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I. INTRODUCTION

We shall be concerned with the first initial-boundary-value problem for
non-negative solutions of a system of nonlinear partial differential equations
of the form

?‘,’; w(B(x, 1)) + KB, 1) — p(x. 1)) D /,(x. 1),

(1.1}
P
ot

Blo(x, 1) = Ap(x, 1) + h(e(x, 1) - H(x, 1)) D /5(x, 1)

and a related free-boundary problem of Stefan type. Here 4 denotes the
Laplacean in the spatial variable x € R™, A >0, and the pair «, § are
maximal monotone graphs in 7 X [k, If the first equation were to contain the
term “—kA0(x, t)" with k > 0, then the system (1.1) would be parabolic. The
situation we consider here with £ =0 is accordingly a degenerate parabolic
system.

Although the system (1.1) with the (possibly multi-valued) nonlincar
monotone graphs a, § is of mathematical interest in its own right, we present
in Section 2 an extensive discussion of how such a system arises as a model
of heat conduction in a composite material consisting of two components in
which a change of phase occurs in the second component. This model is
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2 DI BENEDETTO AND SIHOWALTER

described by (1.1) with f# obtained in the special form f(x) = bx + LH(x),
where >0, L is the latent hecat of fusion and H(-) is thc multi-valued
Heaviside step function. Certain models of diffusion through fractured
porous media lead to the same system.

Our results on (1.1) are organized as follows. In Section 3 we prove that
the first initial-boundary-value problem for (1.1) is well-posed when the data
satisfy certain integrability conditions and f is defined everywhere on I:. If
the data are non-negative then the solution is likewise non-negative; this
property is essential for the model problem discussed in Section 2. We make
extensive use of the theory of maximal monotone operators in Hilbert space
to which we refer to |2, 3].

Certain properties of the solution are obtained when we restrict attention
to the case where o has a lower linear bound and =57+ LH as in the
model problem. In Section 4 we show that if the data arc cssentially bounded
then the solution of (1.1) is essentially bounded. Additional conditions on the
data are shown to imply that § and ¢ are continuous. In order to obtain
these regularity results we found it very useful to treat the problem as an
cquation of evolution rather than to have formulated it as a variational ine-
quality.

In Section 5 we exhibit an explicit lower bound on the first component ol
the solution of (1.1). This implies that the set of points where this function is
positive (the positivity set) is non-decreasing with time. Finally, we show
that the positivity set of the first component contains that of the second
component, and an cxample is given to show that this containment may be
proper.

2. DIFFUSION IN HETEROGENEOUS MEDIA

We begin with a mathematical description of diffusion processes within a
medium consisting of two components. A fundamental assumption is that the
first component occurs in small isolated parts that are suspended in the
second component. This situation arises in thermal conduction through
rocky soil, since the rocks arc isolated within the soil. It also occurs in the
diffusion of liquid or gas through a porous media that has been fractured,
since the blocks of the medium are isolated from one another by the system
of fissures. Next we shall formulate a free-boundary problem of Stefan type
that results from a change of phasc in the second component of the medium.
This arises in the model of heat conduction through the moisture in rocky
soil since the soil moisture may freeze or thaw with a corresponding release
of latent heat; therc is no moisture in the rocks. If we consider diffusion in a
fractured medium in which the system of fissures is only partially saturated
then we can think of the fissurcs as containing holes in which a certain
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amount (per volume) of the liquid or gas is trapped and can no longer take
part in the diffusion. Such a diffusion process is formally equivalent to the
preceding heat conduction problem. Finally, we give a weak formulation of
this one-phasc Stefan problem for a two-component medium.

Consider the conduction of heat through a heterogeneous medium G < "
consisting of two components. As our f{irst model for such a process we take
the system of equations in the region 2= G X (0, o),

a6
2.0

7

b

40 + (o~ )=/,

ot

where # and ¢ arc the temperatures in the first and sccond components.
respectively. Each is a function of position x &€ G and time 7 >0 and is
obtained at a point x by averaging the temperature of the corresponding
component in a neighborhood which contains a sufficiently large number of
pieces of both components. The constants a, b are specific heats of the
respective components, k is the conductivity of the first, the conductivity of
the sccond component is normalized to unity, and the positive number 4 is
related to the surface area common Lo the two components. Thus £ is a
measure of the homogeneity of the material. The system (2.1) is just a pair
of classical heat conduction equations together with a lincar coupling to
mode! the simplest cxchange between components. Our basic assumption
that the first component occurs in small parts isolated by the second
component implies that k=0 in (2.1). That is, the particles of the first
component may store heat (¢ > 0) or may exchange with the surrounding
second component (& > 0), but they cannot pass heat directly to other first-
component particles (k = 0). This is the sense in which the system (2.1} is
degenerate parabolic.

