IV. THE WAVE EQUATION

1. Introduction.
We shall consider well-posed problems for the wave equation in two and three
variables. Recall that the well-posed initial value problem for the second order

ordinary differential equation

y'(t) = f(t,y,9)

results (under various hypothesis on f) from asking for a solution in some interval,
|t —to| < a, for which the function and its first derivative are specified at the point,
to- For example, if f is analytic at (¢g, ag, a1), the solution is obtained as the sum
of a power series, y(t) = >, a,(t—1to)™. The first two coefficients are determined
by the initial conditions, ay = y(to), a1 = ¥'(to), and all the remaining ones are

then determined by the equation, e.g.,
2lag = y" (to) = f(to, a0, a1)

A direct generalization of the initial-value problem to the second order semi-

linear partial differential equation

a($7 y)uwz + 2b($, y)uxy + C(Ia y)uyy = f(xa Y, U, Ug, uy)

is to ask for a solution for which the function and its first order derivatives are
specified along a curve. This is called a Cauchy problem. Hence, suppose we are
given a curve in the parametric form z = z(t), y = y(t) and we want to find a

solution u of the equation which satisfies the “initial conditions”

w(@(t),y(t)) = uo(t) ,  ua(x(t),y(t)) =p(t) , uy(x(),y(t))=q() .

In order to attempt the procedure used above for the ordinary differential equation,
we shall try to evaluate the second order derivatives of u from the information above.

Differentiate the second and third equations in the initial conditions to obtain
Uaa (T (1), y(8)2' (1) + uay (2(8),y(1))y'(t) = ' (t)
Uay (2(1), y(£)) 2" (t) + uyy (2 (1), y()y'(t) = ¢'(t) -
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These two identities together with the partial differential equation above give us,
for each fixed t, three equations from which to determine the three second order
derivatives, Ugzgz, Ugy, Uyy, along the curve. This system can be solved uniquely

only if the determinant of its coefficients is non-zero. This determinant is just
ay'(t)? — 22 (1) (t) + o' (1)? |

so we have shown that the above initial value problem for the partial differential
equation determines the second order derivatives of a solution along the curve
if the curve is non-characteristic. (Cf. I, §5.) One can show similarly that all
the derivatives of w are uniquely determined at any point on the curve where the
tangent does not possess the characteristic direction. We shall later show that
the Cauchy problem is well-posed for hyperbolic equations if the “initial curve” is
nowhere characteristic.

For comparison, consider the elliptic equation of Laplace. There are no charac-

teristics, so we consider the Cauchy problem

Uwz"‘Uyy:O; U(O,y):O, uiv(()?y):f(y) .

First, we note that there is a solution only if f is analytic, for u, is harmonic

1

in a neighborhood of the y-axis. But taking f,(y) = (;;)sin(ny), we obtain the

L
n2

solutions uy(x,y) = =5 sin h(nzx) sin(ny). Suppose € > 0, zo > 0, and M > 0 are
given. Choose n with 1/n < € and sin h(nzo)/n? > M. For each integer k, define
yr = (k+ 3)m/n. Then we have |fn(yx)| < € but |un(zo, yx)| > M. Thus, we can
find a solution of Laplace’s equation with initial data on x = 0 arbitrarily small for
which the values can be made arbitrarily large at points arbitrarily close to x = 0.
This shows that the Cauchy problem for the Laplace equation is not well-posed

even if we restrict the initial data to be analytic.

Exercises.
(1.1) Show there is at most one solution of the Cauchy problem above for the
Laplace equation.

(1.2) Discuss the well-posedness of the Cauchy problem

Ugg +Uyy =0, u(0,y)=f(y), wug(0,y)=0.



2. The Cauchy Problem.

The Cauchy problem for the hyperbolic semi-linear equation

(1) Ugy = f(xa Y, Uy Ug, uy)

is the following:
Let a curve C : z = z(t), y = y(t) in the plane and functions wug(t), p(t), q(t)
be given. Find a function twice continuously differentiable in a neighborhood of C

satisfying (1) in that neighborhood and the initial conditions

2)  uwz®),y(t) =uo(t) , ua(z(t),y(t)) =p(t) , uy(z(),y()) = q(t) .

Note that the three functions in the Cauchy data cannot be prescribed indepen-

dently. The chain rule gives the necessary compatibility condition

(3) up(t) = p(t)='(t) + q(t)y' (t)

so only two of the three functions need be prescribed, the remaining one then coming
from (3). Essentially, we can prescribe the solution along the curve (and thereby the
derivative tangential to the curve) and any other non-tangential derivative along
the curve. Note, further, that along a characteristic curve, x = z, the equation

(1) is an ordinary differential equation for the function p(-),

p'(y) = f(20,y, uo, p, q)

and, hence, the Cauchy data is even more restricted along the characteristics. In
particular, we need only to specify ug(y) in the case above, for then ¢(y) = ug(y)
and p is determined from the equation above. The preceding remarks apply at any
point on the curve C at which the tangent has a characteristic direction, so we
shall assume hereafter that the curve C is nowhere-characteristic. Thus we may

represent it in the form

(4) C:y=yo(z) .

where yq is strictly monotone. The Cauchy data (2) is thus given with z(t) =t =«

and y(t) = yo(z), and so (2) takes the form

) ule,yo(@)) = wo(z) ,  ual@,y0(z)) = p(e) ,  uy(z,y0(2)) = g(2) ,
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while the compatibility condition becomes

(3") up(z) = p(z) + ¢(x)yp () -

Let u be a solution of the homogeneous equation, u,, = 0, in some open con-
nected set G which contains a portion of the curve (4), and let u satisfy the Cauchy
condition (2’). From the equation we have u(x,y) = ¢(z) + ¥(y) in G for some
pair of functions ¢, 1. Hence, u,(z,y) = ¢'(z) and uy(z,y) = ¢'(y) for (z,y) € G.
Let (z,y) € G be such that the closure of the region in the plane bounded by the

characteristics through (z,y) and the curve C is contained in G.

ONR ()

S (k)

Then we have p(z) = ¢/'(x) and ¢(z) = 9'(y) in this region and hence follows

/ 1( p(s)ds = pla) = pla " () = (o)~ ulo ")) -

Using (2') again, we obtain

x

u(z,y) = uo(yy '(y) + / p(s)ds .

v (v)
A similar calculation gives
v 1
u(o,) = wo@) + [ o) dt

yo(z)

So we have two representations for the value of the solution u at the point (z,y)
in terms of the Cauchy data. However, using the change-of-variable theorem and

then the condition (3’) we have

Y vo " (y) z
/ o(yy (1)) dt = / a(s)y(s) ds = / p(s) ds + uo(yy (4)) — uo(z)

o(x) x y0—1(y)
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so these two representations are the same. By averaging these two, we obtain the

symmetric representation

®) ue) = 006 tu @)y [ pedsry [0 gt ey

We note that the integrals in (5) can be written as line integrals along C' and we

obtain, finally, the representation

(z,y0(x))

() ulwy) = () +uolyy 1) + QKAU)u@w—ﬂmw»m

giving the value of the solution u of the homogeneous equation at (z,y) in terms
of the Cauchy data along a portion of C depending on (z,y).

