LOCAL REGULARITY OF SOLUTIONS OF SOBOLEV-GALPERN PARTIAL DIFFERENTIAL EQUATIONS ## R. E. SHOWALTER Let M and L be elliptic differential operators of orders 2m and 2ℓ , respectively, with $m \le \ell$. The existence and uniqueness of a solution to the abstract mixed initial and boundary value problem $$Mu'(t) + Lu(t) = 0, \quad u(0) = u_0$$ was established for u_0 given in the domain of the infinitesimal generator of a strongly-continuous semi-group. The purpose of this paper is to show that this semi-group is holomorphic and then obtain differentiability results for the solution and convergence of this solution to the initial function u_0 as $t \downarrow 0$. Let G be a bounded open domain of R^n whose boundary ∂G is an (n-1)-dimensional manifold with G lying on one side of ∂G . $H^k = H^k(G)$ is the Hilbert space (of equivalence classes) of functions whose distributional derivatives through order k belong to $L^2(G)$ with the usual inner-product and norm, $$(f,g)_k = \sum \left\{ \int_{\sigma} D^{lpha} f \, \overline{D^{lpha} g} \, dx \colon |lpha| \leqq k ight\}$$ and $$||f||_k = \sqrt{(f,f)_k}$$. $H_0^k = H_0^k(G)$ is the closure in H^k of $C_0^{\infty}(G)$, the space of infinitely differentiable functions with compact support in G. We specify the problem by means of the bilinear forms $$B_{\scriptscriptstyle M}(\phi,\,\psi) = \sum \left\{ (m^{ ho\sigma}D^{\sigma}\phi,\,D^{ ho}\psi)_{\scriptscriptstyle 0} : |\, ho\,|,\,|\,\sigma\,| \le m ight\}$$ and $$B_L(\phi, \psi) = \sum \{(l^{\rho\sigma}D^{\sigma}\phi, D^{\rho}\psi)_0: |\rho|, |\sigma| \leq l\}$$ defined initially for ϕ and ψ in $C_0^{\infty}(G)$. Furthermore, we require the following: P_1 : The coefficients $m^{\rho\sigma}$, $l^{\rho\sigma}$ are bounded and measurable. $$P_2$$: Re $B_{\scriptscriptstyle M}(\phi,\phi) \geq k_{\scriptscriptstyle m} \, ||\phi||_{\scriptscriptstyle m}^2, \, k_{\scriptscriptstyle m} > 0$ Re $B_{\scriptscriptstyle L}(\phi,\phi) \geq k_{\scriptscriptstyle l} \, ||\phi||_{\scriptscriptstyle l}^2, \, k_{\scriptscriptstyle l} > 0$ for all ϕ in $C_0^{\infty}(G)$. P_3 : M is symmetric; that is $m^{\rho\sigma}=\overline{m^{\rho\sigma}}$ for all ρ , σ , (hence $B_{M}(\phi,\phi)$ is real for all ϕ in C_0^{∞}). From the assumptions P_1 and P_2 and the general theory of elliptic operators, [1, 6, 7, 11, 12, 13], there are two operators, M_0 and L_0 , which are topological isomorphisms of H_0^m onto $H^{-m} = (H_0^m)'$ and H_0^l onto $H^{-l} = (H_0^l)'$ (where "'" denotes the continuous linear dual), and these are determined by the respective identities $$B_{\scriptscriptstyle M}(\phi,\,\psi)=\langle M_{\scriptscriptstyle 0}\phi,\,ar{\psi}\rangle$$ and $$B_{\scriptscriptstyle L}(\phi,\,\psi) = raket{L_{\scriptscriptstyle 0}\phi,\,ar{\psi}}$$ on H_0^m and H_0^l , respectively, where " \langle , \rangle " denotes $\mathscr{D} - \mathscr{D}'$ duality, \mathscr{D}' being the space of distributions over G. Since $l \geq m$ we have a topological inclusion $H_0^l \subset H_0^m$, hence, by duality, $H^{-m} \subset H^{-l}$. Thus the mapping $L_0^{-1}M_0$ is continuous from H_0^m into H_0^l and is a topological isomorphism only if l=m. Letting $D=L_0^{-1}M_0(H_0^m)\equiv L_0^{-1}(H^{-m})$, we have an unbounded operator $A=M_0^{-1}L_0$ on H_0^m with domain D dense in H_0^l . In [16] we showed that A is the infinitesimal generator of an equicontinuous semi-group of bounded operators [6, 9, 11] on H_0^m , denoted by $\{S(t): t \geq 0\}$. We shall prove that this semi-group is holomorphic. We have already shown that the nonnegative real axis belongs to the resolvent set of A and, in fact, $$|R(\lambda, A)|_{M} = |(\lambda - A)^{-1}|_{M} \le (\text{Re }(\lambda))^{-1}$$ for all real $\lambda \geq 0$, where the norm $|\cdot|_{M}$ defined by $$|\phi|_{\scriptscriptstyle M}=\sqrt{B_{\scriptscriptstyle M}(\phi,\,\phi)}$$ on H_0^m is equivalent to $||\cdot||_m$ by P_1 and P_2 . Actually the whole right half of the complex plane belongs to the resolvent set of A, and (1) is true there. This can be shown by noting that for $\lambda = \sigma + i\tau$ we have $$B_{M}((A-\lambda)\phi,\phi)=B_{M}((A-\sigma)\phi,\phi)-i\tau B_{M}(\phi,\phi)$$ and hence $$\operatorname{Re} B_{M}((A-\lambda)\phi, \phi) = \operatorname{Re} B_{M}((A-\sigma)\phi, \phi)$$ in the argument leading to (1) for λ real. See [16] for details. 2. Our goal is to improve the estimate (1) to show that the family $\{\lambda R(\lambda, A)\}$ is uniformly bounded in $\mathcal{L}(H_0^m)$ for $\operatorname{Re}(\lambda) > 0$. First let ϕ be in D; then $$B_{M}((\lambda - A)\phi, \phi) = (\sigma + i\tau)B_{M}(\phi, \phi) + B_{I}(\phi, \phi)$$. Since M is symmetric it follows that $B_{M}(\phi, \phi)$ is real, so we obtain $$(2) \qquad \operatorname{Re} B_{\scriptscriptstyle M}((\lambda-A)\phi,\phi) = \sigma B_{\scriptscriptstyle M}(\phi,\phi) + \operatorname{Re} B_{\scriptscriptstyle L}(\phi,\phi) \geqq k_{\scriptscriptstyle l} \, ||\phi||_{\scriptscriptstyle l}^2 \, ,$$ since $\sigma > 0$. Similarly, from $$\operatorname{Im} B_{\scriptscriptstyle M}((\lambda - A)\phi, \phi) = \tau B_{\scriptscriptstyle M}(\phi, \phi) + \operatorname{Im} B_{\scriptscriptstyle L}(\phi, \phi)$$ we obtain the estimate (3) $$|\operatorname{Im} B_{M}((\lambda - A)\phi, \phi)| \geq |\tau| |\phi|_{M}^{2} - K_{l} ||\phi||_{l}^{2}$$. From (2) and (3) we conclude that either $$|\operatorname{Im} B_{\scriptscriptstyle M}((\lambda-A)\phi,\phi)| \geq rac{| au|}{2} |\phi|_{\scriptscriptstyle M}^2$$ or $$|\operatorname{Re} B_{\scriptscriptstyle M}(\lambda-A)\phi,\phi)| \geq rac{k_{\scriptscriptstyle l}}{2K_{\scriptscriptstyle l}}| au||\phi|_{\scriptscriptstyle M}^2$$, for if (4) is not true then by (3) $$| au|\,|\phi|_{\scriptscriptstyle M}^{\scriptscriptstyle 2}-K_{\scriptscriptstyle l}\,||\phi||_{\scriptscriptstyle l}^{\scriptscriptstyle 2} \leq rac{| au|}{2}\,|\phi|_{\scriptscriptstyle M}^{\scriptscriptstyle 2}$$, hence $$rac{| au|}{2} |\phi|_{\scriptscriptstyle M}^2 \leqq K_{\scriptscriptstyle l} \, ||\phi||_{\scriptscriptstyle l}^2$$, which with (2) implies (5). From (4) and (5) we obtain the estimate (6) $$|B_{M}((\lambda - A)\phi, \phi)| \ge \frac{k_{l}}{2K_{l}} |\tau| |\phi|_{M}^{2}$$ for all ϕ in D, and this in turn yields $$|R(\lambda, A)|_{\mathit{M}} \leq \frac{2K_{l}}{k_{l}} \frac{1}{|\tau|},$$ whenever Re $(\lambda) > 0$. The calculation is as follows: $$\frac{k_t}{2K_t} |\tau| |\phi|_{\scriptscriptstyle M}^2 \leq |B_{\scriptscriptstyle M}((\lambda - A)\phi, \phi)| \leq |(\lambda - A)\phi|_{\scriptscriptstyle M} |\phi|_{\scriptscriptstyle M}$$ implies $$|(\lambda - A)\phi|_{\scriptscriptstyle M} \ge |\tau| \frac{k_l}{2K_l} |\phi|_{\scriptscriptstyle M}$$ for all ϕ in D, the domain of A, so (7) follows. The estimates (1) and (7) imply that $$|\lambda R(\lambda, A)|_{\scriptscriptstyle M} \leq \frac{|\tau|}{\sigma} + 1$$ when $\sigma > 0$ and, respectively, that $$|\lambda R(\lambda, A)|_{\mathtt{M}} \leq \frac{2K_{\mathtt{I}}}{k_{\mathtt{I}}} \left(\frac{\sigma}{|\tau|} + 1\right)$$ whenever $|\tau| \neq 0$, where $\lambda = \sigma + i\tau$. By considering the two cases, $|\tau| \geq \sigma$ and $|\tau| < \sigma$, we obtain, finally, $$|\lambda R(\lambda, A)|_{M} \leq \frac{4K_{l}}{k_{l}}$$ for all λ in the right half of the complex plane. The estimate (8) yields the following result. PROPOSITION [22]. The semi-group $\{S(t): t \geq 0\}$ has a holomorphic extension into a sector of the complex plane. Furthermore, S(t) maps H_0^m into D whenever t > 0, so S(t) is infinitely differentiable and $S^{(p)}(t) = A^p S(t)$ for any integer $p \geq 1$. The significance of this result for our problem is that, for each t>0, S(t) maps H_0^m into the domain of A^p for an arbitrary integer $p\geq 1$. 