Supposc there is a solid—-liquid phase change in the second component at
the temperature ¢ = 0. We consider here the (one-phase) situation wherein
¢ > 0 everywhere. The region £ is separated inlo a conducting region {2,
where ¢ > 0 and a non-conducting region £2, where ¢ = 0; these correspond
to completely melted and partially frozen parts, respectively. We need not
assume that £, consists exclusively of ice but only that it is a mixture of ice
and water in thermal equilibrium at the melting temperature. At each point
(x, ) of Q we introduce the fraction of water, &(x, t); note that £ € H(g) in
2, where F{(-) is the maximal monotone Heaviside graph given by H{s)=1|
for §>0, H()=]0,1]. and H(s)=0 for s <0. The two regions ar¢
separated at time ¢/ by an interface S(¢). If we let n be the unit normal on
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S(¢) directed towards Q, and ¥ be the speed of S(z) along n, then we obtain
the condition

0

X __tv—& on S() (2.2)

on
where dp/én =V, - n is the heat flux across S(¢) and (1 — &) is the fraction
ol ice. Moreover, if N = (N,, N,,..., N,,, N,} denotes the unit normal on the
interface S = (J{(S(¢), )}, we find that (2.2) is equivalent to

V.o (N N)=LN(1 ). (2.3)

Each of (2.2) and (2.3) is called the interface or free-boundary condition.

It is worthwhile to recall the simple experiment in which one applies a
uniform heat source of intensity F to a unit volume of ice at temperature
¢ =0. The temperature remains at zero until L units of heat have becen
added. During this period there is a fraction ¢ of water coexisting with the
ice and €& increases at a constant rate F/L. When all the ice has melted, =1
and the temperature ¢ begins to rise at the rate £/b. The constants L and b
are the latent heat and specific heat, respectively. We can summarize the
above by stating that the rate of increase of the internal energy or enthalpy
v=>by + L¢ is given by F. Later we shall see that not only is enthalpy the
natural variable to determine the state of the process but that it is
mathematically the proper variable by which to describe the evolution of the
pracess.

We can now formulate our problem. With the notation above we seek a
triple of non-negative real-valued functions 8, ¢, £ on 2 which satisfy the
following:

o0

a5+h(9—(a):f, (2.4)
and

&€ H(p), in 0, (2.5)
7

b%f——dgo+h((o—9)=f2 in Q,, (2.6)
[

La,—é:fz—i—h@ . in 0, (2.7)
at

a9 .

E—l—LV(l—c;):O on S, (2.8)

=0 on &G X (0, ), 2.9)
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O(x, 0) = 0,(x), o(x, 0) = gy(x),
Ex, 0)=¢&,(x) on G. (2.10)

The data consist of the strictly positive numbers a, b, A, 1. and the nen-
negative functions f,, f, on 2 and 0,, ¢,, & on G for which we assume
£,(x) € H(py(x)) for all x € G. As before, we have sct 2, = {(x. 1) E &
p(x, 1) >0} and Q,={(x,1)€2:9(x,t)=0}. The unknown interfacc &
between 2, and 2, is the primary difficulty in the problem.

It is approrpiate to obtain a weak formulation of the problem (2.4}-{2.10).
This is neccessary cven with smooth data because the free boundary S may
vary in a discontinuous manner and it is also convenient because it casts the
problem into the form of an evolution equation in Hilbert space. Thus we
first compute ¢v/dt — Ag in the sense of distributions on 2. For cach test
function y € C°(2) we obtain

Y !

v ’ ¢ |
<,.— ~ 4o, W> =] (” Y oldy)) =
P ct

| (5 (bp + L) - A(/)) w

Y,

| WV -0 V) (Niws N,) - (bp + LY N,w)

