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1. Introduction

We introduce two systems of partial differential equations, each of which provides
an approximate model for long gravity waves of small amplitude in one dimension. The
first system is a variation on the classical Boussinesq model obtained from a standard
f?rmal expansion procedure in hydrodynamics. This system permits wave motion in
e’th":r direction. The derivation of this system is given in Section 2 and we show in
Section 6 that certain appropriate initial-boundary value problems for the system are
Wenfposed over sufficiently small time intervals. A second system is presented in
Sectmn. 3 under the additional assumption that the waves are essentially unidirectional.
In Sc.cf“’n 7 this second system is solved globally in time with certain initial and boundary
co‘n ditions. The given examples include periodic waves and an undular bore. The
emtence'“niqueness-stabiﬁty results of Sections 6 and 7 are obtained from corresponding
res““? on the abstract Cauchy problem for an evolution equation in Hilbert space. This
equa‘t 100 is solved in Section 5 for two types of solutions, each of which appears in the
applications of Sections 6 and 7.
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124 R. E. SHOWALTER

The unidirectional propogation of long waves of small amplitude has classically been
modeled on the well-known equation of Korteweg and de Vries ([4], [5], [11]). Mor'e
recently, a similar equation of Sobolev type has been introduced ([1.],_[8], [10]) and it
has the same formal justification as the K d V equation for the description ot.‘ long water
waves as above. The derivation of both of these equations is given in Section 4 where
we describe the assumptions that lead to them. In particular, we show that each of
our two systems describes nonlinear waves under conditions more general than those for
which either of the two single equations are appropriate.

When using a formal expansion as below, one must be concerned to arrive at an equation
or system for which relevant problems are well-posed. For example, the last two equa-
tions of Section 3 are formally equivalent, appropriate initial-boundary value Pf"‘blf’mS
are well-posed for the first, and the second is elliptic! Similarly, a pair of equations

with the same formal justification is given in Section 4 although their corresponding
well-posed problems are different.

APPROXIMATE EQUATIONS FOR LONG GRAvVITY WAVES. — We consider gravity waves
which occur on the free surface of a two dimensional horizontal layer of inviscid and
incompressible fluid of finite depth. The units are chosen so that the gravitational constant,
depth and fluid density are all unity. The fluid motion is assumed irrotational and the
wave propogation in the x-direction is therefore described by a velocity potential @ (x, », ! )

where y is the vertical coordinate, If m (x, t) denotes the height of the surface above the
undisturbed level, then

Pxxt Py =0, O<y<il+4n(x, 1)
The relevant boundary conditions are

9,=0 at y=0,

N+ +(1/2)(e3+02) =0, and N—0,+Nn, 0, =0 at y=1+n(x,1)

~ We refer to [11] (Sect. 13.1) for the derivation of these equations.

2. Boussinesq’s System

We shall describe a class of flows depending on a small parameter & > 0 Whic_h will

simultaneously measure the maximal amplitude and minimal wavelength. In particular,

We assume @ = 0 ('), n = 0 (g), and the dominant wavelength is 0 (1/¢"/%). These

assumptions suggest a choice of new coordinates & = g2, t = g!/2¢ and scaled

?ariat3les Py 1) =gy Grdnet)=co (&, 1) in terms of which the problem
1S wntten as

1 By, =0, O<y<liten(g ),
@ ; ¥,=0 at y=0,
3 : 2+¥,+(1/2) (Y2 +y2) =0,

@
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WELL-POSED PROBLEMS FOR SOME NONLINEAR DISPERSIVE WAVES 125

We consider a formal asymptotic expansion of { in powers of ¢ and retain only those
terms of orders zero and one. From (1) and (2) we obtain

(5) VE, y, ) =FE 1—(*¢2)) F§§+(.V432/4 DFpeee + 0(e),

where F (€, 1) is the scaled potential at the bottom. Substitution of (5) into (3) and (4)
yields

(6) v+F,—(g/2) Fero +(e/2) Ff = 0(?),
) 0.+ (1+€0)Fye—(e/6) Frpe +E 0, F = 0(c%),

Denote the scaled horizontal velocity at the level y by u (§,1) = Ve G s 1) From (5)
we obtain

®) u =F,—(*€/2) Fe + 0 (%),
and it follows from (8) that

F, = u+(y*&/2) Fege + 0(e?)

