ≤ s < x ≤ 1,

(1− s)x, 0 ≤ x < s ≤ 1.

3. Harmonic Functions.
Here we shall develop some of the properties of harmonic functions such as

differentiability, mean value theorems on spheres, and maximum principle. All of
these results are consequences of the representation (2.7), and it leads to the very
useful notion of subharmonic functions. Throughout this section, G is a bounded
open set in Rn and S(ξ, r) denotes the sphere of radius r > 0 and center at ξ ∈ Rn.

Proposition 1. If u is harmonic in G then u is infinitely differentiable in G.

Proof. Choose S(ξ, r) so that S̄(ξ, r) ⊂ G. Applying the representation (2.7) to u
on S(ξ, r) gives

(1) u(y) =
∫

∂S(ξ,r)

(
s(x, y)

∂u(x)
∂ν

− u(x)
∂s(x, y)

∂ν

)
dSx .

Since the integrand has continuous derivatives of all orders in the variable y in some
neighborhood of ∂S(ξ, r)×{ξ} in R2n, it follows by Leibinitz rule that u is infinitely
differentiable at ξ.

One of the characterizations of harmonic functions is that they have the mean
value property. We show the necessity of this property here, and in Section 4 we
shall obtain the converse.
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Proposition 2: Mean Value Theorem. If u is harmonic in the sphere S(ξ,R)
and continuous on S̄(ξ,R), then u(ξ) is equal to the mean value of u on ∂S(ξ,R)

Proof. Let 0 < r < R and set y = ξ in the identity above. Since s(x, ξ) = r2−n

ωn(n−2)

is constant, Gauss’ law (2.5) shows that the integral of the first term is zero. Also,
∂
∂ν = ∂

∂r , so we obtain

(2) u(ξ) =
1

ωnrn−1

∫
∂S(ξ,r)

u(x) dSx

from an explicit calculation. Expressing this integral in the polar angle gives

u(ξ) =
1

ωn

∫
∂S(ξ,1)

u(ry) dΩy ,

and the uniform continuity of u on S(ξ,R) permits us to take the limit r → R in
the above to obtain the desired result, namely, (2) with r = R.

Corollary 1. The value of u at ξ is equal to the mean value of u in S(ξ,R).

Proof. For each r , 0 < r < R, we have from (2)

ωnrn−1u(ξ) =
∫

∂S(ξ,r)

u(x) dSx .

Integration of this identity gives

ωnRn

n
u(ξ) =

∫ R

0

∫
∂S(ξ,r)

u(x) dSx dr =
∫

S(ξ,R)

u(x) dx .

The coefficient of u(ξ) is the volume of S(ξ,R), so this is the desired result.

Many of the following results will depend only on the mean value properties of
harmonic functions. Moreover, we will find it useful to consider the following class
of functions.

Definition. A function u ∈ C(Ḡ) is called subharmonic in G if for every sphere
S(ξ, r) with S̄(ξ, r) ⊂ G we have

(3) u(ξ) ≤ 1
ωnrn−1

∫
∂S(ξ,r)

u(x) dSx .

Of course it follows as before that any such function necessarily satisfies the
volume form of the sub-mean-value property, namely,

(4) u(ξ) ≤ 1
ωnrn

n

∫
S(ξ,r)

u(x) dx

for any sphere S(ξ, r) as above.
We are motivated by the proof of Proposition 2 to use the identity (2.7) on a

general function u ∈ C2(G) restricted to the sphere S(ξ, r) with S̄(ξ, r) ⊂ G. By
evaluating it at the center of the sphere and using Gauss’ theorem on the first term
as before, we obtain

u(ξ) =
1

ωnrn−1

∫
∂S(ξ,r)

u(x) dSx +
∫

S(ξ,r)

(−∆u(x))(s(x, ξ)− r2−n

ωn(n− 2)
) dx .

Since s(x, ξ)− 1
ωnrn−2 ≥ 0 for x ∈ S(ξ, r), we obtain the following extension of the

Mean Value Theorem.
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Proposition 2’: Sub Mean Value Theorem. If u ∈ C2(G) ∩ C(Ḡ) satisfies

∆u(x) ≥ 0 , x ∈ G

then u(ξ) is subharmonic in G.

The Mean Value Theorem provides one proof of the following fundamental result.
Another is outlined in the exercises.