Ja0,

S/ . ¢

= | (b i -—A<p>q/+—; (Lf)l/!
Yo, ot Ja, ol
+[ (V0 (Vi M) + LE = DN v

We have assumed that the interface S and the restrictions of ¢ and & to 2,
and to £, are sufficiently smooth to apply Gauss’ theorem. This calculation
shows that

v .
S A0 +ho— 0=/,

in &'(2) if and only if (2.6), (2.7) and (2.8) hold. From these remarks we
obtain the following weak or generalized formulation of the two-component
Stefan problem: given 7 > 0 and the non-negative functions /). /> on 2 and
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8,, 9., & on G with &, € H(p,), find a non-negative triple of functions which
satisfy

feH'(0, T; LXG)), @ €L*0,T;H)(G)), vE€HY0,T,H'(G)), (2.11)

a [(11_? + (0 - @)=1, in L*0, T;L*G)), (2.12)
%—Agom(go—a):fz in L0, T; H-YG)), (2.13)
o= (bl +LH)"' (v) in LY0, T; HYG)), (2.14)
00)=0, and v(0)=bp,+LE  in LYG). (2.15)

Certainly a smooth solution of (2.11)}(2.15) for which the level set S is a
smooth manifold necessarily satisfies (2.4)-(2.10).

Remarks. The condition b > 0 arises later in the discussion of properties
of solutions so we briefly indicate the significance of this assumption. The
constant b is a measure of the storage capacity of the second component and
it depends on the type of material and also the percentagc present in the
second component. Similarly, the constant L is determined by the typc and
percentage of this material in the second component of the medium. The
essential interest here is in the change of phase phenomenon so we are
concerned with the case of a sufficient percentage of the second component
material being present to permit L > 0. The corresponding physically
significant case is that of b > 0; otherwise we would be considering the
unlikely case of a material with positive latent heat of fusion but with null
heat capacity. Neventheless, most of our results to follow are obtained from
the weaker assumptions that L >0 and 6 > 0.

The type of thc problem we have called degenerate parabolic. In the
system of partial differential equations (2.1) with £ =0 it is of interest to
consider the case of 56=0 |1, 7|; one can then reduce it to the single partial
differential equation

a , 0
77 (@0 —(a/h) 49) — do =f, + /> + (afh) =13,

which is of pseudo-parabolic type |6,22]|. This is distinctly not the case for
the free-boundary problem considered here. An elimination of 4 from (2.12),
(2.13) leads to the evolution equation

@/h) 25+ 20+ ap— (@a/h) 49) — dp =], +fs + (a/h)

af
di? di

. (2.16)
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The pairs of equations (2.14), (2.16) gives an equation for ¢ which is of
second order in time-derivatives, definitely not pseudo-parabolic unless both
b =0 and L = 0. Thus. even in the case of b = 0 where the local description
of the problem contains a pseudo-parabolic equation (cf. (2.4) and (2.6) in
£2,), the free-boundary problem with L > 0 is not of this type. Problems
where the phase is dctermined by the first component can be
pseudoparabolic; see |10, 18].

3, EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION

We shall prove that the weak formulation of the Stefan problem (2.11)
(2.15) is well-posed. This will be achieved by showing that the problem
corresponds to an evolution equation whose solutions are determined by a
nonlinear semigroup of contractions and that thc generator of this semigroup
is a subgradient operator.

The cxistence and uniqueness of a generalized solution of the Stefan
problem is contained in the following.

TikorEM 1. Let « and [ be maximal monotone graphs on ? X §! and

let j and k be proper convex lower-semi-continuous jfunctions whose
subgradients are given by gj =« ' and 6k =F . Assume

u, € LYG),  juy) ELYG), v,€L(GYNH YG), kv, €L (G,
HELYNO, T:LYG)). [, E€LY0,T; HG)Y),

and that the domain of B is equal to 1R. Then there exists a unique gquadruple
of functions which satisfy

u € H'(0, T; L(G)), vEH'(0.T;H YG)).

(3.1}
§€ L0, T;L¥G)). o€ L0, T; Hi(G)). '
du . 2 o .
= + (0 - 9)=f, in L0, T, L{G)), (3.2}
dv - . 2 et -1 .
Ao the—0)=/s in L0, T:H"(G)). (3.3)
u € u(f), v E B(p) g.e. in 0, {3.4)
u(0)=u,, v(0)=v, a.e in G. (3.5)

(a) If in addition there is a pair 0, € L*(G), ¢, € H)(G) for which
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u, € a(8,) and v, € B(p,) a.e. in G, and if f, € H'(0, T, L*(G)), f, € H'(0, T},
H™Y(G)), then

d d
Tl; € L®(0, T; LX(G)), de L™(0, T; H'(G)),

0ELYO, T;LYG), @€ L0, T:Hy(G)).

