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1. INTRODUCTION 

LET A AND B be (possibly multi-valued) maximal monotone operators and let C be a non-empty 
closed convex set in the real Hilbert space I/: We shall give existence and uniqueness results for 
evolution inequalities (formally) of the form 

40~ C: &Au(t)) + Bu(t) - f(t), u - u(t) 2 0, UEC, O<t<‘l (l.la) 
V 

(Au(O) - uo, u - u(O)), > 0, UE c, (l.lb) 

where f E L?(O, T; V) and u0 E A(#,) are given In section 2 we introduce a new notion of weak 
solution of (1.1) and verify uniqueness when A is linear self-adjoint and B is strictly monotone. 
Existence of a weak solution is proved in section 3 when A is a (single-valued) function of the form 
“identity plus compact operator”, B is bounded, and A or B is a subgradient. 

Variational inequalities of the form (1.1) are of interest on their own as extensions of corres- 
ponding evolution equations of Sobolev type (where C = V). Early work on such inequalities 
is described in [2] ; we mention [6] specifically as a source of examples of initial-boundary-value 
problems for the pseudo-parabolic partial differential equation 

-&aAu)=kAu (1.3 

with a > 0, k > 0. Such equations arise as models for diffusion, and they provide an interesting 
alternative to the classical diffusion equation wherein a = 0. In section 4 we give an example of 
an initial-boundary-value problem consisting of a highly nonlinear partial differential equation 
of pseudo-parabolic type whose solution is subject to unilateral constraints. Existence and unique- 
ness results for weak solutions follow from our abstract results on (1.1). 

A one-phase free-boundary problem of Stefan type for the equation (1.2) is shown in section 
5 to lead to the variational inequality (1.1). This development is parallel to that of the classical 
case a = 0 which is described, e.g., in [7]. The existence of a classical solution of a Stefan problem 
for (1.2) in one spatial dimension was given in [9] by entirely different methods. 
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2. THE VARIATIONAL INEQUALITY 

We denote by L!(O, T; V) the Hilbert space of (Bochner) square-integrable functions on the 
interval (0, T) with values in the Hilbert space ‘c! Let H’(0, T; V) denote the absolutely continu- 
ous Vvalued functions u whose derivatives dv/dt belong to L!(O, T; V). Denote the dual of V by 
V* and recall the natural identification L?(O, T; V) = L?(O, T; I/)*; thus we obtain the (dual) 
identification ,?(O, T; V) + N’(0, T; V)* by restriction. The derivative d/dt : H’(0, T; V)c* 
L?(O, T; V) is a bounded linear operator which determines the dual operator L = -(d/dt)* : 
L?(O, T; V) + H’(0, T; V)* by the formula 

<U v> = - 
s 

= (f(t), u’(t)), dt, f E L?(O, T; I;), u E H’(0, T; V). 
0 

The restriction of Lf to V/-valued test functions is the (distribution) derivative df/dt. Moreover, 
for f E H’(0, T; V) we have 

+ (f(O), u(O)), - (f(T), v(T))“, u E H’(0, T; V). 
L2(0, T; V) 

Thus, we can regard “Lf + f(T),, as formally equivalent to the Cauchy operator “df /dt + f(O).” 
We shall use basic material on maximal monotone operators [l]. Specifically, recall A c 

V x V is monotone if [xj, yj] E A for j = 1 and 2 imply (x1 - x2, y, - y,), 3 0, and strictly 
monotone if in addition equality holds only if x1 = x2. If cp : V + R u { + cc} is proper, convex 
and lower semicontinuous, its subgradient, defined by 

d&c) = { UE I; : (u, y - x)” d q(y) - q(x) for all y E V} 

for x E K is maximal monotone. More specifically, if C is a non-empty, convex and closed set in 
K its indicator function 

1 0 2 XEC 
I,(x) = 

+m, x#C 

is proper, convex and lower semicontinuous, and we have u E 81,(x) if and only if 

x E C : (u, y - x) < 0 for all y E C. 

Thus, the subgradient of the indicator function provides a convenient method of expressing the 
variational inequality. 

