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Abstract. A fully saturated poroelastic medium is confined by the sides of a cylin-
der, and the regions below and above the medium are filled with fluid at respective
constant pressures. The filtration flow of fluid through the poroelastic medium and
the small deformations of the medium are described by a quasi-static Biot system of
partial differential equations. Our objective here is to establish the well-posedness of
an initial-boundary-value problem for this system in which the poroelastic medium is
fixed and sealed on the sides, free and in contact with the exterior fluid on the top and
bottom, and displacement of the medium is unilaterally constrained on the top by a
Signorini-type free boundary condition.
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1. Introduction

The Biot model of poroelasticity arose from classical consolidation [6, 58]
and acoustics problems [18, 24, 30] in soil science and has been developed
for increasingly more demanding modeling needs of geophysics. Recently
developed sensor technologies continue to deliver large amounts of detailed
data which will be useful with appropriate models, but there is a corre-
sponding need to determine coefficients for these models from laboratory
experiments, many of which involve contact or indentation problems [5].
Similar problems arise in the manufacture of composite materials by in-
jection molding [46]. These involve injection of a liquid into a porous
matrix of reinforcing elements and depend on the rheological properties
of the liquid as well as the mechanical properties of the solid matrix; this
is constrained by a form to determine its final shape. The case of in-
compressible components arises in soft hydrated biological tissue modeled
as a solid-fluid aggregate [38]. Biomechanical experiments on soft tissue
have shown that it is often described well by the Biot system of poroe-
lasticity. The best example is articular cartilage, a particularly simple
tissue to model because it is mostly water by weight, and it follows a re-
markably linear relationship between stress and strain up to about 20%
of strain [37, 40]. In addition to a myriad of forward contact problems of
interest for cartilage behavior in joints, obstacle problems for this system
arise naturally in indentation experiments to calibrate the model by deter-
mining the coefficients in the system [5]. Fractures in deformable porous
media and debris-filled fractures in rigid porous media have been studied
[39]; their response to increased fluid pressure can be modeled as contact
problems. In each of these areas, computational modeling has made sub-
stantial strides, but the theory of contact problems for the Biot system is
very limited.

The paper [59] proves existence for an analogous problem of quasistatic
unilateral frictionless contact of a thermoelastic body with a rigid con-
straint. The contact is modeled by Signorini’s condition, but the thermal
coupling depends on the distance between the medium and the rigid foun-
dation. Similar problems were developed earlier in [2, 4, 48]. Existence
theory was presented in [56] for a highly nonlinear Biot system model-
ing diffusion of a slightly compressible fluid through a partially saturated
poroelastic medium, and the seepage surface was determined there by a
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variational inequality on the boundary for a unilateral constraint on the
pressure.

We develop here an initial-boundary-value problem for the Biot system
with a unilateral constraint on the normal displacement at the boundary,
and it includes additional aspects of the applications that are frequently
omitted in the theory. The poroelastic medium may have a resistance
to normal fluid flow across the boundary [31]; this reflects an additional
concentrated drag due to a filter cake or a semi-porous membrane. It is
manifested as a jump in fluid pressure or a steep pressure gradient near the
interface, and we shall see that it determines the appropriate space for the
pressure or flux. In many applications both the fluid and the material of
the porous medium may be incompressible, and this degenerate condition
is permitted below. It may lead to special behavior of solutions.

The Plan. The notation to be used together with relevant classical ma-
terial for the development constitute the remainder of this Introduction.
The Biot system of partial differential equations and the boundary condi-
tions for our problem are presented in Section 2, and these lead to a weak
formulation of the problem. In Section 3 we write the weak problem in an
abstract mixed form and construct a nonlinear operator that contains the
elasticity problem with a unilateral boundary constraint. This operator
gives the local fluid content as a function of pressure. Section 4 begins
with the construction of the linear symmetric flux-pressure operator and
the corresponding Hilbert space in which the weak problem is then shown
to be well-posed. This is done by reducing it to an initial-value prob-
lem, first for a semilinear implicit evolution equation and then by using
techniques from [54] for an evolution equation with a single m-accretive
operator in the Hilbert space. Section 5 contains a summary of the results
for the weak problem.