Consider now the non-homogeneous linear equation

(6) Uzy = F(z,y) .

Let u be a solution of (6) in an open connected set G containing a part of the
curve C, and suppose u and its partial derivatives vanish along C'. Choose a point

(z,y) € G as in the preceding discussion. Then we have

y
/ / (s, t)dsdt = / uy(z,t) dt = u(z,y) ,
yo(@) Jyg ' (t) Yo(w)

and this is a representation for solutions to (6) with homogeneous Cauchy data.
Since the equation (6) is linear we have obtained a representation for its solutions
which satisfy general Cauchy data (2’) along non-characteristic curves. But we have

also settled some existence and uniqueness questions.

Theorem 1. Let C be the curve (4) where yq is continuously differentiable on the
interval [a,b] with y'(x) # 0 for z € [a,b], and twice continuously differentiable in
(a,b). Let G be the rectangle with corners at the points (a,yo(a)) and (b, yo(b)).
Let F be continuous on G, p and q continuously differentiable on (a,b), and ug
twice continuously differentiable on (a,b). Then there is exactly one solution of the
Cauchy problem (6), (2') and it is given by

7) w(z,y) = uo(z) + UO(y()_l(?J)) Lz 5 /(z’yo(m))

(o " (),v)

/ / F(s,t)dsdt .
yo(z) Yy ' (t)

p(s)ds — q(yg ' (1)) dt
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Corollaries. The Cauchy problem (2") is well-posed for the linear hyperbolic equa-

tion (6). The solution at a point (r,y) depends on its value at the two points on C

intersected by the characteristics through (x,y), its derivatives along that portion

of C between these two points, and the function F in the region bounded by these

two characteristics and C.

Exercises.

(2.1)

(2.2)

(2.5)

(2.6)

Show that for solutions of the heat equation u;, = u,, the functions p and
g in (2) are determined by ug when the data is assigned along the curve y =
constant. Show, also that all second-order derivatives of a solution of the heat
equation are determined by ug along such a curve.

Verify that the functions wu, (z,y) = sin(nz)/ne™ ¥ satisfy the heat equation
and the initial condition u,, (z,0) = sin(nz)/n. Show that solutions of the heat
equation in the half-plane y < 0 can not be expected to depend continuously
on the data given along the z-axis.

Use Green’s Theorem on the identity uzy = 3{(uy)s + (uz)y} to obtain the
representation (7).

The Characteristic Cauchy Problem is to find a u € C%(G), G a given open

square centered at (a,b), such that

Ugy = F(.’E,y) ’ ($7y) €G ’ u(aay) = gm(y) ) u(x,b) = 902(1') :

Show there is at most one solution to this problem. A necessary and sufficient
condition for the existence of a solution is that F' € C(G), ¢1 and ¢, are twice
continuously differentiable at each y and z, respectively, for which (z,y) € G,
and ¢1(b) = ¢2(a). Find a representation for the solution similar to (7).
Show that if u is sufficiently smooth and satisfies u,, = 0 in an open set G,
then u(A) — u(B) + u(C) — u(D) = 0, where A, B, C, D are the consecutive
corners of any square in G with sides parallel to the coordinate axes..
Theorem 1 gives sufficient conditions for existence and uniqueness of a solu-

tion. Give sufficient conditions for uniqueness of a solution.

3. Successive Approximations.
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Our objective in this section is to show that the Cauchy problem for the hy-
perbolic semi-linear equation (1) is well-posed. First, we show that this prob-
lem is equivalent to an integro-differential equation. Let the curve (4), the rec-
tangle G, and Cauchy data (2') be as in Theorem 1. Let f: G x H — R be
continuous where H is an open subset of R?, and let u be a continuously differ-
entiable solution of (1), (2') on G with (u,ug,uy) € H for (z,y) € G. Define
F&mn) = f(&n,ul€n),uz(&,n),uy(§;m), (§,m) € G. Then u satisfies (6) and

hence we obtain from Theorem 1

(8)

-1 (%,y0(z))

1

u(m,y) _ ’U,O(-T) +U0(y0 (y)) + _/ p(s) ds — q(yo—l(t)) dt
2 2 J o w).2)

y T
—|-/ / f(s,t,u(s,t),uz(s,t), uy(s,t)) dsdt (z,y) € G .
yo(z) Jyg (t)

Conversely, a continuously differentiable solution of (8) is a solution of the Cauchy
problem (1), (2).

Before continuing further, we simplify the problem (1), (2') in two ways. First,
we assume that ug = p = ¢ = 0 in (2’). This causes no loss in generality since
otherwise we may subtract from our desired function u the expression v defined
by (5). This difference satisfies the null Cauchy data (2') and an equation like (1)
but with f(z,y,r,s,t) replaced by f(z,y,r + v(z,y),s+ p(z),t + q(y)), and this
new function will satisfy the hypotheses we place below on f. Second, we assume
that the curve C is given by the straight line z + y = 0. Otherwise, we introduce
the change of variable £ = yo(z), n = —y. In the variable (§,7), the curve C is
transformed to the straight line £ +7 = 0 and the transformed equation is like (1)
with f modified but satisfying the hypotheses we place below on f. After these two
simplifications, the Cauchy problem (1), (2) is equivalent to the equation

Yy x
9) uw)= [ [ Floti ) dsde
—x J -1
T ry
:/ f(s,t,u,ug, uy) dtds .
_y s

Let 9 + yo = 0 and f be a real-valued function which is continuous in some

neighborhood of (xg, ¥o, 0, 0,0). Hence, we can choose a > 0 and b > 0 so small that
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this neighborhood contains G, x Hy, where G, = {(z,v): max(|z—zo|, |[y—vo|) < a}
and Hy = {(r,s,t): max(|r|,|s|,|t|) < b}. Let M be the maximum value of f on
G, x Hy, and for each ¢ > 0 let J. = {(z,9): |z +y| < c}.

Let u: G, — R be continuously differentiable and suppose (u,uz,u,) € Hy for

all (z,y) € G,. Then we can define a continuously differentiable function on G, by
(10) v(z,y) = /y /if(s,t,u, Uz, Uy) ds dt , (z,y) € G, .
For those (z,y) € G, N J., we have the estimates

lv(z,y)| < Mc*/2, |vg(z,y)| < Mc, and |v,(z,y)| < Mec.