= u+( e/ uy+ 0 ().

Differentiation of (6) with respect to E gives
® v+, —(8/2) (1 — y*) gy, +euug = O(°).
From (7) we obtain
(10) Dyge +tigee = 0(8),
$0 (7) is equivalent to
(1) v~ (/2) (¥ = (1/3)) g + g + € (vu); = O (7).

Equations (9) and (11) give us our basic model correct to second order in ¢ for long waves
of small amplitude
1)) u,—(e/2) (1 — y*) tge, + v +Euu, = 0,

v.—(e/2) (> — 1/3) vyg + ug +€(vu); = 0.

The. system (D) is a variation on that given by Boussinesq [2] and reduces to it when the
horizontal velocity  is averaged over 0 < y < 1. [From (8) it follows that the average
horizontal velocity is attained where y = 1/\/3 and then the second term in the second
equation of (I) is eliminated.] We shall show in Section 6 that various initial-boundary
value problems for (I) are well-posed locally in time. See [7] for a similar hyperbolic
model correct to second order.

3. Unidirectional Waves

fWe shall simplify the system (I) by considering only solutions whose main part consists.
Of waves travelling to the right. In order to motivate the appropriate assumption, note

OURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



126 R. E. SHOWALTER

that to lowest order in & (I) becomes
u+v,=0, o+u=0

and the solution is given by
(12) u=fE-1)+g€+1), v=fE-1)—-gE+).

i hich
The quantity u—v = 2 g (x+1) is a measure of that component of the solution (12) W

: ; i we may
consists of the leftward travelling wave. For a rightward moving solution of (I)
not expect u—v = 0 but will assume y—v = @ (e). Then we have

e(vu); = e(v*),+ 0 (%),

. . d model
and when the above is substituted in (11), the pair (9) and (11) give us our secon
correct to second order '

u—(&/2) (1 — y*) uge, + v, +euu, =0,
(@ 0= (&/2) (> ~1/3) vgg, +u, +2 € w0, = 0.

The system (II) is a modification of (I) in which the equations are couplec.l only t;hfag:eili
linear terms. It results from the assumption u—v = 0 (¢) which we as.soc.:le%t.e W]l, ey
tially rightward moving waves. We shall show in Section 7 that certain mx-txal- 0‘1,1cs ol
value problems for (II) are well-posed globally in time. Leftward travelling wa
similarly modelled by a system like (ID but with a change of sign in the last term. .

Finally we note that if v is eliminated from (II) and terms of order @ (¢?) or smaller
neglected, then we obtain a form of Boussinesq’s equation ([2], [3]):

(13) U= (€13) g +(2/2) W), — (u 4 £ = 0.

Note further that (13) is indepe
tion of (13),

(19

:ma-
ndent of y. By substituting the lowest order approxi
U = Uy +0 (€), we obtain another variant of (13) in the form

Ur—(&/3) e +(5/2) (u?)— (u+¢ u?)y = 0.
See [11] (Sect. 13.11) for a discussion of (13) and (14).

4, Nenrly-Staﬁonary Waves

We shall find conditjons unde
equation. As before, we cons
u=v = @ (g) throughout this
is possible if and only if

(15)

T which the systems (I) and (II) can be reduced to a smil:
ider only a rightward moving wave, and so we assttli e
Section.  Our objective is to show that the indicated reduc

a second condition is satisfied, namely,

(D.+D) (u~v) = 9(c?).
. . ) . : . - e
The assumption (15) is not always clearly mentioned in the reduction of (T) or () to a singh
. cquation and we briefly explore jts consequences below.

“‘MSG‘—,IWT-'-“»:
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To first see how the condition (15) arises, we substitute v = u+0 (g) in the first order
terms of (9) and (11). The resulting equations are added to yield

(D;+Dg) (u+0v)—(g/3) uge, +3euu, = 0(s?).
From this it follows that the equation
(16) U +u,—(€/6) g, +(3/2) euu, = 0
is correct to second order in ¢ if and only if (15) holds. In view of the first order
approximation
u.+v, = 0(g),
the equation

17 U, +ug+(8/6) g +(3/2) e uu, = 0

is similarly correct to second order in ¢ if and only if (15) holds. See [4] for a review
of (17), ([8], [10]) for results on (16), and ([1], [11]) for a comparison of the two.