Notation. We assume the mechanical behavior of the porous medium is
determined by classical small-strain elasticity. In order to describe this,
we denote hereafter by Σ the space of symmetric second-order tensors.
Boldface letters will be used to indicate vectors in IR3 and Greek letters to
indicate second-order tensors in Σ. With δ = {δij} we denote the identity
tensor consisting of ones on the diagonal and zeros elsewhere. We adopt
the convention that repeated indices are summed. In particular, the scalar
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product of two vectors is v ·w = viwi, and that of two second-order tensors
is σ : τ = σijτij.

For any piecewise smoothly bounded region Ω in IR3, we denote its
boundary by Γ ≡ ∂Ω. A unit normal vector on a surface is denoted by
n = {ni} and on Γ it is always oriented outward. For a vector w, we
denote the normal coordinate wn = w · n and the tangential component
wT = w − wnn. Likewise for the tensor τ in Σ, we have the value at w,
τ(w) = {τijwi} ∈ IR3, its normal coordinate τ(w)n = τ(w) · n = τijwinj,
and its tangential component τ(w)T = τ(w)− τ(w)nn . We also set τn =
τ(n) · n.

For any Banach space B we denote its dual space of continuous linear
functionals on B by B′. Standard function spaces will be used [1, 20, 57].
Let H1(Ω) be the Sobolev space consisting of those functions in L2(Ω)
having each of their partial derivatives also in L2(Ω). The trace map or
restriction to the boundary is the continuous linear map γ : H1(Ω) →
L2(Γ) defined by γ(w) = w|Γ; its range is H

1
2 (∂Ω) with the scalar-product

inherited from the quotient map, and the dual of the range is H
1
2 (∂Ω)′ ≡

H−
1
2 (∂Ω). Corresponding spaces of vector-valued functions will be denoted

by boldface symbols. For example, we denote the product space L2(Ω)3 by
L2(Ω) and the corresponding triple of Sobolev spaces by H1(Ω) ≡ H1(Ω)3.
We shall also use an intermediate space L2

div(Ω) of vector functions in
L2(Ω) for which the divergence belongs to L2(Ω). Recall that for the
functions r ∈ L2

div(Ω) there is a normal trace on the interface, and this is

denoted by rn ∈ H−
1
2 (∂Ω) since it takes the value γ(r) · n on the smooth

functions r in L2
div(Ω). Then we have the Stokes formula [20, 57]∫

Ω

(∇ · r v + r ·∇v) dx = rn(γ(v)) for r ∈ L2
div(Ω), v ∈ H1(Ω).

Here ∇· denotes the divergence and ∇ is the gradient differential operator.
If r = ∇u, then ∇ · r = ∆u is the Laplacian of u, and rn = ∂u

∂n is the
normal derivative on the boundary. We denote by L2(Ω) the indicated
space of Σ-valued functions on Ω.

Corresponding spaces of vector-valued functions of time will be used. If
H is a Hilbert space and 1 ≤ p <∞, then Lp(0, T ;H) is the Banach space
of (equivalence classes of) H-valued functions v for which the Bochner

integral
∫ T

0 ‖v(t)‖pH dt is finite, and we define its norm by ‖v‖Lp(0,T ;H) =
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(
∫ T

0 ‖v(t)‖pH dt)1/p. For p = ∞, L∞(0, T ;H) denotes the bounded mea-
surable functions with the essential supremum norm. W 1,p(0, T ;H) is

the Banach space of antiderivatives, u(t) = u(0) +
∫ t

0 v(s) ds, with v ∈
Lp(0, T ;H). A superscript dot will denote the time derivative d

dt , so
u ∈ W 1,p(0, T ;H) is absolutely continuous and u̇ = v. If H is a space
of real-valued functions on Ω, then for u ∈ W 1,p(0, T ;H) superscript dot
corresponds to the time derivative ∂

∂t .
We will use some concepts and constructions from monotone operators

and convex analysis in Hilbert space [10, 21, 49]. Let V be a Hilbert space
and A : Dom(A) → V ′ a function with domain Dom(A) ⊂ V . Then A
is monotone if (A(v) − A(w))(v − w) ≥ 0 for all v, w ∈ Dom(A). More
generally, let A ⊂ V ×V ′ be a multi-valued relation on V ×V ′ with domain
Dom(A) = {v ∈ V : (v, f) ∈ A} and range Rg(A) = {f ∈ V ′ : (v, f) ∈
A}. Then the domain Dom(A) is the set of all v ∈ V with A(v) ≡ {f ∈
V ′ : (v, f) ∈ A} 6= ∅. The relation A is monotone if (f − g)(v − w) ≥ 0
for all (v, f), (w, g) ∈ A, that is, for all f ∈ A(v), g ∈ A(w). It is strictly
monotone if strict inequality holds whenever v 6= w.