If ¢ is chosen with Mc?/2 < b and Mc < b, it follows that (v, v, v,) € Hp whenever
(xz,y) € GyoNJ.. Hence, with ¢ as above, if u is continuously differentiable on G,NJ,

with (u,ugz,u,) € Hp, then the same is true of the function v defined by (10).

(XO’yO)

Given the function f and the constants a,b,c > 0 as above, we can define a

sequence of functions u™ by

uo(x,y)ZO,
11.a vore
(11-a) u"“(x,y):/ / flz,t,u®, ug, uy) dsdt
—x J -t

Note that the sequences of partial derivatives are given by

(x,y) €GN J, .

y

(11.b) W (ey) = [ flet ot utul) dt
—z
T

(11.c) W (2, y) = / F(s, o™l ul) ds
-y

Assume now that f satisfies the Lipschitz condition

(12) [f(z,y,7,5,t) = f(z,y,7', 8", t')| < K(fr —7'| 4+ |s = s'[ 4+ [t = t'])

(z,y) € Gy ;5 (r,8,t),(r',s",t') € Hy ,



and define for each n >0

M, = S {Ju ! — w4+ Jup Tt —ul 4 up T —un}

From the Lipschitz condition (12) it follows that on G, N Jg, |[u™*? — u"T1| <
KMypc?/2, [up™ —uptt| < KMyc, and |uj™? —up®| < KMyc, so we obtain the

fundamental estimate
Myi1 < Kc(24¢/2)M, , n>0.
A trivial induction gives
M, <[Kc(2+¢/2)]" M, ,

and hence the series Y . M,, is dominated by the geometric series > [Kc(2 + ¢/2)]™.
Therefore, these series converge if ¢ is chosen so small that the quantity in brackets

is less than one. Hence, if K¢(2 + ¢/2) < 1, we have shown that each of the series

Do —ut) Y (=), Y (uptt - )

converges uniformly on G, N.J,. Since the n!* partial sums of the series are just u”,
uy and uy, respectively, the sequences {u™}, {uy} and {uj} converge uniformly on
G, N J. to continuous functions u, v, w. The Lipschitz condition and the uniform

convergence permit us to take the limits in (11) to obtain

(13.a) u(z,y) = /_Z/ /: f(s,t,u,v,w)dsdt,
y

(13.b) o(wy) = [ flotuv,w)dt

—X

(13.) wa) = [ Jsvw0w)ds.
-y

Since these functions are continuous, we can differentiate (13.a) and thereby find
that u; = v and u, = w. Substitution of these quantities back in (13.a) shows that
w is a solution of (9) on G, N J., thus establishing the existence of a solution to the
Cauchy problem.

The Lipschitz condition also implies the uniqueness of the solution. To see this,

suppose U is another solution of (9) on G,NJ., and let V = U,, W = U,. Then U,
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V and W satisfy (13.a), (b) and (c), respectively so we can use these six equations
and (12) to obtain the estimate m < K¢(2 + ¢/2)m, where
m= sup {lu—-Ul|+|v—-V|+|w—-W|}.
GanJ,
But the choice of ¢ then implies m = 0, so u = U on G, N J.. The above has
provided a proof of the following result.

Theorem 2. Let C be the curve (4) where yq is twice continuously differentiable
on the interval I, = [xg — a,x9 + a] and a > 0. Let G, be the rectangle with
corners at the points (xo — a,yo(xo — a)) and (xg+ a,yo(xo + a)) and sides parallel
to the axes. Let p and q be continuously differentiable and uy twice continuously
differentiable on I,. Let b > 0 and assume that the real-valued function f is defined

and continuous on the set
S={(z,y,r,s,t): (x,y) € Gq , |1 —up(x)|<b, |s—px)<b, [t—q(x)] <b},

and that it satisfies the Lipschitz condition (12) on S. Then there is a positive
number ¢ > 0 such that, on the set of those (x,y) € G4 for which |y — yo(z)| < c,

there erists exactly one continuously differentiable solution of (8).

This is precisely the result we obtained for the special case given by (9). The
formulation given here merely corresponds to the situation of the more general case
of (8). The figures below indicate the geometry involved in (8) and (9), respectively.

(Xg-a,yqgXp-a)

(xgta,yq(xg+a)

Exercises.
(3.1) Verify all the details in the proof of Theorem 2.
(3.2) State and prove a result like Theorem 2 for the characteristic Cauchy problem

for the nonlinear equation (1). (See Exercise (2.4).)
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(3.3) The Goursat Problem is to find a function u that satisfies (1) in the region

where 0 < y < x < a, and the boundary conditions
u(z,z) = p1(0), u(z,0)=¢a@), O<z<a.

(a) State and prove a result like Theorem 1 for the Goursat Problem with the
linear equation (6).
(b) State and prove a result like Theorem 2 for the Goursat Problem with
equation (1).
(3.4) Discuss existence, uniqueness and representation of solutions of the mixed

Goursat problem
’LL;,;(.’E,.%) =p($‘) ’ Uy<$,$) = Q('r) ) U(.’E,O) = Uo(.’II) ; 0<z<a

for the linear equation (6).

4. The Effect of Data.

We shall make some observations on the Cauchy problem (1), (2") concerning
the manner in which the solution is influenced by the Cauchy data. These remarks
all follows from the integro-differential equation (8) and the method of proof of
Theorem 2.

First we discuss the continuous dependence of the solution on the Cauchy data
(2") and the function f in the equation (1). Since in the previous section we
simplified the problem by incorporating the Cauchy data in the function f, it
follows that we need only to consider the case of homogeneous data where the
integrand in (9) is permitted to vary. So suppose that for each A € [0,1] we are
given a function f(\;+) on G, x Hy as in the proof of Theorem 2, that the function
(N z,y,r 8,t) = f(Az,y,7,8,t) is continuous, hence, uniformly continuous and

bounded on [0, 1] x G, x Hp, and that we have a Lipschitz condition

|f()‘;xayara S,t) - f()‘;xayarla S,’tl)| < K(|’r - T,l + |S - S,l + |t - tl|)

Ae0,1], (z,y)€Gq, (rst),(r, s, t')eHy.

For each \ we obtain a solution u(\; z, y) of (9) as the uniform limit of the sequence

(11). In the identity like (11) for u™(\; z,y), each term of the sequence is expressed
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as a continuous function A in terms of the preceding one. (This follows by induction
on n and the uniform continuity of the integrands in the identities like (11).) Our
Lipschitz condition shows that the estimates of the majorants M,, are independent
of A, so the convergence of the sequence of approximations to u(\; z,y) is uniform
on [0, 1] X G,. But uniform convergence of the sequence and continuity of each term
of the sequence imply that the limit of the sequence is continuous. That is, u is
a continuous function of the variable A, as well as = and y, and this is the desired
result.