(b) If in addition a(0)> 0, $(0) 3 0 and each of the functions f,, f,,
u, and v, is non-negative, then each of u, v. 8 and ¢ is non-negative.

Proof. Let V be the product space L*(G) X Hy(G) which has the dual
V*=L*G)Yx H '(G). Define B € ¥#(V, V*) by

Bu(v) =f 1(u, — uy)(v, — v,) + Vu, - Voo,
[
u=u,,ul, v=[v,,0,]€ V.

Renorm ¥V with the equivalent norm (Bu(u))"” so that B: V- V* is the
corresponding Riesz isomorphism of the Hilbert space V onto its dual. Note
that B is given in £ '(G) in the form

B([uy, uy]) = |h(u, — u,), h(uy — u,) — Au, |, [u,, u, € V.

Next we consider the function J: V* - R U {+o0} defined by

J(u):]' Gu,) + k@) if u, €L’ jw)eEL', u,EL'"H",
YO
k(u,) € L',
=+w otherwise. u= [u,,u,| € V*.

From [3, pp. 115, 123| we find that J is a proper, convex and lower-semi-
continuous function on V*. Furthermore, the subgradient of J is determined
as follows:

gE () with g=|g,,g] and u=|u,,u,l in V¥
if and only if for some v = [v,v,] € ¥ we have
g=B@®) and v, € gi(u,), v, € 0k(u,) ae. in G.

These computations are immediate from the corresponding results of {3| on
the components of V*,
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It is useful to characterize &/ explicitly as a composition of operators in
2'(G). Thus we define 4 : V- V* by 4 =|a, §]: that is,

u€AQ) with  w=lu, u| € V* and v=[v,,0,|EV

if and only if u, € a(v,) and u, € f(v,) a.e. in G. (Note that A~" is the
subgradient of J computed from the Banach space V* to its dual V** =V
and A is the corresponding subgradient of the conjugate of J [11].) From the
computations above we have the representation &J = B o 4 7! as desired.

Given the subgradient operator ¢/ on the Hilbert space V*, it is well
known |2, 3| that the initial-value problem

d—ggl + aJ(w(r)) = f(¢), ae. 1€10,7T]
w(0)= o (3.6)

has a unique solution w& H'(0,T; V*) whenever w, € dom(J) and
SELXO,T;V*) are given. Furthermore, if w,€dom(é/) and
SEH' 0, T; V*) then this solution satisfies dw/dr€ L™(0, T; V*). These
remarks, with the identilications w(t) = [u(), v(1)| € V*, wy= |1y, 24 ).

S@) = [fi(1), /()] and
[0(), o) =B~ '(f ) —w' () EA "(w())

show that (3.6) is equivalent to (3.1)}-(3.5) and thereby ecstablish all but (b)
of Theorem 1. For the proof of (b) we first change the data as follows: (1}
Set j(s) =j(0) for s <0 and leave the values as originally given for s > 0;
thus dom(a) < |0, +o0). (ii) Add to f(s) the quantity s for those s < O and
leave the values as originally given for s > 0; thus f is strictly monotone on
{0, 0]. Since u, is non-negative the hypotheses of Theorem 1 still hold so
there is exactly one solution of (3.1)}-(3.5) with the modified data; we denote
it by u, v, 6, @ as before. Since the domain of a contains only non-negative
numbers, it {ollows that @ > 0. Our plan is to show that the remaining threc
functions are non-negative.

Next we consider Eq. (3.3) written with right side 26+ f, and initial
condition v, being non-negative. This equation is of independent interest.

LeMMA 1. Let A =h— A be the indicted Riesz map of the Hilbert space
HYG) nto its dual, H '(G), and let H '(G) have the scalar-product
corresponding 1o A. Let y be a maximal monotone graph on 11 X R which
contains the origin and whose range is all of IR.

(a) The operator A oy is maximal monoione on H ' (G) with the
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domain {vEH 'ML': there is a ¢ € HyG) with ¢(x)€ y(v(x)) ae.
x e G}

(b) IfC={fEH " (x):f>0}, then [ +AAoy] '(C)c C for every
4> 0.