Suppose we are given the pair A, B of maximal monotone operators on the Hilbert space K 
a closed convex subset C of K f E L?(O, T; V) and a pair [uo, v,] E A. Then a function u is called a 
strong solution of (1.1) if there is a pair of functions U, w such that 

a,v~Hi(O, T; V); w E L?(O, T; V), 

u(t) E c: 
( 

ddt) 
--&- + w(t) - f(t), x - u(t) 

> 
2 0, XE c, (2.la) 

V 

u(t) E A(u(t)) and w(t) E B(u(t)) for a-e. t E [0, T], 
and 

(u(O) - UO’ x - M3), 2 0, XE c. (2.lb) 
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Note that since u and u are continuous, C is closed in V and A is closed in I/ x [ it follows that the 
inclusions u(t) E C and u(t) E A(u(t)) hold for all t E [0, T]. Also, (2.1) can be restated as 

du(t)- 
dt + w(t) + q&W) 3 f(t), (2.2a) 

u(t) E A@(t)) and w(t) E B@(t)) for a.e. t E [0, T], and 

40) + &(u(O)) 3 Q 

in terms of the indicator function. 

(2.2b) 

We shall use a weak notion of solution in which it is not required that u E H’(0, T; V). Set 
K = {u E H’(0, T; V) : u(t)E C,O < t < T}. Define a weak solution of (1.1) to be a function u 
for which there is a pair of functions u, w satisfying 

UEK; u, w E L?(O, T; V), 

u(t) E Ah(t)), w(t) E B(u(t)), a.e. t E [O, T], 

and for some < E A(u( T)) we have 

<Lu + w - f; v - u> + (L V(T) - u(T)), 2 (q,, ~(0) - u(O)),, VEK. (2.3) 

Note that if u is a strong solution then it is a weak solution with 5 = u(T). Moreover we have 
the following elementary result. 

THEOREM 1. Let A be continuous, linear, self-adjoint and monotone; let B be strictly monotone. 
Then there is at most one weak solution. 

Proof: Let u1 and u2 be weak solutions and let ur , w1 and u2, w2 be the corresponding selections 
from A&,), B(u,), etc. By our assumptions on A we have (after modification on a null set) uj = 
A(uj)oH’(O,T;V)and<.j=A(uj(T))forj= 1,2.Thuswehave 

(LAU, + w, - f,u, - a1 > + (Au,(T), u*(T) - a#‘)), 2 (~7 a*(O) - al(O)), 

@Au, + w* - _6au, - a2) + (4(T)9 u,(T) - r+(T)), 2 (u,, u,(O) - u,(O)),. 

For any uE H’(0, T; V) we have 

(LAu, u> = $(Au(O), u(O)), - (Au(T), u(T))&, 

so adding the two inequalities and applying this identity with u = u1 - u2 gives 

(WI - w*,ur - u2LwL T; V) + ;(AWl u(T)), + $WO), NV), d 0. 

Strict monotonicity of B shows u1 = u2. w 

Remarks. Without additional assumptions we should not expect uniqueness of the selections 
u, w. For example, in the extreme case C = {0}, (2.3) is vacuous and we need only choose a, w E 
L?(O, T; V) with u(t) E A(0) and w(t) E B(0) to obtain a weak solution. At the other extreme, C = y 
any weak solution gives a strong solution of the equation du/dt + w = f in L?(O, T; V) with 
u(O) = uO. Even for equations, the current uniqueness proofs require, e.g., A or B to be linear 
self-adjoint. See [S]. 
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3. EXISTENCE OF A WEAK SOLUTION 

Our objective is to prove the following result on the existence of weak solutions of (1.1). Note 
that each of our hypotheses concerns only one of the three sources of nonlinearity in the problem; 
we have not placed any “compatibility” conditions on the operators A, B or the set C. 

THEOREM 2. Let C be a non-empty, closed and convex subset of the Hilbert space I! Let A and 
B be maximal monotone operators on V and assume the following: 

(i) A is a (single-valued) function which maps bounded sets in V into bounded sets in U, 
where U is a Ranach space compactly imbedded in I! 

(ii) B maps bounded sets in V into bounded sets in I! 
(iii) Either A = a(p or B = &p, where cp : V + R is a convex and lower-semicontinuous 

function. 

Then for each u0 E C and f E P(O, T; I’) there is at least one pair u, w such that 

UEK, w E C(0, T; V), w(t) E B@(t)), O<t<7; 

<L(u + &)) + w - f, rl - u> + (u(T) + e(T)), v(T) - U(T)), 2 (u, + 4u,), 1(O) - 

for q E K, 

and u(O) = uO. 