Proposition 3: Maximum Principle. Let u be subharmonic in G. Then the
maximum of u on Ḡ is attained on ∂G.

Proof. Since u is continuous on the compact set Ḡ, there is a y ∈ Ḡ such that
u(x) ≤ u(y) for all x ∈ Ḡ. Assume that y ∈ G, and let R > 0 be the distance from
y to ∂G. Since u is subharmonic, we have

ωnRn−1u(y) ≤
∫

∂S(y,R)

u(x) dSx ≤
∫

∂S(y,R)

u(y) dSx = ωnRn−1u(y) ,

so we obtain ∫
∂S(y,R)

[u(y)− u(x)] dSx = 0 .

But the integrand is continuous and non-negative, so it must be identically zero.
Hence, by the choice of R, the maximum value is attained somewhere on ∂G.

Corollary 2: Strong Maximum Principle. Let u be subharmonic in G. If G
is connected then either u is constant or

u(x) < max
y∈Ḡ

u(y) , x ∈ G.

Proof. Consider the set A = {x ∈ G : u(x) = maxy∈Ḡ u(y)}. Since u is continuous,
this set is closed in G, that is, its complement is open in G. From the proof of the
Maximum Principle, if x ∈ A then there is a sphere S(x,R) ⊂ A with R > 0, so A
is also open in G. Since G is connected, either A = G or A = ∅.

Corollary 3: Order and Uniqueness. Let G be open and bounded in Rn , f1

and f2 ∈ C(G) , g1 and g2 ∈ C(∂G). Let u1 , u2 ∈ C2(G) ∩ C(Ḡ) be corresponding
solutions of the boundary value problem (2.4). If f1(x) ≤ f2(x), x ∈ G and g1(x) ≤
g2(x), x ∈ ∂G, then u1(x) ≤ u2(x), x ∈ G. In particular, there is at most one
solution u ∈ C2(G) ∩ C(Ḡ) of the boundary value problem (4).

Proof. It suffices to note that u ≡ u1 − u2 is subharmonic on G and non-negative
on ∂G.

A similar argument shows that a solution of the Dirichlet problem (4) depends
continuously on the boundary values: if f1 = f2, then

max
x∈Ḡ

|u1(x)− u2(x)| = max
x∈∂G

|g1(x)− g2(x)| .
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Exercises.
1. Verify the statement in the proof of Theorem 1 concerning the differentiability

of the integrand.
2. Provide the details in the following proof of the Maximum Principle. Let

y ∈ G be a point at which the maximum of u occurs. If ε > 0 is sufficiently small,
then v(x) ≡ u(x) + ε|x − y|2 is larger at y than at any x ∈ ∂G. Thus, v has
a maximum at some z ∈ G. But ∆v(x) = ∆u(x) + 2εn > 0 for x ∈ G, while
∂2v(z)

∂x2
j
≤ 0 for all j, 1 ≤ j ≤ n.

3. Let u1, u2 be subharmonic in G. If c1, c2 ≥ 0, show that c1u1 + c2u2 and
max{u1, u2} are subharmonic in G.

4. Green’s Function.
Our objective here is to obtain an integral representation and existence theorem

for the solution of the Dirichlet problem for Laplace’s equation (2.1). We showed
already in the previous section that there is at most one such solution and that it
depends continuously on the boundary values, so it will follow that the problem is
well-posed.

Recall the discussion which led to the representation (2.7) in terms of the singu-
larity function. If u ∈ C1(Ḡ) ∩ C2(G), then we showed that

(1) u(ξ) =
∫

∂G

(
s(x, ξ)

∂u(x)
∂ν

− u(x)
∂s(x, ξ)

∂ν

)
dSx −

∫
G

∆u(x)s(x, ξ) dx .

Were it not for the term containing the normal derivative of u, (1) would provide a
representation of a smooth solution of our boundary value problem (2.4) in terms
of the data, that is, in terms of the boundary values of u, and ∆u(x) in the interior,
hence, (1) would provide a means of defining a likely candidate for the solution.
This motivates the following construction.

Definition. The Green’s function for the region G is given by

G(x, ξ) = s(x, ξ)− w(x, ξ)

where s(x, ξ) is the singular solution of Laplace’s equation and for each ξ ∈ G, the
function w(·, ξ) is a harmonic function in C1(Ḡ) for which

w(x, ξ) = s(x, ξ) , x ∈ ∂G.