The condition expressed by (15) is that the quantity u—o has slow growth... of order g...
in the direction of the wave. That is, if we view the wave while moving to the right with
unit velocity, then u—v will have an apparent wavelength of order 1/e. Thus, essential
f:hange in the shape of the wave will occur in time intervals of order 1/e. Furthermore,
It is time intervals of this order that the terms of order &2 which we dropped above may
contribute to the change in waveform. These remarks suggest that in order to study
the long time effect of neglected terms on the shape of the wave in the vicinity of the right-
Wward progressing wave, we should rescale in the coordinates

s=E—n, T =:8'r
in which we have

D,+D;=¢D;y
and the new variables defined by
u€, =UG, 1),
v )=U(, D+eV(s, T).
Then we have the two conditions
(18) u—v=0(@), D,+D;=0()

which imply (15), According to (18), we are looking at a rightward moving wave which
Dearly-constant shape, i e., a nearly-stationary wave.

The preceeding change-of-variable in (9) and (11) gives
eUr+(g/2)(1—y*) U, +£V,+eUU, = 0(&?),
eUr+(g/2) 2 —1/3) U,—e V,+2e UU, = O(c?),

3
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128 R. E. SHOWALTER

and when these are added and divided by 2&, we obtain

(19) Ur+(1/6) U, +(3/2)UU, =0

correct to first order in €. It is in the variables
s=¢e?(x—t), T=¢g%%t

that the nonlinearity is balanced with the dispersion in the model. This 1:s reﬂf:cted by
the lack of dependence of (19) on € and can be motivated directly by the dlsperSI_On rela-
tion [4]. In particular, (19) is the natural model in which to study asymptotic beha-
vior #> 1 of nearly-stationary waves progressing to the right. For the C_OmPUta“o“
of profiles of such waves over shorter time intervals... of length @ (1/e¥/?)... Clth?f of .(16)
or (17) seems equally appropriate. See [1] or [11] (p. 463) for further discussion.

— t
INITIAL-BOUNDARY VALUE PROBLEMS FOR THE APPROXIMATE EQUATIONS. We firs
consider the Cauchy problem for the abstract evolution equation

(20) MW (@D)+Fw(x) =0

N N . : es
in Hilbert space. For our applications to the approximate equations for water wav
we shall determine # so that

@ A w0 =[u=(ED A~y uy,0-ED*—1/3)v,], w=[u 1]
in the sense of distributions. Thus, if F is given by
22) F(w)= [v§+euu§, u§+e(vu)§], w= [u, U],

then the system I is a realization of (20) in an appropriate space of pairs of functions.
Similarly, if F is given by

@3 F(w) = [og+euug, u+2ev], w=/[u, o],
then the system II is realized by (20) in an appropriate function space. Thus, existenf:e-
uniqueness-stability results for the abstract Cauchy problem will yield corresponding

results for generalized solutions of initial-boundary value problems for the system I and Il
A similar program for (16) was presented in [1] et [10].

S. A Nonlinear Evolution Equation

Let V be a real Hilbert space. Denote its continuous dual by V’, the value of f eV
atx €V by (f, x), the norm on V by || - . andits innerproduct by (.,.)y. Thus, the norm
on V'is given by ||flv. = sup {|<f,x3]: xeV, [*/=1}. Assume we are giver
a continuous linear .4 : V — Vv’ which is éoercive. That is, there is a k > 0 such that

(Hx,xd2k||x|]?, xeV.
It follows that .# is a bijection of V onto V* with a continuous inverse. Finally, sup posg
we have a (nonlinear) function’ F :V—V’ which is uniformly Lipschitz on boun de

TOME 56 ~ 1977 —. n* 2



WELL-POSED PROBLEMS FOR SOME NONLINEAR DISPERSIVE WAVES 129

sets. That is, for each bounded set B in V there is a Q > 0 such that
24 [F)-FO)|jv =Ql|x—»|, =x yeB.
Since #~* : V' — V is bounded, it follows that the composite function 1 F:V—V

is similarly uniformly Lipschitz on bounded sets in V.

For each integer k > 0, interval [a, 5] and Hilbert space Z, we denote by C* ([a, b], %)
the space of Z-valued functions on [, ] which are (strongly).continuous together with
their (strong) derivatives through order k. Then a weak solution of (20) on [a, b] is
awe C! ([a, b], V) which satisfies (20) at every t€[a, b]. The following result on local
solutions of (20) follows from the classical successive-approximations proof.