Remarks. If in addition we had A(u)E H’(0, T; V), then u would be a strong solution of 

$ (u(t) + 440)) + w(t) + d&-(u(t)) 3 f(t), a.e. t E [O, T] 

(3.la) 

u(O)),, 

(3.lb) 

(3.2) 

This is (2.2a) with A replaced by A + I. 
Sins we do have u E H’(0, T; V) and u(O) = uO, it follows that (3.lb) is equivalent to 

( 
2 + LA(u) + w - f, tl - u 

> 
+ (MT)), V(T) - u(T)), 2 (&,), ~(0) - u(O))v, VEK. 

(3.3) 

Proofi We shall prove theorem 2 in the following steps. First we approximate (3.2) (and, hence, 
(3.1)) by replacing 8Z, by its Lips&i&continuous Yoshida approximation aZ& E > 0; the result- 
ing equation has a solution u, by [S]. Then we establish estimates on {Us}, deduce the existence 
of a weak limit u = lim(u,), and finally show u is a weak solution of (3.1). 

The approximation. As an approximation of the indicator function I, we take 

Z:(x) = (2s)-111x - P,(x)ll;, E > 0, XE I! 

Its Frkhet derivative is al:(x) = E-‘(x - P,(x)), where PC is the orthogonal projection onto C, 
and it is monotone and Lipschitz continuous. Thus B + ali is maximal monotone and we 
obtain from [S] the existence of a pair u, E H’(0, T; V), wr E Z.?(O, T; v) for each E > 0 satisfying 

dldr (a,(r) + A(u,(t))) + w,(r) + ~Z;(u,(r)) = f(t), 

w,(t) E Z+,(r)), a.e. t E [0, T], 1 
(3.4) 

and u,(O) = u,,. This approximation (3.4) is strongly suggested by (3.2). 
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The estimates. Consider the two cases in (iii). 

Case A = 2cp: Take the scalar product of (3.4) with u, and integrate; this gives 

+,(t)ll: + cp*(G,(t))) + [ ( W&)” + ~(%(uJ,.,), 

= tllu,II; + cp*(&,)) + 
s 

[(A UJ’ O<t<T 

0 

where q*(x) = sup{& y), - q(y) : YE V> is the convex conjugate of rp [l, p. 411. Since A is 
bounded, its domain is all of V so q(O) c cc. Thus, we may take q(O) = 0 and q*(x) 2 0, x E K 
with no loss of generality. Since B is monotone (w,(t), u,(t)), 2 (BO(O), u,(t)) for t E [0, T], where, 
e.g., p(O) E B(0) is the minimal section of B at 0. Finally we may assume 0 E C and thus 

(a@,(t))9 a,(t))” 2 QJ,(r)) 2 0, O<t<T, 

from the definition of the subgradient. These observations and the preceding estimate give 

tll%cN: G tll!oll; + cp*(Auo) + (IlfllL’(O,T;Y) + ~lI~~~~IIY~II~~IlLm(O,T;Y)’ 0 G t G T 
E ;;;p”“” that II%I/Gyo, T; Y) . is bounded, and from (i) and (ii) it follows IIw,II~~(~, T;Y) and 

% L_(O,T;U) are bounded umformly in E > 0. Next, we take the scalar product of (3.4) with 
u:(t) and integrate. This gives 

4 @4I) + (II WEllL2(0, T; V) + II fL(0, T: v,) II”:llL.lo, T; V) 
The monotonicity of A implies the second term above is non-negative so we deduce that 

II4IIL~(O,T;v) and Il@d.~ are bounded uniformly in E > 0. 

CaseB= icp: Take the scalar product of (3.4) with u:(t); this gives 

I/ u:(t)/1 : + (&ul’)), ; UE(t)) + (w,(t) + aZ&W), u:(t)), = (f(t), u:(t)), 
V 

The second term is non-negative because A is monotone. The third term is the derivative of 
c&(t)) + Z$,(t)) by the chain rule [l, p. 733. Thus we integrate this identity and obtain 

We can add to B = c?cp a constant, by adding the same to f(t), so we may add an affrne function 
to rp with no loss of generality and thereby obtain q(x) 2 0 for all XE VI The preceding estimate 
P;;, uniform bounds on Ilr$/l,2co T;V) and )I@&,. Similar bounds follow immediately on 

a, Lm(O, T: v) and by (1) and (11) on [IA(u,)II,=.(o, T: “) and II wEIILmcO, T; vj, respectlveb. 