3. The differentiability of the semi-group yields differentiability of the solution to the problem being considered; the latter is obtained by means of the following. Let H_{loc}^k denote those (equivalence classes of) functions on G which are locally in H^k ; that is, $$H^{\scriptscriptstyle k}_{\scriptscriptstyle \mathrm{loc}} = \{f\colon f\in H^{\scriptscriptstyle k}(K) \mbox{ for each compact subset } K \mbox{ of } G\}$$. The following result on the local regularity of solutions of elliptic equations is well known. Theorem [1, 4, 5, 7, 12, 13, 14]. Let p be an integer $\geq -l$ for which $l^{\rho\sigma}$ is $\max\{1, |\rho| + p\}$ times continuously differentiable in G whenever $|\rho|$ and $|\sigma|$ are $\leq l$. If u belongs to H_0^l , and if L_0u is in H_{loc}^p , then u belongs to H_{loc}^{2l+p} . That is, L_0 is a topological isomorphism of $H_0^l \cap H_{loc}^{2l+p}$ onto $H^{-l} \cap H_{loc}^{po}$. Let k be a nonnegative integer and assume that we have P(k): $m^{\rho\sigma}$ and $l^{\rho\sigma}$ are max $\{1, |\rho| - m + k\}$ times continuously differentiable in G. From the above theorem it follows that M_0 is a bijection of $H_0^m \cap H_{\mathrm{loc}}^{m+k}$ onto $H^{-m} \cap H_{\mathrm{loc}}^{k-m}$. Also L_0^{-1} is a bijection of $H^{-l} \cap H_{\mathrm{loc}}^{k-m}$ onto $H_0^l \cap H_{\mathrm{loc}}^{l-m+k}$. Since $H^{-m} \subset H^{-l}$, it follows that $A^{-1} = -L_0^{-1}M_0$ maps $H_0^m \cap H_{\mathrm{loc}}^{m+k}$ into $H_0^l \cap H_{\mathrm{loc}}^{2l-m+k}$. COROLLARY. P(2(p-1)(l-m)) implies that the domain of A^p is contained in $H^l_0 \cap H^{m+2p(l-m)}_{loc}$ for $p \ge 1$. From §2 we know that u(t) is in the domain of A^p for all t>0 and p>1. The corollary thus yields the following results. THEOREM. Assume P_1 , P_2 and P_3 of § 2. Let the coefficients in M and L satisfy P(2(p-1)(l-m)) for some integer $p \ge 1$. Then $u(t) = S(t)u_0$ belongs to $H_0^t \cap H_{loc}^{m+2p(l-m)}$ for each t > 0, where u_0 is any element of H_0^m . If p is sufficiently large we obtain pointwise-solutions by Sobolev's Lemma [17]: If m is an integer > (n/2), then H_{loc}^m is imbedded in $C^j(G)$, $j = m - \lfloor n/2 \rfloor - 1$, and the injection is continuous when the range space is given the topology of uniform convergence in all derivatives of order $\leq j$ on compact of subsets of G. COROLLARY. Assume the hypotheses of the above theorem hold with $m + 2p(l-m) - [n/2] - 1 = j \ge 0$. Then, for t > 0, u(t) has j continuous derivatives in G and, for each point x in G, the function $t \to u(x, t)$ is infinitely differentiable. *Proof.* Choose t' such that t > t' > 0. Since $u(t') = S(t')u_0$ belongs to $D(A^p)$, the semi-group property yields $$\delta^{-1}[u(t+\delta)-u(t)] = A^{-p}\delta^{-1}[S(t+\delta-t')-S(t-t')]A^{p}u(t')$$ for δ sufficiently small. Since $A^p u(t')$ belongs to D = D(A), the function to the right of A^{-p} has a limit in H_0^m as $\delta \to 0$, so the function $\delta^{-1}[u(t+\delta)-u(t)]$ has a limit in $H^{m+2p(l-m)}(K)$, where K is any compact subset of G. By Sobolev's Lemma, the function $$\delta \rightarrow \delta^{-1}[u(x, t + \delta) - u(x, t)]$$ has a limit as $\delta \to 0$, so u(x, t) is differentiable. A repetition of this argument shows that u(x, t) is infinitely differentiable in t without any further assumptions on the coefficients. All of the above results have been obtained for a solution with initial value u_0 in H_0^m . We note further that if u_0 is sufficiently smooth then $u(t) \to u_0$ pointwise. (It is always true that $u(t) \to u_0$ in H_0^m .) COROLLARY. Assume the hypotheses of the above corollary and that u_0 belongs to the domain of A^p . Then each u(t), $t \ge 0$ is a continuous function on G, and for each point x in G, $u(x, t) \rightarrow u_0(x) = u(x, 0)$ as $t \rightarrow 0$. *Proof.