Suppose j : V → IR ∪ {+∞} is an extended real-valued function. It is
proper if Dom(j) ≡ {x ∈ V : j(x) < +∞} is non-empty and convex if
j(tx+ (1− t)y) ≤ tj(x) + (1− t)j(y) for x, y ∈ V and 0 ≤ t ≤ 1. Assume
it is also lower semi-continuous. The subdifferential of j is the relation
∂j : V → V ′ defined by f ∈ ∂j(u) if

u ∈ V, f ∈ V ′, f(v − u) ≤ j(v)− j(u) for all v ∈ V.

Then ∂j is a monotone operator, possibly multi-valued. If j has a Gateaux
differential j′(u) ∈ V ′ at u ∈ V , then ∂j(u) = {j′(u)}. If a set K ⊂ V is
non-empty, convex and closed, its indicator function is defined by IK(v) =
0 if v ∈ K and IK(x) = +∞ otherwise. It is proper, convex and lower-
semicontinuous, and f ∈ ∂IK(u) if and only if

u ∈ K, f ∈ V ′, f(v − u) ≥ 0 for all v ∈ K.

This is an example of a variational inequality, and it means that f is
minimum at u along every line segment [u, v] in K.

If the dual space V ′ is replaced by V above and the duality f(v) by
the scalar product (f, v)V , then monotone is replaced by accretive. In
particular, ifR : V → V ′ denotes the Riesz isomorphism, thenA : V → V ′

is monotone if and only if A = R−1A is accretive, that is, (u−v, x−y)V ≥ 0
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for all u ∈ A(x), v ∈ A(y). Moreover, A is maximal monotone if it is
monotone and R + A is surjective. This is equivalent to I + A being
surjective, and we say that A is m-accretive.

2. The Biot System

Let G × IR denote the cylinder in IR3 with connected and simply con-
nected horizontal cross-section G ⊂ IR2. The poroelastic medium initially
occupies the region

(2.1) Ω ≡ {x = (x1, x2, x3) : (x1, x2) ∈ G, ϕ0(x1, x2) < x3 < ϕ1(x1, x2)}

in the cylinder between the graphs of two prescribed smooth functions,
ϕj : G→ IR for j = 0, 1 with ϕ0(x1, x2) < ϕ1(x1, x2) for (x1, x2) ∈ G. The
boundary of Ω consists of the sides, bottom and top given respectively by

ΓS ≡ {x : (x1, x2) ∈ ∂G, ϕ0(x1, x2) < x3 < ϕ1(x1, x2)},
Γ0 ≡ {x : (x1, x2) ∈ G, x3 = ϕ0(x1, x2)},
Γ1 ≡ {x : (x1, x2) ∈ G, x3 = ϕ1(x1, x2)}.

The regions in the cylinder below Γ0 and above Γ1 are filled with a slightly
compressible viscous fluid at pressures P0 and P1, respectively, and the
medium is fully saturated by that fluid. Another smooth non-negative
function h : G → [0,+∞) determines the location of a rigid drained con-
straint above the medium at

Γh ≡ {x : (x1, x2) ∈ G, x3 = ϕ1(x1, x2) + h(x1, x2)}.

By drained we mean that it constrains the porous solid but does not impede
the flow of fluid. The function h(·) is the initial vertical gap between the
top of the medium and the constraint.