Proof. Part (a) follows from Theorem 17 of |3], where it is shown that
Aoy is a subgradient on H *(G). To verify (b), let (I + A4 o y)(v)=/ in
H (@) with /> 0. By truncation and regularization we obtain a sequence
L ELYG)NC®(G)YNC with f,—f in H *(G). Sincc Aoy is maximal
monotone, the corresponding sequence v, = [I + A4 o y| 'f, converges to v
in H~'(G). From Proposition 5 of |5] it follows that each v, € C, so we
have v € C.

Let F be a maximal monotone operator on a Hilbert spacc H; let
v, € dom(F) and f€ L'(0, T; H). Then there exists a unique weak solution
of the initial-value problem |2, p. 64|

%—i—’ +F@)3f on [0,T], v(0)=v,. (3.7
By a wcak solution we mean a uniform limit of strong solutions v,
corresponding to data v§ and f, with v{ - v, and f, - f'in H and L'(0, T; H),
respectively. This existence result is proved by choosing the sequences above
with each vj € dom(F) and each f, a step-function with values from the
range of /|2, p. 65].

LEmMMmA 2. Let C be a closed cone in H. If v, €C, f(1)E€C for all
t€ 10, T, and if |{ +AF|~'(C) < C for all . > 0, then the weak solution v
of (3.7) satisfies v(t) € C for all t €0, T].

Proof. By the preceding remarks it suffices to consider the case of
v, € dom(F) and a step-function f given on a partition 0 =a, < --- <a,=T
by f=y,€C on |a;_,,a;). The solution is given inductively by v(0) =1,
and v(t) = St — ;) v(a;) on [a;_,, a;], where S, is the semigroup generated
by —(F—y). By [2, Proposition 4.5] it suffices to show
[T+ A(F—y)] ' (C)<C, for then we have v(f) € C for all 1 € |0, T']. Thus,
let x={I+AF—yp)|"'y with y€C and 1> 0. It follows directly that
x=(T+AF)"" (Ay; +y). Since Ay; + y € C we have x € C and we are done.

To obtain v > 0 in (3.3) we apply Lemma 1 with y=/8 ! and then apply
Lemma 2 with F= A o y. Since f is strictly monotone on (—oo, 0] it follows
from (3.4) that ¢ > 0. Finally, writing u as the sum of its positive and
negative parts, ¥ =u' —u~, we obtain, from (3.2),

d " du _ .
(1/2) 217.,(,- (W )Y=— (u , —CiT),_z((;) =h(u 02— W, h0 + 1))
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Since u# and # have the same sign and A + f; is non-negative, the right side
is non-positive so ¥~ = 0. Thus all four of u, v, 6, ¢ are non-negative. It
follows that this quadruple is a solution of the original problem without the
modified data. By uniqueness this is the solution of the original problem and
{b) is established.

Remarks. The essential point in the first part of the proof of Theorem |
is to reduce the problem to the evolution equation (3.6) whose solution is the
pair |u(t), vfr)| of “enthalpy™ functions associated with the weak solution. Tt
is this sense in which enthalpy is the natural variable for the problem.

For the special case of f, € L*(0, 7% L*(G)) we can give an aliernate proof
of part (b) of Theorem | as follows. Approximate § by a smooth 8, for
which the corresponding solutions [u,, v, ] can be shown to be non-negative
by direct L?-estimates on (3.2) and (3.3). Then using methods of {9] we can
let # = oo to obtain the non-negativity of |u. ¢|. However, the proof given
above permits the more general data of the existence result, and we also
obtain the corresponding the corresponding well-known non-negativity resuit
for the abstract porous media equation

dv -
@ = 4)30) 370

in i "'(G), where A > 0 and y is maximal monotone. We could not find this
result in the literature.
The evolution equation (3.6) is of the form

d -1, T, = £f¢
BT 4 ()27 0),

where B! is positive sclf-adjoint and 4 ™' is maximal monotone from a

Hilbert space (o its dual. Various generalizations and related equations have
been discussed in [4, 6, 9, 10, 15, 16, 20,21}

4, BOUNDEDNESS AND CONTINUITY OF THE WEAK SOLUTION

We shall prove that the “temperatures” 6 and ¢ in the weak solution are
bounded when the data in the problem are bounded. We also give sufficient
conditions for @ and ¢ to be continuous. These results are obtained in the
following special case of Theorem | which contains the weak formulation of
the one-phase two-component Stefan problem.