* This follows by an argument similar to the proof of the preceding corollary applied to the equation $$u(t) - u_0 = A^{-p}(S(t) - I)(A^p u_0)$$. We note that a sufficient condition for u_0 to be in D = D(A) is that u_0 be in $H_0^l \cap H^{2l-m}$. Also if the initial function and all coefficients in M and L are infinitely differentiable, then the solution is infinitely differentiable. ## **BIBLIOGRAPHY** - 1. S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand, New York, 1965. - 2. G. Barenblat, I. Zheltov, and I. Kochiva, Basic concepts in the theory of seepage of homogeneous liquids for fissured rocks, J. Appl. Math. Mech. 24 (1960), 1286-1303. - 3. G. Barenblat and G. Chernyi, On moment relations on surface discontinuity in dissipative media, J. Appl. Math. Mech. 27 (1963), 1205-1218. - 4. F. E. Browder, On the regularity properties of solutions of elliptic differential equations, Comm. Pure Appl. Math. 9 (1956), 351-361. - 5. ———, Strongly elliptic systems of differential equations, Contributions to the Theory of Differential Equations, Ann. Math. Studies, no. 33, Princeton University Press, Princeton, 1954, 15-51. - 6. R. Carroll, Partial differential equations, Harper and Row, New York, 1969. - 7. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1965. - 8. C. A. Galpern, Cauchy problem for general systems of linear partial differential equations, Doklady Akad. Nauk. SSSR 119 (1958), 640-643. - 9. E. Hille and R. S. Phillips, Functional analysis and semigroups, A. M. S. Colloquium Publications, vol. 31, New York, 1957. - 10. A. G. Kostachenko and G. I. Eskin, Cauchy problem for an equation of Sobolev-Galpern type, Trudy Moscow Math. Obshch. 10 (1961), 273-284. - 11. P. D. Lax and A. Milgram, *Parabolic equations*, Contributions to the theory of Partial Differential Equations, Ann. Math. Studies, no. 33, Princeton University Press, Princeton, 1954, 167-190. - 12. J. L. Lions, Lectures on elliptic partial differential equations, Tata Institute, Bombay, 1957. - 13. ———, Problems aux limites dans les equations aux derivees partielles, Univ. Montreal, Montreal, 1962. - 14. L. Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math. 8 (1955), 648-674. - 15. R. E. Showalter and T. W. Ting, Pseudo-parabolic partial differential equations, SIAM J. Math. Analysis 1 (1970), 1-25. - 16. R. E. Showalter, Partial differential equations of Sobolev-Galpern type, Pacific J. Math. 31 (1969), 787-794. - 17. S. Sobolev, On a theorem of functional analysis, Math. Sbornik 4 (1938), 471-497. 18. ———, Some new problems in mathematical physics, Izv. Akad. Nauk. SSSR Ser. Mat. 18 (1954), 3-50. - 19. D. W. Taylor, Research on consolidation of clays, M. I. T. Press, Cambridge, 1942. - 20. T. W. Ting, Certain non-steady flows of second order fluids, Arch. Rat. Mech. Anal. 14 (1963), 1-26. - 21. ———, Parabolic and pseudo-parabolic partial differential equations, J. Math. Soc. Japan 21 (1970), 440-453. - 22. K. Yosida, Holomorphic semigroups in a locally convex linear topological space, Osaka Math. J. 15 (1963), 51-57. - 23. T. Zalenyak, The behavior for $t \to \infty$ of solutions of a problem of S. L. Sobolev, Soviet Math. 2 (1961), 956-958. - 24. ———, A problem of S. L. Sobolev, Soviet Math. 3 (1962), 1756-1759. Received October 23, 1969. THE UNIVERSITY OF TEXAS