The solution obtained in Theorem 2 was “local” in the sense that it was ob-
tained on some (possibly small) region containing the initial curve. This constraint
arose from the necessity of choosing the number ¢ sufficiently small to obtain two
objectives: (1) to make the definition of the sequence possible and (2) to make the
sequence converge. We shall show that a “global” solution on G, can be obtained

in certain cases that include the linear equation
(14) Ugy + (2, Y)ug + (T, y)uy + c(z,y) = F(z,y) .

Suppose the nonlinear function f of (1) is defined on G, x R® and satisfies there
the Lipschitz estimate (12). Then for every k, there is a unique solution of (1) in
Go N Je(k) with Cauchy data given on the curve y = yo(x) + k, where the number
c is chosen so that [Kc(2 + ¢/2)] < 1 and is independent of k. Hence, we have
the solution on J.(0); this gives Cauchy data along y = yo(z) & ¢/2 for which we
obtain solutions on J.(+¢/2) which by uniqueness agree with the original solution
on J.(0). Using the solutions on J.(+c/2) to give Cauchy data on y = yo(z) * c,
we obtain the respective extensions to J.(+c). In a finite number of steps, we have
obtained a solution of the Cauchy problem on all of G,. This technique applies
to the linear equation (14) in which the coefficients and function F' are assumed

bounded and continuous on G,. Then the function

flx,y,r 8,t) = F(xz,y) — c(xz,y)r — a(x,y)s — b(z, y)t

satisfies a Lipschitz condition (12) in which the constant K depends only on the

bounds on the coefficients.
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Our final remarks follow from the equation (8) for which we assume we have a
solution on the set G,. For a point (z,y) in G, define the domain of dependence of
(z,y) as the set D, , of points in G, bounded by the two characteristics through
(x,y) and the curve C. From (8) it is clear that the value of the solution at (z,y)
depends on the Cauchy data and f in D, .

Let A be a connected subset of the curve C. The domain of influence of A
defined to be the set I(A) of all (z,y) in G, for which D, ,) N A is non-empty.
Then the data given along A influences the solution in the region I(A). The domain
of determinacy of A is the set D(A) of points (z,y) in G4 such that D, ,y C A. At
such points, the value of the solution depends at most on points of A, hence, data

along A determines the solution in D(A).

Exercises.

(4.1) Verify the identities D(AN B) = D(A) N D(B) and I(AU B) = I(A)U I(B),
where A and B are subsets of the curve C.

(4.2) For the Goursat problem (3.3), discuss the domain of dependence at a point
and domains of influence and determinancy of the data.

(4.3) Repeat (4.2) for the characteristic Cauchy problem (2.4).

(4.4) Explain why the characteristic Cauchy problem (2.4) and the Goursat problem
(3.3) for the equation (14) are well-posed on the first quadrant when the
functions a, b, c and F are continuous on [0, cc) X [0, 00).

(4.5) Find the solution of ug, = 0 on the region {(z,y):z+y >0,0<z—y <2}
such that u(z, —z) = up(z), 0 <z < 1, u(z,xz — 2) = up(x), 1 <z, uy(z,z) =
0, z > 0 and ug(z,—z) =0 for 0 < z < 1. Find the domains of dependence
of the solution at points of this region.

(4.6) (a) Show that there is at most one solution u of (14) on the set {(z,y) : z+y >
0,0 <z —y < 2} such that

U, Ug, Uy are givenon r+y =20,
Ug, Uy are given on r —y = 0, and
uisgivenonx —y =2 .

(b) Find necessary and sufficient compatibility conditions on the data in (a)

for the existence of a solution.
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5. Riemann’s Representation.

In the preceding section we showed that the Cauchy problem for the linear
equation (14) is well-posed and, in fact, has a global solution when the data is
given on a large region. The result is satisfying to some extent, but not as sharp
as having a representation like that obtained in Theorem 1 for the special case of
equation (b). We shall obtain an integral representation for solutions of (14). The
kernel of this representation can be obtained by solutions of a family of characteristic
Cauchy problems for an equation adjoint to (14).

Let the linear part of (14) be denoted by

(15) L[u] = ugy + a(z,y)us + bz, y)uy + c(z, y)u

and assume the coefficients a and b are continuously differentiable while ¢ is con-
tinuous on the domain of determinancy D(C) of the non-characteristic curve C.
Suppose we are given Cauchy data (2') for the solution u of L{u] = F(z,y) in

D(C). We introduce the adjoint L* of L by the requirement that the quantity

vL[u] — uL*[v] be a divergence expression. By direct calculation we find
(16) vL[u] —uL*[v] = (P)z + (Q)y
where P = (1/2)vu, — (1/2)vyu + avy, Q = (1/2)vu, — (1/2)vyu + bvu, and the
adjoint is given by
(17) L*[v] = vgy — (av)z — (bv)y + cv .

Let (¢,m) be a point in D(C) and denote by G(&,n) the domain of dependence of
(&,m). Let M(n) and N () be the points of intersection of C with the characteristics

y = n and x = &, respectively. We use the divergence theorem to integrate (16)

over G(§,n) and obtain

(18) // (vL[u] — uL*[v]) dz dy = / Pdy—Qdz .
oG (&,m)
G(&m)
On those portions of the line integral along the characteristic segments, we integrate

/(‘5777) |(£ T)) (&m)
VU, dYy = uv| —/ vudy
NEO NO v Y

(&m) €m) (&:m)
/ VU dT = u'v|M’(nn) — / vpudx .
M (n) M (n)

by parts to obtain
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Substituting these in (18) gives the identity

(19)  u(&mv(€n) = (1/2) [u(N(€)v(N(§) + u(M(n))v(M (n))]
(&m) (&m)
+ / u(vy — bv) dz + / u(vy — av) dy

M(n) N (&)
N(&)
—/ de—Qdac—i—//(vL[u]—uL*[v])da:dy.
M G€)

The above will provide a representation for u(&,7n) in terms of Cauchy data along

C and the non-homogeneous term F' in (14) if v can be chosen so as to satisfy

(20.2) L[] =0 in GEn).
vz =bv on y=mn$,

(20.b) vy=av on z=¢,

v(€mn)=1.