THEOREM 1. — Let V be a Hilbert space, M :V — V' be continuous, linear and coercive,
and let F : V=V’ pe uniformly Lipschitz on bounded sets. Then for each wy €V there
is a unique weak solution of (20) on some interval [ —c, c] which satisfies w (0) = wy. It is
sufficient to choose ¢ = kb/Q (1+b), where Q and b are chosen so that (24) holds for
B={xeV:|x-mw, | <5} and that ||F (wo) [y < Q.

The preceding result gives a solution local in time whereas we shall also want to esta-
blish existence of a solution over long intervals. OQur intended applications do not permit
the imposition of linear growth rates on F. Note that (22) and (23) contain quadratic
tf_:rms and such growth rates can lead to blow-up in finite time. However, the following
Situation will be shown to be appropriate for the system IL

THEOREM 2. — In addition to the hypotheses of Theorem 1, assume M is symmetric, i. e.,
(Mx,y)=( My, x>, x,YyeV,
and for some constants K, L =0 we have
@) CF(), x> = —K||x|P-L||x[), xeV.

Then for eqch wo €V there exists a ¢ > 0 and a unique weak solution w (.) of (20) on
TG +0) with w(0) = w,. This solution satisfies the estimate

(26) lw(®)]] < (@ M2 ((t wo, w0, >+ LKV OY?, 120

Proof. — First we establish the @ priori estimate (26) on any weak solution of (20)
on [0, ). Since  is symmetric and (25) holds, we find that the function
O =M w@E),w (t) > is continuously differentiable and satisfies

o' (v) < QK/k) 6 (0)+ (2 LIk} (a ()2
That s, the function
¥ (3) = exp(—2K /K)o (1)
Satisfies the differential inequality
¥ (1) < exp(—K 1/k). 2 LIk Y ()2,

To i
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130 R. E. SHOWALTER

and this is integrated to obtain the estimate

Y@ SVO+LKE)T, 20,
This implies the desired result.

Next we construct a weak solution on an interval [—e¢, T], where T > 0 is arblltr::rsg
For any such T > 0, it follows from (26) that there is a B > 0 such tI}at a weak solu <10B
of (20) on an interval [0, 4] with 0 <a < T and w (0) = w, satisfies || u;l (11?1s” =P
Let B={xeV:||x||<3B} and choose Q so large that (24) ft ollows
Qzsup {||[F() |\ :||x||<B}. Finally, choose c, = k2 B/Q+2 l3)-< o s
from Theorem 1 that for every 5,0 < s £ T, and for every w, e V W}th ” Wy ” <P Thus
an unique weak solution of (20) on the interval [s—cg, s+ ] satisfying w '(s) = 0, i te(i
the solution of (24) with w (0) = w, is obtained by a finite number of ex{enswns ai 11; ];:sws
on an interval [—¢,, T+ecg]. Since T > 0 was arbitrary, the desired result follows.

1 tric
COROLLARY. ~ In addition to the hypotheses of Theorem 1, assume 4 is symme.
and

27 (F(x),x>=0, xeV.

Then for each wy €V there exists a uniq
w(©0) = wy. This solution satisfies

(28)

ith
ue weak solution w (.) of (20) on (— oo, o) Wit

<J{w(t):w(t)>=<v/{woawo>, —©0 St <00,

A ibe
A stronger notion of a solution of (20) also will occur in our apphcatlor‘ls. To desﬁ:set
it, we let H be a Hilbert space with inner product (.,.),; and assume V is a dense s

. et 'b
of H for which the identity V ¢ H is continuous. We identify H w1fh 1t§ dualdHalit;’
the Riesz map and thereby obtain a continuous identification of H in V' by du
Set DM) = {xeV:#

xeH} and denote by M the restriction of 4 to D (M)
Note that D (M) is a Hilbert space with the inner product

s oen=Mx, My)y,  x, yeD(M).
The identity DM)s Vis continuous and this implies that

C'([a, b, DMY) < C*([q, 5, V)
for any interval [a, b

] and integer k > 0. We define a strong solution of (20) on [a,tflg
to be a we C! ([q, b], D (M) which satisfies (20) at each te[aq, b]. Thus, ?ndefh d
hypotheses of Theorem 1, weak and strong solutions of (20) on [a, 5] are distinguishe
by each term in (