The limit. From the estimates obtained above it follows there is a subnet of {uJ (which we denote 
again by (u,}) for which 

w - lim(u,) = u in H’(0, T; V), and w - lim(w,) = w in L?(O, T; v), 

where “wJim” denotes the weak limit. 
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IEMMA 1. u E K - {u E H’(0, 7’; V) : u(t) E C, all t E [0, T]), u(O) = u0 and w-lim(u,(t)) = u(t) in I/ 
for every t E [0, T]. 

Prooj: Let t > 0. For each x E V we have 

(u,(r) - u(t), x), = 
s 

f ((u, - UY, 4, +  (UO - u(O), x), 

0 

convergent to (u, - u(O), x),. By bounded convergence 

lim 
s 

’ (uE - u, x)+,. = ’ (u, - u(O), x), = 0, 
0 s 0 

so u(O) = u. and w-lim(u,(t)) = u(t). Next define z,(t) = P&,(t)), the orthogonal projection onto 
C. Then (zE} is bounded in L?(O, T; V) so there is a subnet {z,} which converges weakly to z 
in L?(O, T; V). Note that 

))u,(t) - z,(t)llc = 2.5 Z@,(t)) < (const.)a, 

so w-lim(uJ = u = z. Since the set (v E L?(O, T; V) : u(t)& C, a.e. t E C> contains each .zE and is 
weakly closed, it also contains u = z. Finally u E K follows since C is closed and u is continuous. 

LEMMA 2. We have the (strong) limits lim A@,) = A(u) in L?(O, T; V) and lim A(Q)) = A@(t)) 
in V for every t E [0, T]. 

Proof: Let TV [0, T]. Since (A(u,(t))} is in a compact set in I/ there is a subnet {A(u&t))} which 
converges (strongly) to u(t) in V But w - lim(u,(t)) = u(t) in V and A is maximal monotone so 
u(t) = A(u(t)). The above applies as well to any subnet of {A(u,(t))}, so the entire net converges 
to A(u(t)). The convergence in c(O, T; V) of {A(u,)} to A(u) follows by the bounded convergence 
theorem. 

LEMMA 3. w E B(u) and lim(w, u,)~~(~, r; V) = (w, u)L2(o, T; “). 

ProoJ It suffices to show that [l, p. 271 

lim suP(wI, r&2(0. r; VJ d (WY uL~(~( r; “). 

Take the scalar product of (3.4) with uE - u and integrate. From the estimate 

(%(%), u, - u)z,qo. T; V) > I&) - I,(u) = I&) > 0 
we obtain 

By taking the upper limit we have 

lim sup(wE, uJLz d (w, u)~~ + lim su 
P( 

-& + &,)),u - UJ * 
L= 

Thus it suffices to show the last term is non-positive. From the identity 

s 
T (ui, u, - U)” = 1 

0 

~#mll~ - IbOW - joT cu:, 4” 

(3.5) 



A pseudo-parabolic variational inequality and Stefan problem 285 

and lemma 1 there follows 

lim inf jr &,UE - u), 2 #U)ll: - lIu,II:) - sr (u’, U)” = 0. 
0 0 

Similarly from lemma 2 

s 
= (A(uJ a E - u), = (Au,(T), a,(T) - uG’-))y - 

0 s 
= Ma,), u: - u’)” 

0 

it follows that lim [,’ (A(u,)‘, u, - u), = 0. 

The solution. To show that u is a weak solution, it suffices by lemma 1 to verify (3.lb). From any 
r~ E K.it follows from (3.4) that 

(& ? - u,)L2(o, r; “) + (A(u,)‘, ? - r&(0, T; V) + (w, - f, ? - r&(0, r; “) 

= (az:(u,)9 ‘, - v)r<2(,,. T: “)’ (3.6) 

From the definition of subgradient it follows that the right side is greater than Ii(u,) - Z:(q) = 
I$,), hence, non-negative. Consider the first term on the left side. We have from w - lim UJ T) = 
u(T) that 

W,+ = #4~‘,~~; - lboli2) 1 1 < iminfi(I/u,(T))I$ - IIu,j$) = liminf(u:,~,),~, 

so there follows 

<La, tl - u> + (u(T), 0) - Gr9), - (uo, ~(0) - uo)V = (a’, u - & > lim sup& rl - uJLz. 