We write the constitutive equations in the poroelastic medium Ω to-
gether with the equations for mass and momentum balance as a Biot
system of partial differential equations. In particular, u̇ and ṗ are the
velocity corresponding to a displacement u = u(x, t) of the porous struc-
ture Ω and the rate of change of the pressure p = p(x, t) of the fluid
in Ω, respectively. We work within the framework of the infinitesimal
theory for deformations and define the small strain tensor or the lin-
earized strain tensor ε ∈ Σ as ε(u) ≡ 1

2(∇u + (∇u)T ). Its components

are given by εij(u) ≡ 1
2(∂iuj + ∂jui). Then Hooke’s law takes the form

σij(u) = Eijk` εk`(u) in Ω for the elastic stress σ(u) corresponding to the
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strain ε(u) in the solid matrix of the porous medium. Here E is the
elasticity tensor. In the case of a homogeneous and isotropic medium,
this tensor is Eijk` = λδijδk` + µ(δikδj` + δi`δjk), so the stress is given by
Eijk` εk`(u) ≡ λδijεkk(u) + 2µεij(u), where the constants λ > 0 and µ > 0
are the Lamé coefficients, the dilation and shear moduli of elasticity, re-
spectively. See [28, 32, 34] for more details on the constitutive relations in
elasticity.

The slow flow of fluid at pressure p through a fully-saturated poroelastic
medium displaced by u is described by the fully-dynamic Biot system

cṗ+ α∇ · u̇−∇ · κ(∇p− g) = F ,(2.2a)

ρü− µ∆u− (λ+ µ)∇∇ · u + α∇p = f .(2.2b)

This system with ρ > 0 was developed by Biot [16, 17, 18, 19] to describe
(higher frequency) deformation in porous media. Here f = f(x) denotes
the volume distributed external forces acting on the structure, and F =
F (x, t) denotes any volume distributed fluid source density within that
medium. The coefficient c(x) ≥ 0 is a measure of the amount of fluid which
is forced into a constant volume of the medium at x by pressure increments.
When the fluid and solid are both incompressible we have c(x) = 0; even
then, the volume of the medium will vary as fluid is gained or lost or
as displacements lead to consolidation of the solid. The Darcy (relative)
velocity of fluid flow within the porous medium Ω is q = −κ(∇p − g),
where κ = κij is the permeability tensor divided by fluid viscosity and
g = g(x) is the gravitational force. The total flux of pore fluid is αu̇ + q,
where α ≈ 1 is the Biot-Willis constant; it depends on the mechanical
properties of the medium. Note that σ(u) − α p δ is the total stress due
to the combined elastic solid deformation and pore fluid pressure p within
the structure. The term α∇p arises from the additional stress of the fluid
pressure within the structure, and α∇ · u accounts for the variation in
fluid content due to the local change in pore volume, so cp+α∇ ·u is the
fluid content of the medium. For the theory of this system in the formally
equivalent context of coupled thermoelasticity, see [47], the fundamental
work of Dafermos [27], and the exhaustive and complementary accounts
of Carleson [25] and Kupradze [36].

For deformations with sufficiently slow variations of the solid velocity
the inertia effects of the solid are negligible, i.e., the first term in (2.2b)
is negligible, so we formally set ρ = 0. In this case the solid matrix
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displacement responds instantly to variations of the pressure gradient of
fluid, and the flow and deformation are described by the quasi-static Biot
system [6, 7, 8, 13, 14, 15, 41, 42, 50, 51]

cṗ+ α∇ · u̇−∇ · κ(∇p− g) = F ,(2.3a)

−µ∆u− (λ+ µ)∇∇ · u + α∇p = f .(2.3b)

The incompressible case c = 0 is studied in [43]. The system (2.3) results
from the elimination of the variables q and σ from the fundamental 4-field
system [11, 52, 53]

cṗ+ ∇ · q + α∇ · u̇ = F ,(2.4a)

Qq + ∇p = g ,(2.4b)

−∇ · σ + α∇p = f ,(2.4c)

σ − Eε(u) = 0 in Ω .(2.4d)

Conservation of fluid mass is (2.4a) and conservation of solid momentum
is (2.4c). The equation (2.4b) is Darcy’s law in which Q = κ−1 is the
resistance tensor due to the medium drag and g is the gravitational force;
the equation (2.4d) is Hooke’s law. For both analytical and numerical
purposes, it is useful to differentiate (2.4d) with respect to t and resolve
for the stress variables p, σ and velocity variables q, v where v = u̇.
This formulation extends easily to much more general cases, including
the fully-dynamic system and visco-plastic porous media, and it identifies
the physical quantities that need to be specified in boundary or interface
conditions [31, 52, 55]. Moreover, the numerical implementation of such
mixed models often leads to better accuracy of the variables of primary
interest, namely, flux and stress [20]. See [35, 60] for equivalent systems
written with total stress to avoid locking. Here we shall retain u as an
unknown due to the unilateral boundary constraint on displacement, so we
eliminate stress and write (2.4) as the 3-field system [12, 26, 45, 55, 56, 61]

cṗ+ ∇ · q + α∇ · u̇ = F ,(2.5a)