It follows from the uniqueness result above that there is at most one such func-
tion, w(·, ·), so any Green’s function is uniquely determined by the region G. By
repeating the argument that led to (2.7) but with the Green’s function G(·, ·) in
place of the singular solution s(·, ·), we obtain

(2) u(ξ) = −
∫

∂G

u(x)
∂G(x, ξ)

∂ν
dSx −

∫
G

∆u(x)G(x, ξ) dx

for any normal domain G and u ∈ C1(Ḡ)∩C2(G). Note that by using the Green’s
function we have eliminated the troublesome term involving ∂u

∂ν on the boundary.
In particular, if u ∈ C1(Ḡ) is harmonic in G, then

(3) u(ξ) = −
∫

∂G

u(x)
∂G(x, ξ)

∂ν
dSx .
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Fix ξ, x ∈ G, and then define the functions

v(y) ≡ G(y, ξ) , w(y) ≡ G(y, x) y ∈ G.

Then v and w are harmonic in G− {ξ} and G− {x}, respectively, and v = w = 0
on ∂G. By applying Green’s identity (3) to these functions on the domain Gε ≡
G− S(ξ, ε)− S(x, ε) we obtain∫

∂S(ξ,ε)

∂v

∂ν
w − ∂w

∂ν
v dSy +

∫
∂S(x,ε)

∂v

∂ν
w − ∂w

∂ν
v dSy = 0 .

By calculations as those leading to (2.7), we find that the above converges to

−w(ξ) + v(x) = 0 ,

so we have established the following.

Proposition 1: Symmetry of Green’s Function. For all ξ, x ∈ G, we have

G(ξ, x) = G(x, ξ) .

In the remainder of this section, we construct the Green’s function for two im-
portant examples.

The Half Space. Consider the half space defined by G = Rn
+ = {x ∈ Rn : xn >

0}. Let x̃ ≡ (x1, x2, . . . ,−xn) denote the point symmetric to x ≡ (x1, x2, . . . , xn) ∈
G = Rn

+, and define then

G(x, ξ) = s(x, ξ)− s(x, ξ̃).

It is easy to check that G(ξ, x) is the Green’s function for G. Furthermore, note that
the two terms in G(·, ·) are symmetric with respect to ∂G, and it is this symmetry
that gives the required equality on the boundary. Then we compute

∂G

∂ν
= − ∂G

∂xn
=

−2ξn

ωn|x− ξ|n
, xn = 0 , ξn > 0 ,

so from (3) we obtain

(4) u(ξ) =
2

ωn

∫
Rn−1

u(x1, x2, . . . , xn−1, 0)ξn dx1 . . . dxn−1

[(x1 − ξ1)2 + . . . (xn−1 − ξn−1)2 + ξ2]
n
2

for bounded harmonic functions on G.

Proposition 2. Assume g ∈ C(R̄n−1) and define

(4) u(ξ) =
2

ωn

∫
Rn−1

g(x1, x2, . . . , xn−1)ξn dx1 . . . dxn−1

[(x1 − ξ1)2 + . . . (xn−1 − ξn−1)2 + ξ2]
n
2

.

Then u is harmonic (and, hence, C∞) in G and

lim
x→x0
x∈G

u(x) = g(x0), x0 ∈ Rn−1 .



10

The proof follows by a direct calculation; see the next case below.

Remark. The preceding construction depends on the symmetric placement of the
points ξ and ξ̃ with respect to the boundary, ∂G. In the case of a quadrant G ≡
{(x1, x2) : x1 > 0, x2 > 0} in the plane, we start with a point (ξ1, ξ2) ∈ G and then
reflect about x1 = 0 to get (−ξ1, ξ2) and then reflect both of these about x2 = 0
to get (−ξ1,−ξ2) and (ξ1,−ξ2) for which the four points are symmetric about both
x1 = 0 and x2 = 0, hence, about the boundary of G. The Green’s function is then
given by

G(x, ξ) = s(x, ξ)− s(x, (−ξ1, ξ2))− s(x, (ξ1,−ξ2)) + s(x, (−ξ1,−ξ2)) .

Note that the alternating signs of symmetric points cause the corresponding terms
to add to zero on ∂G. A similar construction in R3 leads to 8 such terms. These
are examples of the classical method of images.