The conditions in (20.b) are equivalent to

o(@,n) = exp{/; b(s,m) ds}
v(€,y) = exp{/ny a(é,t) dt}

0 (20) is the usual characteristic Cauchy problem with data on the characteristics

(20.b)

T=&y=1
For each point (§,7) in D(C'), there is a unique solution of (20) which we denote
by R(z,y;&,m) (see 4.4). Substitute v(z,y) = R(x,y;&,n) in (19) to obtain the

identity
(21) u(€n) = (1/2)[w(N)R(N; &, n) + w(M)R(M; €, n))

N
+/ ((1/2)Rug — (1/2)Rzu + bRu) dz
— ((1/2)Ruy — (1/2)Ryu + aRu) dy
// z,y; 6, F(z,y)dx dy .
G(&:m)
The equation (21) is known as Riemann’s representation for the solution of the
Cauchy problem for (6). Such properties of the solution as its continuous depen-

dence on the data are immediate from the explicit formula (21). When the Riemann
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function R is known, this formula establishes existence of a solution of the Cauchy

problem provided, of course, the data satisfies the compatibility condition (3').

Exercises.
(5.1) Show that (7) is a special case of (21).
(5.2) Let L[u] = ugzy + au, where a > 0 is constant.
(a) Show L is self-adjoint: L = L*
(b) Show that the Riemann function is given by R(z,y;&,n) = f((x—&)(y—n)),
where f satisfies z f"(x) + f'(z) +af(z) =0, f(0) =1, f'(0) = 0.
(c) Show that the above equations become tf” + f' 4+ ¢f = 0 under the change

of variables t = 24y/as. This is Bessel’s equation of order zero, so that

f(s) = Jo(2V/as).

6. The Wave Equation.

In this and the next two sections we shall be concerned with the wave equation.
First, we obtain the D’Alembert formula for the one dimensional wave equation.
This follows from corresponding results of Theorem 1 by the usual change of vari-
able, but we prefer to present the straightforward computations so as to make them
independent of our preceding work. (The importance of the wave equation certainly
justifies this inefficiency in our discussion.) Then we discuss the wave equation in

space of dimension > 2.

Let (z,t) be a point with ¢ > 0 and suppose u is a solution of the one-dimensional

wave equation
(22) Utt — Ugy = F(:L', t)

in the region bounded by the two characteristics through (z,t) and z-axis. We may

use the divergence theorem to integrate (22) over this region and obtain

t pz+(t—7)
// F(O’,T)dO’dT:—?{U$dT+UtdO'
0 Jz—(t—7)
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(x 1)

(x-1,0) (x+t,0)
The indicated line integral can be evaluated over the three line segments ¥, (7 = 0),
Yoo +717=2x+1t) and ¥3(0c — 7 = x — t) with their induced orientation
z+t

/ u$d7'+utda:/ u¢(0,0) do
b

T—t1

/22 Ug(—do) + uy(—dr) = —/ du = u(z +t,0) — u(x,t) ,

PP}

/ uxda-l-uth:/ du = u(x —t,0) — u(z,t) .
Y3 33
This gives us the D’Alembert representation

(23) wu(z,t) = (1/2)(u(z +t,0) + u(z —t,0))

T+t t px+(t—T)
+(1/2)/ ut(J,O)d0+(1/2)/ / F(o,7)dodr
z—t 0 Jz—(t—71)

for a solution of (22) in terms of Cauchy data along the z-axis. Similar formulae can
be obtained which represent solutions of (22) in terms of u (or u,) along nowhere
characteristic curves o = g(7). (See Exercises.)

The homogeneous analogue of (22) in three space dimensions is the wave equation
(24.a) Ut — (Ugg + Uyy + Uzz) =0,
and the Cauchy problem asks for a solution with
(24.b) u(z,y,2,0)=¢(x,y,2) , wl(z,y,20)=¢(zvy,2)

given in some region. If we could solve the Cauchy problem (24) with ¢ = 0 and

obtain a solution ©(¥) then we could likewise solve the general problem, for the
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function u§"’) satisfies (24) with ¢ = 0. Thus a general solution of (24) could be

given in the form

uw=ul® + uﬁﬂ’) .

This shows that we may consider the special case of (24) with ¢ = 0.
Suppose we seek a representation for solutions u of (24) with ¢ = 0. First we
consider the special case in which u depends only on 7 and ¢, where r is the distance

from some point Q = (xg, Yo, 20) in R3. Then we have the computations

or _z-m Or 1 (z-m)°

or  r O 0x2 r r3

which give the Chain rule

u  (z—x0)? 0u (1 (x—a:o)2) du

0x2 r2 Or? r r3 or

This and similar computations for 92/9y? and §%/02% give the identity

2 1
Ugq + Uyy + Uypz = Upp + ; Up = ;(Tu)r'r .

Hence, the solution of the special type we are considering satisfies the equation
(ru)g — (ru)pr =0, uw=u(rt),

and our three-dimensional Cauchy problem (24) is equivalent to the one-dimensional

problem
(25) Ve — Upr =0, 0(r,0) =0, v(r,0) =rp(r),

where v(r,t) = ru(r,t). We know that (25) has a unique solution in the region
where 0 < |t| < r, and it is given by the D’Alembert formula as
r—+t
v(r,t):(1/2)/ o (o) do .
r—t
Finally, if we extend ¢ for negative values of the argument as an even function

(p(—0) = ¢(0)) the integrand above is odd (¢(—c)(—0) = —p(0)o) so we obtain

the representation

1 r—+t
u(r,t) = §/| . op(o)do
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for a solution of (24) (with ¢ = 0) which depends only on the distance r from some
point and the variable t.
Let S; denote the sphere of radius ¢ > 0 centered at P = (r,y,2) € R3. The

spherical mean or average value of the function ¢ on S; is given by

P(5) = oo / / 0dS .

Since ¢ was assumed to depend only on the distance from @), this spherical mean

can be evaluated by the computation

27
_ 2
?(S) = 4”2 / ot sin O df dw

T r+t
:1/ <Psin0d0:1/ Ede —lu(r,t)
2 Jo 2/, t

tdo
£2=r2+1t2-2rtcosO

£dE=rtsin0do t sin 6 dw

Hence, we obtain the representation
(26) u(P,t) = t9(St)

for solutions of (24) which depend only on the distance from Q. The formula (26)
states that the value of the solution at (P,t) is the mean value of the initial value,
©, over the sphere of radius t at P multiplied by ¢. This statement is independent

of @ and suggests we look for a solution of (24) in the form

(27) u(z,y, 2, t) 54— // @ dS

St (a::y Z)
where S;(z,y,z) is the sphere of radius ¢ and center at (z,y,z). In fact, we have

the
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Theorem 3. If o is twice continuously differentiable in the sphere x2+y?+2% < r¢,
then the function defined by (26) is a solution of the Cauchy problem (24) (with
¥ =0) in the cone t? < 2 + y? + 22 < rd.
Proof. First note that (27) may be expressed by either of
1
U(‘T’ Yy, z, t) = 4—t // (p(.’E + ’I’th, Yy + tha z+ n3t) as
T
S1(0)
i
= —//go(a:—l—nlt,y—l—ngt,z—{—ngt)dﬁ
T
where dS denotes surface area, dS) the polar angle and (n1,n2,n3) a point on the

unit sphere. It follows from the smoothness of ¢ that we may differentiate the

above and obtain

t

where A3 denotes the Laplacian operator 02/9z% + 82 /0y? + 0% /0z2. Similarly, we

have

t)
8(:6’!;,2’ // (x + nit,y + nat, z + ngt) dQ‘i‘_//V(P n df2

where n = (nl, ng,n3) and Vo = (g, ¢y, ¢,) is the gradient of ¢. The second term
can be expressed as a surface integral over the sphere and then by the divergence

theorem as a volume integral,

(29) %//ch-ndﬁzi//Vgo-ndS
— i [ [ Bag-av.