20) belonging to C° ({2, 5], V) and C°([q, b], H), reSpectxvelgyj
We give a sufficient condition for a weak solution to be a strong solution. See [
for more general results, -

THEOREM 3. — Jp addition to the hypotheses of Theorem 1, assum® F : V— H is conti-
nuous. - Let w be g w

eak solution of (20) on [a, b]. Then w is a strong solution of (20)
on [a,’b] if and only T w(s)eD (M) for some se [a, b].

mm56~1977'mx.2
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Proof. — The function F(w(.)) belongs to C°([q, b], H), so (20) implies
w' e€C°([a, b], D (M)). From the continuity of the embedding D (M) o V and the
fundamental theorem applied to w’ € C! ([g, b], V), it follows that

J' w =w()—w(), 1, s€[a, b],

s

where the above left side is (e. g.) the Riemann integral in D (M). The desired result
follows immediately.

COROLLARY. — A weak solution w of (20) on [a, b] satisfies w (x)—w (s) e D (M) for
al v, se[a, b].

6. Local Solvability of I

We shall present initial-boundary value problems for the system (I) and show they are
well-posed over a sufficiently short time interval. Let J = (a, b) be an interval with
—® < a<b =< +o, and denote by L2 (J) the Hilbert space of (equivalence classes of)
real-valued square-summable functions on J. For each integer k = 0, let H* (J) be the
Hilbert space of Sobolev consisting of those ¢ € L2 (J) for which all the derivatives D’ ¢,
0<j<k, are also in L2(J). (Derivatives are taken in the sense of distributions.

:ee [6]) Each ¢ e H! (J) is (represented by) an absolutely continuous function and we
ave

(29) lolew=ilollum. oeH'D),
whete ||. [lo, denotes the essential supremum on J and the H! (J)-norm is given by
o lla: @ =l @][Z: 0+ [ Do [z )™
L?t V be a closed subspace of the product H! (B)x H! (3) = { [¢1, 921 : 01, 02 H' () }
with the inherited inner product and norm,
” ? ”V = ” Y ”H1 DHxHI () = (” Qg ”;211 (1)+ “ (1)) ”[2.11 (J))”z: o= [‘Pn (pZ]EV‘

We also will assume CP ())xC (@) < V. Since CF (J) is dense in L2 (J), it follows
that we may identify L2 (Jyx L2 (J) = V’ and simultaneously L? J)xL* ) = 2" () x 2'(J)
[Here 9” (3) denotes the space of distributions onJ.] Finally, we set H = L? () xL? (3).
Note that we have already identified H = H’ in the above.

Let y be a real number and define a continuous and symmetric # : V— V' by
(Mo, ¥)= (91, ‘l’l)Ll(J)"'(e/z)(l—yz)(D‘pb DY n
(P2, V2)12 (n+(¢/2) (*—1/3)(Do2, DY)y
¢ = [(Pl’ ‘Pz]: Y= [‘1’1’ \l’z]ev-

_We shall always assume 1/3 < y? < 1; then . is coercive, hence, satisfies the hypothesis
‘;_]v'l;ieorems 1,2,and 3. Foreach o eV, let.#, @ denote the restriction to CeMxCy )
PeV. Thus #,¢e9' )x2’ () is given by [of, @D]:

#50 = [0, ~(g/2) (1-y*) D* 9y, 9, —(e/2)¥* ~1/3)D* 0:]}-

J0 .
URNAL DE MATHEMATIQUES PURES ET APPLIQUEES 18



132 R. E. SHOWALTER

Whenever ¢ € V and 4, 9 e H = L% (J)x L? (J), then ¢ € H? (J) x H? (J) and we obtain
Green’s formula

MO, V) — (o0, ) -
(0) = {-y") D(mH @V: ©)+(r*~1/3) Do, (§) Y2 ) } [t=:»
YeV.

If @ is such that the right side of (30) vanishes for all ¥ €V, then .//(()p = ﬁ:htse flj;
Conversely, if # ¢eH, then #, 9 = .# ¢ e H and the right side of '(3 ) V;l bondacy
all YeV. These remarks characterize D (M) in V in terms of feg.ularlty an those ©
conditions of its elements. Also, we have shown M is the restriction of .#, to

which satisfy the “variational” boundary conditions obtained from (30).