The Sphere. Now we consider the sphere S(0, R). Again the idea is to construct
the Green’s function by taking advantage of some symmetry of the region. For
each point ξ ∈ S(0, R) we define the corresponding symmetric point ξ̃ to be that
point outside of S(0, R) which lies on the same ray through the origin with the
requirement that ‖ξ‖‖ξ̃‖ = R2. Thus, we have ξ̃ = R2ξ

‖ξ‖2 . We shall justify this
definition. For any point x ∈ Rn, we have

‖x− ξ̃‖2 = ‖x‖2 − 2x · ξ̃ + ‖ξ̃‖2

= ‖x‖2 − 2x · ξ R2

‖ξ‖2
+

R4

‖ξ‖2
,

and if in addition ‖x‖ = R, it follows that

‖x− ξ̃‖2 =
R2

‖ξ‖2
(‖ξ‖2 − 2x · ξ + ‖x‖2)

=
R2

‖ξ‖2
‖ξ − x‖2 .

Thus, for each x ∈ ∂S(0, R) we have

‖x− ξ‖ = ‖x− ξ̃‖‖ξ‖
R

.

This shows that the ratio of the distances to ξ and to ξ̃ is constant from each
boundary point of the sphere, and this is the symmetry condition that we needed.
By placing a singularity function at ξ̃ and scaling it with ‖ξ‖

R , we obtain the desired
Green’s function. Thus, we define

G(x, ξ) = s(x, ξ)− s(
‖ξ‖
R

x,
‖ξ‖
R

ξ̃) .

It is immediate from our calculations above that this is the Green’s function for the
sphere.
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Now we calculate the normal derivative ∂G
∂ν on ∂S(0, R). In order to use the

chain rule we note that G(x, ξ) is a difference of a function of r = ‖x − ξ‖ and a
function of r̃ = ‖ξ‖

R ‖x− ξ̃‖. As before, we compute

∂r

∂xi
=

xi − ξi

r
,

∂s(x, ξ)
∂xi

=
−1

ωnrn−1

xi − ξi

r
,

and similarly we obtain

∂r̃

∂xi
=
‖ξ‖2

R2

xi − ξ̃i

r̃
,

∂s(‖ξ‖R x, ‖ξ‖R ξ̃)
∂xi

=
−1

ωnr̃n−1

‖ξ‖2
R2 (xi − ξ̃i)

r̃
=

−1
ωnr̃n

(
‖ξ‖2

R2
xi−ξi) .

Finally, on ∂S(0, R) we have r = r̃ and ν = 1
Rx, so we have from above

∂G(x, ξ)
∂ν

=
−1

ωnrn

n∑
i=1

1
R

xi[(xi − ξi)− (
‖ξ‖2

R2
xi − ξi)] =

−(R2 − ‖ξ‖2)
ωnR‖x− ξ‖n

.

Substituting this into (3), we obtain

u(ξ) =
∫

∂S(0,R)

(R2 − ‖ξ‖2)u(x)
ωnR‖x− ξ‖n

dSx .

We have shown that if u is harmonic in the sphere S(0, R), continuously dif-
ferentiable on S̄(0, R), and if u satisfies the Dirichlet boundary condition in (4),
then

(5) u(ξ) =
∫

∂S(0,R)

(R2 − ‖ξ‖2)g(x)
ωnR‖x− ξ‖n

dSx , ξ ∈ S(0, R) .

Note that for ξ = 0 this is just the Mean Value Theorem. Also, by using a uniform
continuity argument like that in the proof of the Mean Value Theorem, we establish
(5) for those u which are harmonic in the sphere S(0, R) but only continuous on the
closure S̄(0, R). In fact the formula (3) can be extended likewise for those regions
G which can be uniformly approximated from within. Finally, we note the special
case of (5), namely,

(6) 1 =
∫

∂S(0,R)

(R2 − ‖ξ‖2)
ωnR‖x− ξ‖n

dSx , ξ ∈ S(0, R) ,

which follows for the function u(x) = 1. This result will be useful in a computation
below.

The representation (5) suggests the following major result of this chapter.

Proposition 3: Poisson’s Representation. Let the function g be continuous
on the sphere ∂S(0, R) and define a function u : S̄(0, R) → R by (5) for ξ ∈ S(0, R)
and u(ξ) = g(ξ) for ξ ∈ ∂S(0, R). Then u is harmonic and, hence, infinitely
differentiable in S(0, R) and continuous on S̄(0, R).