Concerning the second term, we obtain from lemma 2 

<Z&N v - u> + (MT)), rl(T) - u(T))y - (A&J, ~(0) - uo)y 

= lim{<UAu,), ‘I - aa> + (A(U)), V(T) - u,(T)), - (A@,), ~(0) - a,)“} 

= lim(&J ‘t - t&2(0, T: Vr 

Finally, lemma 3 identifies the limit of the third term, so by taking the “lim sup” in (3.6) we obtain 
(3.1.b). n 

4. A PSEUDO-PARABOLIC INEQUALITY 

When our results from above are used to describe initial-boundary-value problems for partial 
differential equations or inequalities, it is usually more convenient to express them in terms of 
the equivalent notion of a maximal monotone operator SB from the Hilbert I/ to its dual V*. 
Thus, letting 9 : I/ + V* be the Riesz isomorphism given by the scalar product, 

@x(Y) = (x9 Y)“, &YE K 

we say d c I/ x I/* is monotone if the composite operator A E 9-l o d is monotone in 
V x V and maximal monotone if, in addition, Rg(.9 + &) = V*. We can easily state theorem 
2, for example, in this context. Thus, we are given a set C closed and convex in V; d and B 
are maximal monotone operators from V to I/* satisfying hypotheses corresponding to (i). 
(ii) and (iii). Then for each u. E C and f E L?(O, T; V*) there is a pair of functions u, w satisfying 

u~k’~(u~H~(O,T;V):u(t)~Cfor0~t~T}, (4.la) 



286 E. DIBENEDETTO and R. E. SHOWALTER 

w E I!(O, T; I’*), w(t) E S?(u(t)) for a.e. t E [0, T], 

&4(u) E c(O, T; If*) and u(0) = uO, 

(L(B + d) (u) + w - ft ‘I - a> + (9 + =@C) (V(T) - U(T)) 

2 (9 + J+&(O) - U(O))? for q E K. 

In this setting the linear operator L : ti(O, T; V*) -, H’(0, T; V)* is given by 

(4.1 b) 

(4.lc) 

(4.ld) 

(Lg, u> = - 
s 

= s(r) (n’(0) dr, g E L?(O, T; V*), u E H’(0, T; V). 
0 

Since u E H’(0, T; V), the inequality (4.1) is equivalent to 

( 
$9~ + L&(u) + w - f, rl - u 

> 
+ J+C)) (yl( T) - a(T)) 2 d(uo) MO) - u(O)), 

for q E K. 

We shall describe an example of a partial differential equation of pseudo-parabolic type which 
is to be resolved subject to unilateral boundary constraints. (A similar equation with constraint 
over the entire region will be given in the next section.) Let G be a bounded open set in R” which 
lies on one side of its boundary aG; assume aG consists of two disjoint parts To and I, and 
let R(s) = (n 1 (s), . . . , n,(s)) be the unit outward normal at each point s E c?G. H’(G) is the Sobolev 
space of those DE L?(G) for which all derivatives du/axj = Dju, 1 d j < n, belong to L?(G); 
we set D,u = u. Let I/ = {UE H’(G) : v(rO = O}; by ulro we mean the trace of u on To (see [8, lo]). 
For u E V we denote by Y(u) E L?(r) the trace of u on I. Let r. E L”(G) and rl E L”(T) be non- 
negative and define 

L%(u) = (U, u)V = 
s( 

i D,uDju + rouu 
> s 

+ II Y(U) Y(U), U,UE K (4.2) 
G j=I r 

It follows by a compactness argument that (4.2) is equivalent to the usual H’(G) scalar-product 
if any one of IO or {x : lo(x) > 0} or {s : r,(s) > 0} has strictly positive measure, and we assume 
this hereafter. 

The operator d is given by a pair of continuous (maximal) monotone functions ao, a_1 : 
R + R which are linearly bounded: 

Iaj(z)( d Q(l + lzl), z E R, j = 0, -1 

for some constant Q > 0. We define 

d(a)(u) = JGao(u)u + Jra_,(Y$Yu, U,UE r! (4.3) 

This operator is a subgradient (in fact, a Gateaux derivative) and is bounded from V to U = 
L?(G) x L?(r). Since the imbeddings V’ 4 U and U = U*C, V* are compact. the hypothesis 
(i) is fulfilled. 