We define the nonlinear function F:V— H as suggested by (22):
F(¢) = [Do,+29, Dg,, Do, +eD (9, 9,)], ¢ = [0y, 92]€V.

The estimates

”F((P)-F(‘l’)”x{ = ”D(‘Pz“‘l’z)*‘a(‘h Do, -V, D‘I’l)”Lz(J)

+||D((P1"\l’1)+SD((P1 0,—V, \lfz)”u(l)

= ”D((Pz—‘l’z)”uu)+8” 0 D(o—VYy)+(0,— V) DYy ”L"(J)
+”D(‘Px“\l’x)”L2(1)+8“((P1"\l’1)D(Pz+‘l’1D((PZ—‘l’Z)”L’(”
+5”(‘Pz“‘\l’z)D(Pl'*“«l’zD((h—‘l’l)”L’(J)

§(1+5”‘3’1“L=’ (J)+5“D‘P1 ||L1(J))||D((p2-‘l’2)||l-2(-')
(1 +el o1 le i +e|| DY, [l

+&|| Doy ||is ¢+ ¥z | - IP@—¥) |20

isfies
and (29) show that F : V — H is uniformly Lipschitz on bounded sets. Thus, F satis
the hypotheses of Theorems 1 and 3.

Example 1: Bounded Channel, —

V={o=[9,0,]:0,
wing (30) show oeD

Suppose J = (g, b) is a bounded interval and dt{oﬁ:
9:6H'(D), ¢,(@) =, (b)) =0}. Then the remarks fo
(M) if and only if peV, peH?(J)xH2 (J), and

Do, (a) = Do, (b) = 0.

Theorem 1 implies that for each pair [ug, v,] = w, € V there exists a unique weak solu-
tion w(t) = [u(r), v )]

. _ This
of (20) on some interval —¢ <t <c with w(O)'— Wo- -tial
pair of functions on J % (¢, ¢) is a generalized solution of the system () with the 1!
conditions

4@ 0 =us€), (&, 0) =y (&), Eel
and the boundary conditions
uia, ) =u(b, 1) =0,
D;D.o(a, 1) =D, D,s(b, 1) =0,
TOME 56 — 19?‘? -~ 'N® 2
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These boundary conditions follow, respectively, from the inclusions w (t©)eV and
w' (tye D M). If (and only if) w, € D (M), then w is a strong solution for which we obtain
the more restrictive boundary conditions

u(a,t)=u(b,t)=0,
D, v(a, 1) = Dev(b, 1) =0, —-c<1<cC

Such boundary conditions occur in the description of gravity waves in a channel which
is bounded between two walls. At each wall, the (horizontal) velocity u is zero and the
slope of the disturbance v is zero. (We have not been able to establish global existence
results in this situation. This may be related to the interaction of waves reflecting from
the boundaries.)

7. Global Solvability of II

Two examples of initial-boundary value problems for the system (II) will be presented.
Each is shown to possess the existence-uniqueness-stability results characteristic of problems
which are well-posed over long time intervals.

_ Define # as in Section 6 and assume as before that 1/3 < y* < 1. Wedefine the non-
linear function F : V— H as suggested by (23):

F(9) = [Do,+£9, Do;, Do, +2e0; Dp;], ¢ =[01, 92]€V-

Esti.mates similar to those of Section 6 show that F is uniformly Lipschitz on each bounded
set in V. Thus, the hypotheses of Theorems 1 and 3 are satisfied. To check the esti-
mate (25), we have the computation

(F(9), 9> = (Do, +£9, Doy, 91)12 s+ (D9, +2£0, Doy, P2z
b
= J‘ D{ o, 9, +(/3)(9,)° +(2¢/3) (92}

From this it follows that (27) is satisfied if we have
G o@=0@®), oeV.