Proof. First we show that u is harmonic in S(0, R). Let ξ ∈ S(0, R). The denomi-
nator in (5) is infinitely differentiable and bounded away from 0, so it follows that
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u is infinitely differentiable and we may compute derivatives in the integral. In
particular, we have

∆u(ξ) =
∫

∂S(0,R)

g(x)∆
(R2 − ‖ξ‖2)
ωnR‖x− ξ‖n

dSx .

It suffices then to show that the integrand is harmonic in ξ. For this, we need only
to compute the derivative in the integrand directly. Alternatively, we can note that
G(x, ξ) is harmonic in ξ, and by the equality of mixed derivatives the same holds
for each ∂G(x,ξ)

∂xi
and, hence, for ∂G(x,ξ)

∂ν .
We need only to verify that u is continuous at each point of ∂S(0, R). Let

ε > 0 and x0 ∈ ∂S(0, R). Since g is continuous at x0 there is a δ > 0 such that
‖x−x0‖ < δ and x ∈ ∂S(0, R) imply that ‖g(x)− g(x0)‖ < ε. Let C1 denote those
x ∈ ∂S(0, R) at which ‖x− x0‖ < δ and let C2 = ∂S(0, R)−C1. From (5) and (6)
it follows that for any ξ ∈ S(0, R) we have

u(ξ)− g(x0) =
∫

∂S(0,R)

(R2 − ‖ξ‖2)(g(x)− g(x0))
ωnR‖x− ξ‖n

dSx .

This integral can be expressed as the sum of corresponding integrals over C1 and
C2 to give the estimate

|u(ξ)− g(x0)| ≤ ε
(R2 − ‖ξ‖2)

ωnR

∫
C1

dSx

‖x− ξ‖n
+

(R2 − ‖ξ‖2)
ωnR

2M

∫
C2

dSx

‖x− ξ‖n

where M is the maximum of g on ∂S(0, R). The first term is at most ε by (6). If we
restrict ξ so that ‖ξ−x0‖ < δ

2 , then for all x ∈ C2 we have ‖x− ξ‖ ≥ δ
2 and, hence,

the second term above is bounded by R2−‖ξ‖2
ωnR 2M( 2

δ )nωnRn−1 . By requiring that
‖ξ− x0‖ be sufficiently small, we force R2−‖ξ‖2 to be small and, hence, the latter
term can be made as small as desired. That is, we can make |u(ξ) − g(x0)| < 2ε,
and this finishes the proof.

Exercises. 1. Show that (3) holds if G is convex and if u is harmonic in G and
continuous on Ḡ.

2. Show that the Green’s function is positive in G and that the kernel in (3) is
non-negative.

3. Show that (5) is equivalent to

u(ξ) =
∫

∂S(0,R)

Rn−2(R2 − ‖ξ‖2)g(Rx)
ωn‖x− ξ‖n

dΩx , ξ ∈ S(0, R) ,

where Ω is the polar angle.
4. Show directly that (R2−‖ξ‖2)

‖x−ξ‖n is harmonic in ξ.
5. Prove Proposition 2.
6. Set S = S(0, R) and ∂+S = {x ∈ ∂S : xn > 0}. Assume g+ ∈ C(∂+S) and let

g be the zero extension of g+ to all of ∂S. Find the boundary values of the function
u defined by (5).
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5. Consequences of Poisson’s Formula.
In addition to establishing the existence of a solution to the Dirichlet problem

on the sphere, Proposition 4.3 has certain other implications. Some of these are of
independent interest, and others will be used later in our discussion of the Dirichlet
problem on more general regions. The first result is a converse to the Mean Value
Theorem.

Proposition 1. If u is continuous on the open set G and satisfies the Mean Value
Property at every ξ ∈ G, namely, there is an ε > 0 such that

u(ξ) =
1

ωnrn−1

∫
∂S(ξ,r)

u(x) dSx

for every sphere S(ξ, r) for which 0 < r < ε, then u is harmonic in G.

Proof. For each sphere S(ξ, r) there is an harmonic function v on S(ξ, r) which is
continuous on S̄(ξ, r) and equals u on ∂S(ξ, r). The function u − v has the mean
value property in S(ξ, r) and so the Maximum principle (Proposition 3.3) shows
that u−v and v−u have their maximal values on ∂S(ξ, r). Hence, u = v in S(ξ, r),
and this shows that u is harmonic in every sphere within G.