By expressing this volume integral as an iterated surface integration over the radius,

we obtain
0 t 1
1/t 2
+ 4—t AgQO(.’L’ +nir, Yy + ner, 2 + ’n,3’l')7' dSd o dr
T

We differentiate this identity to obtain

0%u
9z = //ch nd) — 4t2/ //A3<p7'dQ dr

+ 4—7rt//Ag(p(w—l—nlt,y—l—nzt,z—l-ngt) Q) .
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But (29) shows that the difference of the first two terms is zero and the third is by
(28) just Azu, so u satisfies the equation (24.a).
To check the Cauchy data, remember that ¢ is continuous, lim,jo®(S;) =

o(z,y, 2), so (24.b) follows easily from (26).

Corollary. If ¢ is twice continuously differentiable and 1 is three times continu-

ously differentiable in the sphere 22 + y* + 2? < r2, then the function
1 0 1
t)=— d —< — d
(30) we )= g [[ was+ o { L [[ vas)
St(a’l:y’z) St(mayvz)
is a solution of the Cauchy problem (24) in the cone t> < z? + y> + 22 < r2.

Note that we have demonstrated only the existence of a solution to (24). We

shall show in Section 8 that this is the only problem.

Exercises.

(6.1) Show that (23) is equivalent to (7) under an appropriate change of variable.

(6.2) The characteristic Cauchy Problem for (22) is to find a solution whose values
are specified along an interesting pair of characteristics (cf. (2.4)). Use the

divergence theorem to obtain the representation

_ r+vy r+vy Ty T—yY\ _1
u(x,y)—u< 5 ' 9 >+u( 7 ' 3 ) u(0,0) 2//F(J,T)deT

for solutions of (22), where the double integral is taken over the rectangle with

sides o =7 = 0 and a vertex at (z,y). (See figure.) Show this problem has a
unique solution in the upper half-plane, y > 0.
(6.3) Find a representation for a solution of (22) whose value is specified on the

lines 0 = 0 and o = 7 (Goursat problem).

T T T

(xy) (xy)

2

\

[6.2] 63  * [6.4]
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(6.4) Show that the mixed initial-boundary value problem of finding a solution of
(22) in the rectangle {(z,y) : y > 0, 0 < z < 1} for which the solution
is specified on the sides x = 0,1, and the solution and its first derivative are
specified on the bottom, y = 0, is well-posed. (Use a Cauchy problem followed
by a sequence of Goursat and Characteristic problems. See Figure.)

(6.5) Solve the Goursat problem (6.3) with u specified on a curve o = g(7), g(0) = 0,
instead of the line 0 = 0. Assume |g’(7)| < 1. Use this to discuss the mixed
initial boundary value problem of finding a solution of (22) in the region

91(y) < z < g2(y), y > 0, with the conditions

w(@,y) =¢(x), uy(z,0)=19(), 6:(0) <z <g2(0);

u(91(y),y) = fily) , u(g2(y),y) = faly), y>0.

We assume g1(y) < g2(y), |91(y)| <1 and [g5(y)| <1 for all y > 0.

7. The Wave Equation in 2-dimensions.

An attempt to obtain results analogous to Theorem 3 for the two-dimensional
wave equation will necessarily fail. In fact, we shall show in this section that for the
two-dimensional problem, the domain of influence of Cauchy data is very different
from that in three-dimensions, and representations for solutions must exhibit this.

Before looking at the situation in two-dimensions, suppose we try to duplicate

the discussion above which led to (25) and hence (26). Letting A,, denote the

Laplace operator in the variables (z1,x3,...,Zy),
n
82
An - 8.’]’;2 bl
j=1 "7

we obtain by the Chain rule the identity

Ay =Upr + (0= 1)/7)uy
o=l 9p or)
If v = r™u, then

Vpp = T Upy + 2mr™ L, +m(m — 1)r™ 20,
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so we are led to choose 2m = n — 1. Thus, if v = #®~1/2y_then A,u = uy if and

only if

(n—1)(n— 3)1)
4r2 '

Upp = Vgt +

If n is odd, the discussion of Section 6 can be continued. The equation above shows
that this is particularly simple only if n = 1 or 3. For n even, the attempt must

fail, as the following discussion will show.

Consider now the function defined by (27) and suppose that the function ¢ is
independent of z: ¢(x,y,z) = p(x,y). Then u(z,y, z) is independent of z. Hence,
we can write u(z, y, z,t) = u(z,y,t), and this function satisfies the two-dimensional

Cauchy problem

(31) Ugqg + Uyy — Ut = 0 s u(x,y,O) =0 y Ut(.’E,y,O) = cp(a:,y) .

That is, we can obtain a solution of the Cauchy problem for the two-dimensional
wave equation by regarding it as a special case of the three-dimensional problem.
In order to obtain a representation like (27) but without the extra dimension,
we denote the disc of radius ¢ and center (x,y) by Di(x,y) and note that the
integral in (27) taken over the surface Si(z,y, z) can be written as the sum of two
integrals over D;(z,y), the projection of S;(x,y,z) onto the zy-plane. The ratio
of surface area to the corresponding area of its projection onto D¢(z,y) at a point
(€,m) € Dy(z,y) is given by t/(t2 — (z — )2 — (y — n)?)'/2, as the figure below
indicates, and both the upper and lower hemispheres project onto the disk. Hence

we obtain the representation
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. A2 (x-8)2-(y-n)?

.\Smy: ﬁg = t

N
2 1<)V E RGN
(n-vy)
(E-X) (&n.,0)
1 ©(&,n) d€dn
32 3 at =5
( ) u(m ) ) 27F/Dt(x,y)/\/t2—($—§)2—(y—77)2

for the solution of (31) given by (27). (Note that a direct analogue of (27) in
two-dimensions would be an integral around the circumference of the disk Dy (z,y)
instead of that given in (32).)