The operator 97 will be specified by a family of maximal monotone operators B, : R + R 
which are linearly bounded: 

IwI < Q(l + lzl) for w E &(z), ZE R, -1 < k < n 
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for some Q > 0. Each /?, = 8’pk for a corresponding convex continuous (pk : R + R. We then 
define 28 = acp where 

d”) E s G j=O 

Thus g is given (formally) by 

B(u) = f qB,(+) + r*B- ,(YU)? 
k=O 

UE V (4.4) 

To be precise, we have FE g(u) if and only if there exist j; E Bk(Dku) in L?(G), 0 ,< k < n, and 
f_, E p_,(yu) in C(r) for which 

F(u) = 
s 

i fkDku + f- ,(Y”)9 UE k! 
G k=O s r 

By restricting each of the functionals W(u), d(u) and L%?(U) to test functions C,“(G) we obtain 
the corresponding distributions over G 

W,(u) = -Au + loU, 

d,(u) = a&J), 

(4.5a) 

(4.5b) 

wO(“) = - i DjBj(D,u) + BO(“)T UEl! 
j=l 

(4.5c) 

where the multi-valued ~23~ is interpreted as before. The respective differences are given (by 
Green’s theorem for the first and last cases) for sufficiently regular u by 

Bu(u) - JGI,oU = S,G + r,Yu)Ya, (4.6a) 

(4.6b) 

(4.6~) 

Thus we have realized the operators 9, JZ? and 93 as the sum of a distribution over G (4.5) and a 
boundary part over r (4.6). See [S] for details. 

The remaining data is given as follows. Let C = {u E V : y(u) 2 0 a.e. on r} and let u. E C be 
specified. Suppose F, E P(G x [0, T]) and go EL?(~ x [0, T]) are given and define 
f E L?(O, T; V*) by 

f(t)(u) = JGFO(.J)U + Irgo(.,t)y., UE K 

With the preceding data as given, the solution u, w of (4.1) is a generalized solution of the pseudo- 
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parabolic problem 

a 
#%u + d,(u)) + %+) = F, 

u(x, 0) = u,(x), XEG, 

u=o on To x [0, T] 

U 2 0, A(u) 2 0, A(u)(u) = 0 

where A is the boundary operator obtained from (4.6) as 

in G x (0, T) 

‘I 

on I- x [0, T] I 

a A(u) = at --c au + ‘IYl”) + a-I(Yu) & 

> 
+ i BjlDJaJnj + P-I(Y’)’ 

j=l 

(4.7) 

The other operators in (4.7) are given by (4.5). Note specifically that the multi-valued operators 
are to be interpreted precisely as was done above following (4.4). 

5. A STEFAN PROBLEM 

We consider a problem of heat diffusion involving a solid-liquid phase change at a prescribed 
temperature. One application we have in mind is the melting of ice (initially at temperature zero) 
suspended in a reservoir or porous medium. The novelty in this treatment is that we assume the 
heat diffusion is governed by the pair of equations 

ae 
- = kAcp, 
at 

e = cp - aAcp. 

Chen and Gurtin [3] introduced such a model for heat conduction in non-simple materials where 
the energy, entropy, heat flwr and thermodynamic temperature 0(x, t) depend on the conductive 
temperature cp(x, t) and its first two spatial gradients. Here the heat flux is determined by the 
conductive temperature and the phase is determined by the thermodynamic temperature. Thus 
0 > 0 in the region occupied by water and 0 = 0 corresponds to the frozen region. 