In combination with the Mean Value theorem, this shows that a continuous
function on an open set G is harmonic in G if and only if it has the mean value
property at every point in G. Another consequence of Proposition 1 is the following.

Reflection Principle. Suppose G is an open set which lies on one side of a hy-
perplane and whose boundary intersects this hyperplane in a subset Γ. Let u be
harmonic in G, continuous on G ∪ Γ, and u = 0 on Γ. For each point x ∈ Rn

denote by x̃ the point symmetric to x with respect to the hyperplane. Define u on
G̃ ≡ {x̃ : x ∈ G} by u(x̃) = −u(x), x ∈ G. Then u is harmonic in the interior of
G ∪ Γ ∪ G̃.

Suppose now that we have a sequence of functions {uk} which are harmonic
in the open set G and continuous on the closure, Ḡ. If the sequence converges
uniformly on the boundary, ∂G, then it follows from the Maximum Principle that
this sequence converges uniformly on all of Ḡ to a function u which is necessarily
continuous on Ḡ. Let y be a point in G and choose 0 < r < R such that the closure
of the sphere S(y, R) is contained in G. By Poisson’s representation (5) we have
for every k ≥ 1

uk(ξ) =
∫

∂S(y,R)

(R2 − ‖ξ‖2)uk(x)
ωnR‖x− ξ‖n

dSx , ξ ∈ S(y, r) ,

and the denominator is bounded by (R − r)−n, uniformly for x ∈ ∂S(y, R) and
ξ ∈ S(y, r). From the uniform convergence of the sequence if follows that we may
take the limit in the above identity to obtain

u(ξ) =
∫

∂S(y,R)

(R2 − ‖ξ‖2)u(x)
ωnR‖x− ξ‖n

dSx , ξ ∈ S(y, r) .

But r < R is arbitrary, so this last identity holds for all ξ ∈ S(y, R), hence, u is
harmonic in S(y, R). Furthermore, if D denotes any derivative (of any order), then
we have also

Duk(ξ) =
∫

∂S(y,R)

D
( (R2 − ‖ξ‖2)
ωnR‖x− ξ‖n

)
uk(x) dSx ,
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and the integrand is uniformly bounded as before for ξ ∈ S(y, r) and x ∈ ∂S(y, R).
Hence, the sequence {Duk} converges uniformly on S(y, r). Note that every com-
pact subset of G can be covered by a finite number of spheres, each of which is
properly contained in a sphere whose closure is in G. These remarks prove the
following.

Proposition 2: Weierstrass. Let the sequence {uk} of functions harmonic in
the bounded open set G and continuous on Ḡ be uniformly convergent on ∂G. Then
the sequence converges uniformly on Ḡ to a function u which is harmonic in G
and continuous on Ḡ. Furthermore, if D denotes any derivative, then the sequence
{Duk} converges uniformly on every compact set in G to Du.

Now suppose that u is harmonic and non-negative in S(0, R) and continuous on
its closure, S̄(0, R). Let ξ ∈ S(0, R) and note that

R− ‖ξ‖ ≤ ‖x− ξ‖ ≤ R + ‖ξ‖ , x ∈ ∂S(0, R) .

From these estimates we obtain

1
(R + ‖ξ‖)n

∫
∂S(0,R)

u(x) dSx ≤
∫

∂S(0,R)

u(x)
‖x− ξ‖n

dSx

≤ 1
(R− ‖ξ‖)n

∫
∂S(0,R)

u(x) dSx ,

and in view of (4.5) this implies

(1)
(

R

R + ‖ξ‖

)n−2
R− ‖ξ‖
R + ‖ξ‖

u(0) ≤ u(ξ) ≤
(

R

R− ‖ξ‖

)n−2
R + ‖ξ‖
R− ‖ξ‖

u(0) .

These are the Harnack inequalities for non-negative harmonic functions. In addition
to providing estimates for the growth of non-negative harmonic functions, they
imply the following.

Proposition 3: Monotone Convergence. Let uk be a non-decreasing sequence
of functions harmonic in the open and connected set G. If the sequence converges
at some point of G, then it converges uniformly on every compact subset of G to a
function which is harmonic in G.