We compare (27) and (32). In (27), the value of the solution at a point depends
only on the data on the boundary of a certain 3-sphere of radius t. Hence, any data
which is non-zero only on a bounded set (¢ is of bounded extent or has compact
support) leads to a solution which may be non-zero at any given point for only
some finite interval of time. By contrast, in (32) the solution at a point depends
on the data everywhere in the disk (2-sphere), so if ¢ is non-zero on a bounded set,
the solution may be non-zero at a given point for all ¢ beyond some t;. That the
dependence of the solution of the wave equation on the initial data is different in
two and three dimensions is known as Huygen’s principle. In fact, the situation for
n = 2 is indicative of the results in space of even dimension while that for n = 3 is
typical for space of odd dimension at least 3. The D’Alembert formula (23) shows
that the case n = 1 is exceptional and exhibits the phenomena of both odd and

even dimension.
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Exercises.

(7.1) For each of the Cauchy problems (24) and (31), find the domain of influence
(Section 4) of a point on the initial plane or line, respectively.

(7.2) What are the analogues of (27) and (32) in one-dimension? Show that (23)
contains both.

(7.3) Verify all the details in the preceding discussion which led to (31).

8. Energy Integrals.

In this final section we shall obtain uniqueness results for certain problems for
the wave equation. The technique we use is that of constructing certain integrals
containing the solution (or its derivatives) and then showing that these integrals
vanish. This property of the integral will then imply the desired uniqueness result.
We first consider Cauchy and mixed problems for the wave equation in one dimen-
sion, where our results are already rather complete. All computations are easy
here, so this is a good setting in which to illustrate the technique. We next give a
uniqueness result for the Cauchy problem in two dimensions. (The same technique
applies to the corresponding three-dimensional problem but we leave the details as
an exercise.) Finally, we demonstrate some uniqueness results for mixed problems
for the n-dimensional wave equation.

First we remark that in all linear problems, to show that there is at most one
solution to the problem with a given set of data is equivalent to showing that the
zero function is the only solution to the problem with null data. This follows easily
by considering the difference of two solutions to the problem. Thus, we shall assume
in each of the following problems that we have a solution with null data and then
attempt to show that this solution necessarily vanishes on some (maximal) set.

Our first example is the Cauchy problem
Uge = U , at) <z <b(t), t>0,
u(z,0) = ue(z,0) =0, a(0) <z <b0).

We seek minimal requirements on {a(t),b(t)} to assure u = 0 in the region a(t) <

x < b(t), t > 0. So, define the function

b(t)

E(t) = (1/2) /(t) (2(s,8) + ul(s,8))ds . t>0.
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(Assume, hereafter, that all functions are sufficiently smooth for the indicated com-

putations to be justified.) From the Leibnitz rule we obtain

E'(t) = (1/2) {{uz (b(t), t) + ug (b(t), )] b'(t) — [uz(a(t),t) + ui(a(t),t)] o' (t) }

10
+/ (Ug - Ugt + Ug - Ugg) ds .
a(t)

Since u satisfies the wave equation, the integrand above is just (0/0x)(ug - ut), so

we evaluate the integral and obtain

E'(t) = (1/2){[uZ (b(t), 1) + i (b(t), )] ¥ (t) — [uZ(a(t),t) + v (a(t),t)] a' ()}
+ g (0(t), )us(b(2), t) — ua(a(t), Yu(a(t), 1) .

We want to find conditions on the problem (e.g., on a(t) and b(¢)) which imply
E’(t) < 0. (Then we would have 0 < E(t) < E(0), thus E(t) = 0, and this would
imply u = 0.) Our first such set of conditions is that

V)< -1, d@)>1.
Then we have

E'(t) < =(1/2) { [ (b(1), 1) = we(b(), O] + [a(a(t), 1) = we(a(®), £)]}
and thus F'(t) <0, and hence
u(z,t) =0 for a(t) <z <b(t), t>0.

This result is the strongest when the region between a(-) and b(-) is maximal, and
this occurs when a(t) = a(0) +t, b(t) = b(0) — t. The vanishing of Cauchy data on
the interval (a(0),b(0)) implies the vanishing of the solution in the region bounded
by the indicated characteristic lines through the endpoints. (Of course, this result
was anticipated.)

To obtain another situation in which uniqueness occurs, suppose a(-) and b(-)
are constants, hence the quantity {...} in the computation of E’(¢) vanishes. Then
we have E'(t) < 0 if we require, e.g., that u satisfy one of the boundary conditions

u(s,t) = 0 or ug(s,t) = 0 for t > 0 at both of the endpoints, s = a,, s = b. Then
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we have FE'(t) = 0, so E(t) = E(0) = 0 and the solution necessarily vanishes on
the cylinder (a,b) x (0,00). This same argument leads to uniqueness of solutions
to a variety of mixed initial-boundary value problems for the wave equation in

one-dimension. For example, at the right endpoint it suffices to require
putt(b, t) + Um(b, t) ++k Ut(b, t) + hU(b, t) =0

where the coefficients p, k, h are all non-negative.
We consider now the Cauchy problem in 2-space. For each t > 0 we define the

truncated cone
Cit)y={(z,y,7) 2’ +y*<(1-7)*,0<7 <t} .
Suppose u is a solution of the wave equation
Ugg + Uyy = Ut

in C(t) and define for ¢t > 0

s=0p) [ [0 v n o ded.
z24y2<(1-t)2

Since u satisfies the wave equation, the integrand in the first integral below vanishes

identically and we can use the divergence theorem to obtain

0= ([l + Gy, — /20 + i+ udy)av

C(t)
- / / [(utug)n + (e e — (1/2) (42 + u2 + u2)vs) dS |
ac(t)
Here (v1,v9,v3) denotes the unit outward normal at each point of the boundary
0C(t) of C(t). But this normal is just (0,0,1) on the top and (0,0,—1) on the
bottom of C(t), so we obtain

E(t)—E(O)://[...]dS,

where the indicated double integral is taken over the sides of C'(¢). But on the sides

of C(t) we have vs = (V2 + v2)/2, so this can be written
E(t)— E(0) = / (1/2v3)[2(uzvs) (uprr) + 2(uyvs) (ugve) — (u2 + ufj + uj)yg] dS

_ / / (1/203)[(v3ttg — v1ue)? + (vaty — voug)?] dS .
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The estimate E(t) < E(0) follows from this, hence, a solution with zero Cauchy
data on the base C(0) must vanish on the cone C(1).