The condition (31) holds in the two important cases of periodic and Dirichlet boundary
conditions. The two examples to follow illustrate these respective cases.

vl'ixample 2: Periodic Waves. — Let the interval J = (a, b) be bounded and choose
We‘ﬁx{lc? :i][(pb 0:]:0,eH' (), 9;(0) =9, (), j=1,2} From Green’s 'formula
is true tht at D(M) = {9peV :9,e H2(J), Dy, (a) = Dg;(®), j=1,2 }. Since (27)
2 unic, e COl'Ollary to Theorem 2 implies that for each wy = [uo, 0o] € V, there exists

inique weak solution of (20) on (— oo, oo) for which w (0) = w and (28) holds. The
pair Of_ functions u, v on J x (— a0, o) given by w (1) = [u(, ), v (s t)] is the unique
generalized solution of the system (I) with the initial conditions

U(i, O) = Uy (g)’ U(g, 0) = Uo(é)» a é g é b’
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and the boundary conditions

32 u(a, 1) =u(b, 1), v(a, 1) = v(b, 1),
(32) D, D, (u(a, t)—u(b, 1)) = D, D,(v(a, ©)—0v(h, 1)) =0, —0 <T<O.

Furthermore, Theorem 3 shows that if w, € D (M) then the (strong) solution satisfied
the stronger set of boundary conditions

(33) u@=u(b, 1, v(a,1)="0(b,1),
D.u(a, ©) = Dgu(b, 1), Dyv(a, 7)=Dv(b, 1), —00<T<O.

We could call (32) and (33) weak periodicity and strong periodicity, respectively, of the
functions , v. Note that each of these two conditions is equivalent to requiring that the
(unique) b—a periodic extensions of u and v belong (locally) to H! (R) and H*> (R),
respectively. The weakly (strongly) periodic boundary conditions apply to gravity V.VaVCS
in an infinite channel which are observed to be unidirectional and weakly (respectively,

strongly) periodic at some reference initial time t = 0. Note that (28) implies a conser-
vation of *“‘energy’’:

Nu@ |2 0+ || 0@ ||tz
+(/2)(1-5")|| Du (3) || () +(/2) (> — 1/3) || Do (@) || ) = Const.,

-0 <T <0,

The initial data must of course satisfy the condition wo—v, = O (¢) which is implied by
the assumption which we associated with essentially rightward moving waves.

Example 3: An Undular Bore. — We shall use the system (II) to describe the development
of a long wave of small elevation which forms a gentle transition between a uniform flow
and still water. This occurs, for example, when a stream of water is sent into a ang
channel of still water in such a way that the transition between still water and the resulting
deeper water has a gentle slope.

Let T = (~o, ) and V = H! O)x H! (J). Recall that cach ¢ € H (J) is asympto-

tically null : lim ¢ (x) = lim ¢ (x) = 0 [6]. Let k:J—[0, 1] be absolutely cont-
nuous and monotone decreasing with D e L2 @), Lm h(x) =1, and lim A (x) = 0
We shall consider a generalized solution u, v of (If‘)-’itoulti which
: lim u(, ©)= lim v 1) =1,
39 e e
gIxm UG Y= lim v, 1)=0, O<t<m
and both u (€, 0) and o &,

0) are given close to 4 (€) for E e J. Since 4 (.) is notin H' (@)

we consider instead the pair of functions

| VED=uE9-h@,  VE 9 =o€ 9-hE.
TOME 56 — 1977 —~ ne 2.
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Then it follows that the pair u, v is a solution of (II) if and only if the pair U, Vis a
solution of the system resulting from (20) when .# is chosen as in Section 6 and F is
defined by

F(¢) = [D(¢,+h)+e(p, +h) D (¢, +h), D(¢s+1)+2e(p,+h) D(9,+h)],
¢ =[0y, 9;]eV.

It follows from a computation similar to that above that the estimate (25) holds with
constants K and L depending on 4 (.). Thus, for each pair Uy, Vo € H! (J) it follows
from Theorem 2 that there is a unique weak solution U, V of (20) on [0, o) with
U, 0)=U, (), V(E, 0 = Vy(E). The pair of functions u = U+h, v = V+h is then
the unique generalized solution on J x [0, o) of the system (II) with the initial conditions

u@ 0)=Uo®)+h(E), vE 0)=Vo(®)+h(E), &&J

and the boundary conditions (34). These boundary conditions follow since for each 7,
0 =7 < o, both of U (., 1) and V (., 7) are asymptotically null. Finally from Theorem 3
and the observation that D (M) = H?(J) we see u; (., 7) and v, (., 7) are asymptotically
null at every t > 0 if U, (.), Vo (.) and 4 (.) all belong to H? (J).
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