Proof. Let y be a point at which the sequence converges. Since the class of harmonic
functions is invariant under a translation of coordinates, we may assume that y = 0.
Choose 0 < r < R with the closure of S(0, R) inside G. Then from the Harnack
inequality (1) applied to the non-negative function uj − uk , j ≥ k ≥ 1, we have

0 ≤ uj(ξ)− uk(ξ) ≤ (
R

R− ‖ξ‖
)n−2 R + ‖ξ‖

R− ‖ξ‖
(uj(0)− uk(0)) , ξ ∈ S(0, r) .

Since {uk(0)} converges, this shows that the sequence {uk} is uniformly Cauchy,
hence, uniformly convergent in a sphere centered at 0. That is, if uk(y) converges
for some y ∈ G, then {uk} converges uniformly in every sphere centered at y whose
closure is contained in G.

Suppose z is a point in G at which the sequence does not converge. Then the
sequence cannot converge at any point in S(z, r), where r is half the distance from
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z to the boundary of G, since that would imply convergence at z by the preceding
paragraph. Thus, we have shown that the subset of G on which {uk} diverges is
open. We showed above that the subset on which {uk} converges is open. G is
connected, and the latter set is non-empty by assumption, so the former must be
empty. The assertion about uniform convergence follows, since every compact set
can be covered by a finite number of spheres whose closures are contained in G.
Proposition 2 shows that the limit is harmonic.

Exercises. 1. Use the Mean Value Property of harmonic functions to show that
the uniform limit of harmonic functions is harmonic.

2. Show that if a sequence of harmonic functions converges uniformly on every
compact subset of the open set G, then any derivative of the sequence converges
uniformly on every compact subset to the corresponding derivative of the limit
function.

3. Verify that the only bounded harmonic functions on Rn are the constant
functions.

4. Prove the Reflection Principle.

6. The Dirichlet Problem.
Our objective here is to show that the Dirichlet problem for Laplace’s equa-

tion has a solution whenever the domain is sufficiently smooth. In fact, we shall
characterize those domains for which the problem is always solvable as those for
which a much simpler problem is always solvable, namely, that for each point on
the boundary, there is a harmonic function which vanishes at that point and is
strictly positive elsewhere in the domain. Such a function can usually be found by
inspection.

The idea of the proof below is simple. Note that if u is the solution to the
Dirichlet problem

∆u(x) = 0, x ∈ G, u(y) = g(y), y ∈ ∂G,

and if v is any subharmonic function on G with v ≤ g on ∂G, then v ≤ u on all of
Ḡ. Thus the solution is characterized as the ‘largest’ such function.

Proposition 1. Let G be a bounded domain in Rn and u a subharmonic function
on G. Let S be a sphere with closure S̄ contained in G. Define the function
v ∈ C(Ḡ) by v(x) = u(x), x ∈ G − S, and v is harmonic in S. (Thus, v is given
by Poisson’s formula in S.) Then v is subharmonic in G and u ≤ v in G.

Proof. Clearly v is subharmonic in S and in G− S̄. Since u− v is subharmonic in
S and is zero on ∂S, we have u ≤ v in S, hence, in all of G. Finally, to see that v
is subharmonic at each ξ ∈ ∂S, we have for sufficiently small r > 0

v(ξ) = u(ξ) ≤ 1
ωnrn−1

∫
∂S(ξ,r)

u(x) dSx ≤
1

ωnrn−1

∫
∂S(ξ,r)

v(x) dSx .

Definition. The function v, determined in Proposition 1 from the subharmonic
function u, is called the S-harmonization of u, and it is denoted by uS .

Let the function g ∈ C(∂G) be given, and define the set of functions

Cg ≡ {v ∈ C(Ḡ) : v is subharmonic in G, v ≤ g on ∂G}.
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This set is non-empty, since it contains the constant function c = min∂G g. By the
Maximum Principle, we have at each x ∈ G

sup
v∈Cg

v(x) ≤ max
∂G

g

so we can define
u(x) ≡ sup

v∈Cg

v(x), x ∈ G.

Proposition 2. The function u is harmonic in G.