We describe the geometry of the problem. Let the bounded domain G in R” be the medium in 
which the ice/water is suspended and let its boundary aG consist of two disjoint pieces, To and 
rl. Set R = G x (0, T), where T > 0, and note that its lateral boundary is B, u B,, where 
Bj = rj x (0, T) for i = 0,l. The water-region Q, = ((x, t) E R : 0(x, t) > 0} is separated from 
the ice-region 0, = {(x, t) E R : 0(x, t) = 0} by an interface S which is the phase boundary. The 
unit outward normal on 82, is denoted by iii = (RX, NJ, RX E R”. If V(t) is the velocity in R” 
of the interface at time t, then it follows by the chain rule that V(t). m, + N, = 0 on S. Set 
A = RT,/llRX)(, the unit outward normal in R” of the lateral boundary of 51,. Of course n = RX 
onB,,andnX=Owheret=Oort= ?: 

The problem is formulated as follows. We are given the conductivity k > 0, temperature dis- 
crepancy a > 0, and latent heat b > 0, of the material and a constant h 2 0 representing con- 
ductivity across the lateral boundary B,. The initial thermodynamic temperature e,(x), x E G, 
and applied conductive temperature g(x, t), (x, t)E B,, are given with 8, = 0 on To, B0 > 0 on 
I-,, and g 2 0. The local form of the problem is to find a pair of non-negative functions 0, cp 
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on Q for which we have 

ae 
- = kAq, at 

9 = cp - aAcp 

k~+bY(t)+o 

in Q, 

kg+h(q--g)=o 

rp=o 
e(.,o) = eO 

on To 

on G. 

(5.la) 

(5.1 b) 

(5.lc) 

(5.ld) 

(5.1.e) 

Note that if 8, cp is a solution of (5.1) and B0 2 0, then 

(a/k): + 0 = cp in Q (5.2) 

so it follows that cp = 0 on Q,, u S. Since g > 0, the maximum principle for the elliptic equation 
in (5.la) on the region G(t) = {x E G : (x, t) E Cl,} shows that cp > 0 in R, and &p/an < 0 on S. 
Thus N, < 0 on S and G(t) is increasing with t. 

We shall show that the problem (5.1) leads to a variational inequality of the form (1.1). Define 
V = {o E H’(G) : vlrO = 0} as before. Regarding regularity of a solution, we assume B0 E r! 
8 : [0, T] + V is absolutely continuous, (PE L’(0, T; V), and (c.f. (5.2)) 

a de(t) 
-kz + e(t) = da a.e. t E [0, T]. 

Define the continuous linear W : V + V* by 

Wu(v) = 
s 

k@u %) dx + 
G s 

&v) d% U,VE K 
rl 

For a test function v E C:((O, T), I/) we obtain 

W(t) (v(0) dt = 

s 

k%.p%dxdt + hqm ds dt 
Ql s Bl 

= 

s 

( - kAcp)v dx dt + 
s 

k%p%,vdsdt + 
s 

hqv ds dt 
RI anI BI 

from (5.1). Furthermore we have 

(5.3) 

in the sense of I/*-valued distributions, where H(s) = 1 for s > 0 and H(s) = 0 for s < 0 is 
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the Heaviside function. We can summarize the above calculations as 

$0 + bfw)) + %’ = @W,, in Z!(O, T; V*), (5.4) 

where we define 

k&-,(t) (4 = s kJ(s, 6 u(s) cl% UE v; TV [0, T]. 
l-1 

Combining (5.3) and (5.4) we find that the absolutely continuous function 8 : [0, T] 

in Z!(O, T; V*), 

and 

e(x, t) 2 0, a.e. x E G, t E [0, T]. 

If we integrate (5.5a) and follow the suggestion in [7] to set 

u(t) = 
s 

f e(s) ds 
0 

there follows 

f(t) = (I + (a/k)a + bH)B, - b + 

s 

f (I&(s) ds, 

0 

g (I + (+)~)u + wu - f(t) = b(i - H(e)). 

V satisfies 

(5.5a) 

(5.5b) 

(5.5c) 

Finally we note that H(u) = H(8) since G(t) is increasing in t, hence, ~(1 - H(8)) = 0 in Sz. 
The preceding computations show that tl E H’(O, T; V) and it satisfies u(0) = 0, 

u(t) 2 0 in V (5.6a) 

and 

( $w + w4+4t) + W&w) - I.@)) h(t)) = 0, O<t<T. 

(5.6b) 

Setting C = {u E V : u 2 0 a.e. in G} we see that u is a strong solution of (4.1) with & = (k/u)Z, 
W = &/@I?, and u. = 0. Theorem 1 asserts the uniqueness of a solution of (5.1) under conditions 
considerably weaker than those leading to (5.6). Theorem 2 establishes the existence of a weak 
solution with certain additional regularity properties. In particular .& E H’(0, T; V*) since & 
is continuous and linear, so (4.ld) is equivalent to 
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