THEOREM 2. [In addition to the conditions of Theorem (b} we assume
the following:
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(i) There is a number a > 0 such that r 2 as for all r € a(s);

(ii) the maximal monotone B8 is of the form = bl + LH, where 1 is
the identity, H is the Heaviside graph and both b and L are non-negative;

(iii} the initial data and forcing terms are essentially bounded: u,,
vy € LP(G) and 1, [; € L (2). Then the functions u, v, 8, ¢ are bounded on
0.

(a) If in addition we have |r,—r,| > als, —s,| for all r, € u(s,)
and r, € a(s,), and if the functions u, and [!f,(-,t)dt are uniformly
(Hélder) continuous on G, then 6 is uniformly (respectively, Hdlder)
continuous on £2.

(b) If b>0 and ¢, is uniformly continuous on G. then ¢ is
uniformly continuous on Q.

Proof. Let u, v, 0, ¢ be the solution of (3.1)(3.5); by assumption (ii) we
may write v=bg + L& £€ H(p), in £. For each ¢ >0 we consider the
Steklov averages

1 ot 1 ¢
0= o@ds, B0=—| 0)ds

where ¢ and # are extended as ¢(0), 6(0), respectively, on (—¢, 0). It is
known that lim,_, ¢, = ¢ (etc.) in L*(0, T; H4(G)) |14, p. 85]. By intcgrating
(3.3) over [t —¢,t] we obtain

b (1) + (L/e)(&(t) — &t — &) + ho (1) — A¢ (1)
= hO0) + (1/¢) J'r'_ Jils) ds.
We shall apply this to (p(t) —k)', integrate over (0,7) X G where the

superscript plus denotes the positive part of the indicated function in H}(G)
and the number k is chosen by

’)
k =max {|g,], “(GY T H uo”Lw(m + = (”f1 fl,. wey T 2|15l X»m))

and take the limit as ¢ | 0. To this end we obtain
Y -
lime—o Jo J(. @) o(t) — =3 (@) = k) ”l 2¢) ”(‘/’0 - k)' ”12.2(6)

and the last term vanishes since k > || @, ]}, 2

Q) — &t —eNo() — k)" > &) — D(e() — k)" =0
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since k > 0 and &(7) € H(p(?)); and
¥ .
lim | | (ho,—d0,)o — k)"
£20.09 Mg
=[ [ tlio—k) P+ hklo =R + V(o ~ &) [")
“0YG
Thus we obtain
b 2 T '
5100 K)o + k| | 0=
N , oo o
th| Glo=RTP+] | V-0

<h ‘0’ J o=k + ‘0 | (:— l | /) (0(r)— k)" drdx,

&

This leads immediately to the estimate

PY N

€] o= +[ ] o=k

< J(: Jo H((j) - k)+ + _}11_ “le[l.l(m i; J;'_ ((I) e /f) k.

—
I
o

p—

Next we estimate the first term on the right side of {4.1). Integrate (3.2)
over (0, t) and use (i) and 7> 0 to obtain

P -1 ~
adO)<u®+h| O=h| o+ | fi+ u,. {4.2)
Y0 Y0 0
From (4.2) it easily follows that
o
a(t) < h l (0 — k)" + t(hk + 1L o) + Nl -
0

Now apply this to (¢ - k)' and integrate to obtain

0 1

aJ: | oo—0)" <h f I, 3@,@).._ o [o-b|aa

L+ A i) Flil ol | | 000"
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Note that

07G

[ Joo-n" [ o= {asar

2 o

1/t ¢ ,
< D) (L (o —k)" HLZ((J)) < ‘Z—JO o — k) iz

so we have from above

['[ 00~ 0)* <" ltp— k(" e
076 S 2a L

[ 1 . 1 ol _
+ [7 (hk + || fillp e @) + o ”“()HI.M(,‘)J -‘0 j(; (p—k)".
(4.3)

If we use (4.3) in (4.1) we obtain
hi ~t .
(1= ) [ I8

th l 1
<[ (51 ) kel + gl

2
LXG)

AT IR

Thus, if 0 << a/2h, then by our choice of & the right side is non-positive
and the left side is necessarily zero.
In summary, we have shown that with k as given above we have

(Ol 6y < K,

a
(L wiey < h (hk + || fillrocay) + N #gll ey = kis (4.4)
I|H(t)”l.'~((;) < (k,/a) el

for a.c. + € [0, a/2h|. The first is immediate from our preceding calculations,
the sccond follows from (4.2), and the third is obtained from (4.2) and
Gronwall’s inequality. From the dependence of & on the data it is clear that
the estimates (4.4) on G X (0, a/2h) can be extended to give a bound on u, 6
and ¢ on all of £ in a finite number of steps.