Proof. Let S be a sphere with S̄ in G, and let x ∈ S. By definition, there is a
sequence {un} in Cg for which lim un(x) = u(x). Since we can replace each un by
max{u1, u2, . . . , un}, we may assume with no loss of generality that the sequence is
monotone. (Note that the maxima of subharmonic functions is subharmonic: see
Exercise 3.3.) Consider the monotone increasing sequence {uS

n}. This sequence
necessarily converges to a harmonic function U in S, and we have U ≤ u in G. We
will show that U ≥ u in S. Suppose there is a y ∈ S for which U(y) < u(y). Pick a
sequence {vn} in Cg with lim vn(y) = u(y). Set Vn = max{u1, v1, u2, v2, . . . , un, vn},
so that the sequence {Vn} is increasing in G, lim Vn(x) = u(x) and lim Vn(y) =
u(y). Consider the sequence of S-harmonizations: {V S

n }. As before, this sequence
converges upward to a function V harmonic in S, and we have

V ≥ U, V (x) = U(x) = u(x), V (y) = u(y) > U(y).

By the Maximum Principle, the first two imply that V = U in S, and this contra-
dicts the third. Thus, we have shown that u = U in S, so u is harmonic (in each
sphere contained) in G.

Now we consider the boundary values of the limiting function, u. For this, it
will be useful to introduce the following.

Definition. Let G be a bounded domain in Rn. For any point y ∈ ∂G, a barrier
for G at y is a function w ∈ C(Ḡ), harmonic in G, with w(y) = 0 and w(x) > 0 for
all x ∈ Ḡ− {y}. The boundary point y is called regular if there exists a barrier for
G at y.

For example, if there is a sphere S(ξ, r) for which Ḡ ∩ S(ξ, r) is empty but
Ḡ ∩ S̄(ξ, r) = {y}, then we can use the singularity function to construct a barrier
for G at y by

w(x) = s(y, ξ)− s(x, ξ),

so such a point y is regular. In particular, if the boundary ∂G is C2, then every
boundary point is regular.

Proposition 3. If the point y ∈ ∂G is regular, then the limiting function satisfies

lim
x∈G
x→y

u(x) = g(y).

Proof. Let w be a barrier for G at y. Fix ε > 0 and choose r > 0 so small that
S(y, r) does not cover all of G and for all x ∈ ∂G with ‖x − y‖ < r, we have



17

|g(x)− g(y)| < ε. Note that necessarily w0 ≡ minx/∈S(y,r){w(x)} > 0. Consider the
harmonic function

v0(x) = ε + g(y) +
max∂G g − g(y)

w0
w(x), x ∈ Ḡ.

It follows that v0 ≥ g(y)+ ε in Ḡ and so for x ∈ ∂G∩S(y, r) we have v0(x) > g(x).
Also, we have for those x ∈ ∂G− S(y, r)

v0(x) ≥ ε + g(y) + (max
∂G

g − g(y)) > g(x) ,

so g < v0 everywhere on ∂G. Now for any v ∈ Cg if follows from the Maximum
Principle that v < v0 in G, so the limiting function satisfies

u(x) ≤ v0(x), x ∈ G.

This gives the estimate

lim sup
x→y

u(x) ≤ lim sup
x→y

v0(x) = lim
x→y

v0(x) = ε + g(y) ,

hence, we have lim supx→y u(x) ≤ g(y). Similarly, consider the harmonic function

v0(x) = −ε + g(y) +
min∂G g − g(y)

w0
w(x), x ∈ Ḡ.

As above, we find that v0 ∈ Cg and, hence, v0 ≤ u in G. This gives

lim inf
x→y

u(x) ≥ lim inf
x→y

v0(x) = lim
x→y

v0(x) = −ε + g(y) ,

so we have lim infx→y u(x) ≥ g(y). That is, we have shown that limx→y u(x) = g(y).

Theorem: Perron’s Method. Let G be a bounded domain for which each bound-
ary point is regular. Then for each boundary function g ∈ C(∂G) there exists a
unique function u ∈ C(Ḡ) which is harmonic in G and for which u = g on ∂G.

We note finally, that if the Dirichlet problem can be solved for any countinu-
ous boundary function, then each point y ∈ ∂G is necessarily regular. It is only
necessary to solve the Dirichlet problem with g(x) = ‖x− y‖ for x ∈ ∂G.

Theorem. If G is a bounded domain and f ∈ C1(Ḡ), then

u(x) = −
∫

G

s(x, y)f(y) dy

belongs to C(Ḡ) ∩ C2(G) and satisfies −∆u(x) = f(x) in G.