Finally, we consider mixed initial-boundary value problems in n-space. Let G be
a normal domain (see Appendix) with a unit outward normal v = (v1,vs,... ,vy)
at each point of the boundary 0G. Let x = (x1,zs,...,2,) denote a point in
R™ and suppose that the function u(z,t) satisfies the n-dimensional wave equation
Apu = uy in G X (0,00), where

n_ 52

An: I
- 22

x:
jzla J

is the Laplace operator in R". Define the energy integral

E(t):(1/z)L{éu§j+uf}dx

for ¢ > 0. Then we have by the divergence theorem

E'(t) = /G [Zuwjuwjt+utAnu] dx

j=1

_ /G [Xn:(umj ut)wj] dz

=1
n

= / Ug; UtV dS .
9G

We can write this in the form

ou
E'(t) :/ up - — ds
oG ov
where 2% — > i—1(0u/0z;)v; denotes the directional derivative of u along the

normal. Hence, if we specify either of the conditions © = 0 or % = 0 at each point

of 9G x (0,00), then E’(t) = 0 and null Cauchy data on G x {0} will then give
u = 0on G x (0,00). Other types of boundary conditions lead to uniqueness results

and many of these can easily be obtained from above by inspection.

Exercises.
8.1) Carefully state and prove the uniqueness result corresponding to each situa-
g

tion in the preceding discussion.
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(8.2) Show there is at most one solution of the Cauchy problem (24) in the cone
C={(z,y,2t): 2> +y*+22<(1-1t)?,0<t<1}.

(8.3) Show there is at most one u(x,t) defined for (z,t) € G x (0,00), G normal in
R™, which satisfies

Apu(z,t) = ug(z,t) + fz,t) (z,t) € G x (0,00) ,
’U,(LE,O) = (p(.’I?) ) Ut(xvo) = lb(fﬂ) ’ redG ’
aauésy’ D & bu(s, ) = g(s) | (s,4) € G x (0, 00) ,

where a and b are non-negative real numbers and not both are zero.
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Appendix I. The Divergence Theorem.

We assume the reader is familiar with the Riemann integral of bounded functions
on compact sets in R™, where (at least) n = 1,2,3. These are frequently called
single, double, and triple integrals, respectively.

The notions we wish to discuss here depend on the concept of surface integrals.

We shall restrict attention to surfaces which are (locally) determined by an equation

z:go(x,y), (IE,y)EA

where A is a bounded open connected set in the plane R? and ¢ is C'(A). At each
point on S we have a normal vector (—¢z, —@y,1). If S is partitioned into elements

S; whose projections A; on A are rectangles, then the ratio of the area of each S;

to the area of A; is just the magnitude of the normal vector above, (¢2 4¢3 + 1)/2,
evaluated at some point in A;. This quantity is also given by the secant of v, where
v is the angle between the normal vector and the z-axis. Thus, the integral of the

continuous function f :S — R over the surface S is given by

(1) //deE//f-sec('y)dxdy.
A

S

This integral is obtained as the usual limit of Riemann sums of the form

where AS; = sec(y(P;)) - AA; is the area of S;, AA; is the area of A;, and
P; = (zj,y;,9(xj,y;)) is the point in S; corresponding to (z;,y;) in A.
Surface integrals over the boundary of a region in R3 arise when we compute the

(triple) integral of a derivative over such a region. This is essentially the Divergence
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Theorem in R3. Corresponding results hold in R™ and the reader is encouraged to
write out the details (at least for R?) as he follows the discussion below.

We consider first an important but special situation. Let A denote a compact set
in R? whose boundary dA is a simple closed curve which is smooth (determined by
continuously differentiable functions). Let @1 and (o be continuously differentiable
in a neighborhood of A and assume ¢1(z,y) < @2(z,y) at all (z,y) in the interior
of A. Let

S;i={(z,y,2) : (z,y) € A, z=gpj(z,y)} for j—1,2,

and let

Sz ={(z,y,2) : (z,y) € DA, p1(z,y) < z < pa(z,y)} .

(S3 may be empty.) Then the region in R3 given by

G= {(IL’,y,Z) : (may) €A ) (,01(-75,y) S 4 S §02($’y)}
is called z-standard and its boundary is

(2) 0G =S,US,USs .

:

Suppose we are given a function f continuously differentiable in a neighborhood
of G. We can integrate f, over G by using an iterated integral and then the

Fundamental Theorem of Calculus to obtain

// fdez//{/::(g:?)fde}dmdy
G A 1

://f(x,y,wz(a:,y))dA—//f(x’y’%(m’y))dA_
A A
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(From (1) we have

// fde://f-cos(v)dS—//f-cos*de.
e’ Sa 51

Letting v = (v1,v9,v3) denote the unit outward normal at each point on G, we

have v3 = cos(y) on Sy and v3 = — cos(7y) on S, so the above becomes

(3) /G//fdezafG/fyg,dS.

This is immediate if we use (2) to write the surface over G as the sum of integrals
over S1, So and Ss3, notice that v3 = 0 on Ss.

We can define z-standard and y-standard regions in R3 in an obvious way. Fi-
nally, we call a region standard if it is simultaneously z-standard, y-standard and
z-standard. If P, Q and R are continuously differentiable functions in a neighbor-

hood of the standard region G in R3, it follows that we have

(4) J[[ ey +ryav = [[ (o + Quu+ oy as
G oG

The triple of functions (P, @, R) is called a vector field on G. The quantity in the
first integral in (4) is called the divergence of (P,Q, R). The second integrand can
be written as a scalar product of the vectors (P, @, R) and v at each point, and (4)

can be expressed in the vector form

// V-FdV://F-udS,
G oG

where F' = (P, Q, R) is the vector field with divergence
V-F=P,+Q,+R,

The hypotheses on the region GG are unnecessarily restrictive. If G can be cut

up by a finite number of planes into a collection of standard regions,
G=G1UGyU---UGp,

then we can apply (4) to each Gx. When the resulting equations are added, the
left sides add to the left side of (4). The surface integrals add to the right side
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of (4) plus sums of pairs of integrals over the plane areas which are of the form
0G; N 0Gy, where G; and G}, are adjacent. Their respective outward normals are
the negatives of each other at each point on the interface, so each pair of integrals
over a common interface will add to zero. Again we obtain (4).

Define an open connected set G in R” to be normal if its closure can be obtained
as the union of a finite number of regions Gy, k = 1,2,... ,m, each of which is z;-
standard in R™ for every j = 1,2,...,n. (The definition of z;-standard is an
obvious extension of the above.) Such a collection {G\} will be called a regular

partition of G.

Divergence Theorem. Let G be a normal domain in R*. Let P, QQ, R be con-
tinuous on the closure of G, and let each have bounded and continuous derivatives

of first order in the interior of each element of some reqular partition of G. Then

(4) holds.

Other refinements and extensions are possible (and profitable), and one can
consult Kellog, Potential Theory for a classical treatment. (Modern treatments are

too numerous to name.)