In order to prove (a) we first consider the functions

®(x, 1) = J" o(x,s)ds,  O(x,1)= j " 0(x, 5) ds.

0
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Integrate (3.3) to see that @ is a weak solution of

oP € .
b '('57 ~ AP +h®=hO + | f+ L&, L& bP(x.0)=0.
% S0
@(-, 1) € H)(G), 0<igT

If >0 then from |14, Theorem 1.1, p.419] we conclude that @ is
uniformly Holder continuous on Q. If b =0 then from |13, Theorem 14.1,
p. 201| we conclude that @ is uniformly Hdlder continuous on G, uniformly
in £ € |0, T|. Since ¢ is bounded, @ is trivially Lipschitz in . Thus it foilows

that @ is uniformly Hélder continuous on 2.
Next we integrate (3.2) to get

o ~l
ur, 1)+ | BB $) = otx, 5)) ds = | filx, 5) ds + uy(x)
<0 v 0
By taking the difference of this identity at x =x,, x, € G we obtain

lulx,, 1) = u(xy, 0)

< h J; ’H(x] ’ S) - 0(.’sz S)| ds + ¢(x{ » [) + J‘(],/] (Xx s S) ds + u()('xl)

L
e

- D(xy. t — “lfl(xz’ §) ds = uy(xy)- (4.1

By our assumptions in (a) the left side of (4.5) bounds the quantity
alf(x,,t)— 0(x,, 1) and the function

~1
x> Px, 1) + ‘ Si(x, s) ds + uylx)
o

has a modulus of continuity o(-) which is independent of ¢ € {0, T}, so we
have

~1
a|B(x,, 1) = O0(x,, 1) < h JO 16(x,, 8) = 8(x,, ) ds + o(x, — x,).

By Gronwall’s inequality it follows that # has the same modulus of
continuity, o, in x. From (3.2) follows the uniform Lipschitz continuity in ¢
of u and then the assumption in (a) shows that ¢ is uniformly Lipschitz in 7.
This finishes the proof of (a).

505750/ 1-2



16 DI BENEDETTO AND SHOWALTER

The proof of (b) is an immediate corollary of 8, Theore 5.3, p. 69]. The
point is that ¢ is an essentially bounded weak solution of
0 0
b L L so=nO-0)+fs  EEH()
ot ot
with dg/ot € L*(Q2). This last inclusion follows from b > 0; see [9] or |14,
p. 501].

Remarks. The boundary 6G of the region G is assumed to satisfy
“Condition A” of |[13] in both (a) and (b) of Theorem 2. That is, there is a
pair of positive numbers a, and #, such that for any sphere B, with center on
G of radius r<a, and for any component G, of the intersection
G,=B,NG it follows that mes(G,)< (1 — 6,) mes(B,). Without such a
restriction on the smootness of the boundary of G we obtain local or interior
continuity results as above.

It is not known whether ¢ is continuous in £ in the case h=0.

5. ADDITIONAL PROPERTIES OF THE WEAK SOLUTION

Under rather general conditions on the data in the weak formulation of
our problem it follows that the positivity set of the enthalpy u is increasing
with time. This is equal to the positivity set of the temperature ¢. An
example shows this containment may be proper.

The preceding properties of the weak solution will be obtained in part
from the following comparison result.

Lemma 3. Suppose t, < T and for each 1 € [t,, T| we are given a pair
V(8 + ), vo(t, +) of graphs on R X 1 such that y,(t, -) is monotone and

for each s, € y,(t,r) there exists an s,€ y,(t.r) for which
5, <8, (5.1)

Let the pair of absolutely continuous functions u,, u,: |t,, T|— I} satisfy
u,(ty) < uy(ty) and
ui(t) + y,(t, u,(2)) 20, ub(1) + 7.(t, u,(1)) D0,

Jor ae. 1€ [t,, T|. Then u,(f) < u,(t) for 1, << T.

Proof. Suppose there is a ¢, € (¢,, 7] such that u,(t,)-> u,(t,). Define
ty=lub{t € [t,, T : u,(t) < u,(t)} and note that u,(¢,)=u,(¢,) and u,(t) >
u,(¢) for all 1 € [¢,,1,]|. For each t € [1,,1,] for which —u(¢) € 7,(t, u,(t))
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there is by (5.1) an s(2) € y,(t, u,(1)) with s(¢) < ~-uj(t}. For such a ¢ we
obtain

(@i(0) = us (D), (1) — uy (1)) < (=5(0) — us (D), (1) — u, (1))

and this last quantity is non-positive because y,(t, -) is monotone. Thus the
function (u,(t) — u,(¢))? has a non-positive derivative on [¢,. 1,]. it therefore
vanishes on |t,, ¢,] and this contradicts the choice of ¢,.

Suppose we are in the situation of Theorem 1(b). For ae x€&€ G the
function u,(1) = u(x, t) is an absolutely continuous solution of (3.2). In order
to apply Lemma 3 to (3.2), (3.4), define

yiltu)y=(hja)u™ —fi(e, 0), yalt,u) = ha = () — ho(x. 1) - /i(x, D).

We will assume a > 0 and that

tn

for each r > 0 there exists an s € @ (r) such that as < r. (5.2
This implies that (5.1) holds for our choice of y,. y,. Let u, be the solution
of

ui(t) + (Wla)u () =fi(x, 1),  O<i<T,

with u,(t,) = u(x, t,). From Lemma 3 we obtain the first part of the
following,

THEOREM 3. [n addition to the conditions of Theorem 1(b) we assume
there is an a >0 jfor which (5.2) holds. Then the first component of the
solution of (3.1)-(3.5) satisfies

u(x’ I) > e Chea)(t- 1), u(x, t()) +_J e (h;’u){t--sz}(‘](‘,.c3 S) dS,

Iy

0<1t, <1<, (5.3)

SJor almost every x € G. Thus the set S;(w)y={x€ G u(x,1)>0} is
increasing with 1. Furthermore, the set S*(u)={(x,t)E 0 :ulx, 1)>0)
contains the interior of S' (f,) and

UiSf @) :0<r<tyeS ), 0<i,LT. (5.4)

Proof. The inequality (5.3) follows from the preceding remarks and it
immediately implies the monotonicity of §; (#) and the inclusion of the
interior of S"(/}) in S*(u). We verify (5.4). Let x, & S/ (u), that is.
u(x,,1,)=0, so by (5.3) we have u(x,,t)=0 for all 0 r<,. Thus
dulx,, 1)/ot =10 for 0 <t < ;. From (5.2) we obtain (see below) (x,,1)=0
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for 0 <1<t so (3.2) implies ¢(x,,2)=0 for 0 ¢ < ¢t,. That is, x, € S (p)
for all 0 < <1,.

COROLLARY. In the situation of Theorem 2(b) we have S*(p) =S ' (u).
Proof. Since ¢ is continuous this follows from (5.4).

Remarks. The condition (5.2) is actually equivalent to the assumption (i)
in Theorem 2: r > as for all (s,r) € a. To see this, note that if (sq, ry) E ¢
with ry < asg, then we can choose r; = (1/2)(r, + as,) > 0 and from (5.2) a
s, with (s,,r;)€a and as, <r,. But then 5, <(1/2)(r/a +s,) < s, and
r, > r,, contradicting the monotonicity of a. Thus (5.2) implies that all of ¢
lies above the graph of r = as.

As a consequence of the above remark it follows from (3.4) that u(x, ) >
af(x, 1), hence S"(0)<S*(u). If in addition we have «(0)= {0}, then
St =S"().

In the case of our original problem, (2.11)-(2.15), we have S'(p)c
S '(0): Thus 6> 0 in the region £, where the water is completely melted.
The following example shows that we do not neccessarily have
ST (p)=15"(9).

ExampLE. Define 8(t)=e™’, p=0 and v(1)=1—e"* for t> 0. This
triple of non-negative functions is the solution of (2.11)—(2.15) with
L=a=h=1 and arbitrary b>0, fi=/,=0, and 8,= 1, ¢, =&, =0. This
solution is independent of x& G. In the thermal conduction model of
Section 2, this example corresponds to the situation wherein a small amount
of heat uniformly distributed in the first component is all absorbed as latent
heat to convert the second component from solid ice to water at temperature
equal to zero.
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