Qq + ∇p = g ,(2.5b)

−∇ · Eε(u) + α∇p = f .(2.5c)



BIOT-PRESSURE SYSTEM 9

However we shall retain the symbol σ to be defined by (2.4d). See [3, 9,
23, 52, 53] for coupling of the Biot system to a free fluid and [22, 44, 47]
for alternative 3-field formulations.

In the following section we introduce operators on appropriate function
spaces for which the restrictions to Ω represent the terms in this system.
These operators and the underlying spaces depend as well on the boundary
conditions of solutions. After describing the boundary conditions for the
poroelastic medium in a cylinder, we shall list the assumptions that will
be followed thereafter and develop a weak formulation of the problem.

2.1. Boundary Conditions. The poroelastic medium is fixed and sealed
along the sides. That is, we have null displacement and fluid flux deter-
mined respectively by

u = 0 and qn = 0 on ΓS.(2.6a)

On the bottom there is a fluid entry resistance ν0 ≥ 0 to fluid flux across
the interface, and the total stress from the medium is balanced with the
known external fluid pressure P0 below. These lead to the conditions

p− ν0qn = P0,(2.6b)

σ(n)T = 0, and(2.6c)

σn − αp = −P0 on Γ0.(2.6d)

The absence of any tangential friction implies that σ(n) = σnn. From
(2.6b) and (2.6d) it follows that σn = α ν0qn+(1−α)(−P0). We note that
1−α ≈ 0. The permeability of the interface is commonly reduced by a flux
resistance due to damage or clogging by fracturing fluids or their additives.
The resulting pressure discontinuity or steep gradient is modeled by this
interface resistance [41, 42].

On the top the conditions are similar, but the stress balance depends
also on the rigid constraint. We have there

p− ν1qn = P1,(2.6e)

σ(n)T = 0, and(2.6f)

un ≤ h, σn − αp+ P1 ≤ 0,(2.6g)

(un − h)(σn − αp+ P1) = 0 on Γ1,

where ν1 ≥ 0 is the fluid entry resistance on this interface, and P1 is the ex-
ternal fluid pressure above the medium. The constraints (2.6g) extend the
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classical Signorini contact conditions which model the contact of an elastic
structure with a rigid constraint. Normal displacement un is bounded by
the constraint, total normal stress σn−αp is bounded by the fluid pressure
at the top, and the medium is either in contact with the constraint or not.
If the medium is in contact with the constraint at a point x ∈ Γ1, then
un(x) = h(x) and the constraint provides an additional negative normal
stress σn − αp + P1 to the medium; otherwise, un(x) < h(x) and we will
have σn = αp− P1. See [28, 32, 34] for more details.

2.2. The Assumptions. Hereafter we shall assume the following condi-
tions hold.

• The domain G in IR2 is open, bounded, connected and simply con-
nected, and the boundary ∂G is Lipschitz continuous. The top and
bottom functions ϕj : Ḡ→ IR are Lipschitz, j = 0, 1, ϕ0 < ϕ1, and
the constraint gap h ∈ H1/2(Γ1) satisfies h ≥ 0. Define Ω by (2.1).
• The elasticity tensor E is symmetric and positive-definite, that is,
Eσ : τ = Eτ : σ for all σ, τ ∈ Σ, and there is an e0 > 0 for which
Eτ : τ ≥ e0‖τ‖2 for τ ∈ Σ.
• The permeability tensor κ and its inverse Q = κ−1 in Σ are positive

definite.
• The compressibility and coupling coefficients, c ∈ L∞(Ω) and α ∈

IR, satisfy c(x) ≥ 0 a.e. and α > 0.
• For j = 0, 1, we have exterior pressure Pj ∈ H1/2(Γj) and interface

resistance νj ∈ L2(Γj) satisfying νj(x) ≥ 0 a.e. in Γj. Let Γνj ⊂ Γj
denote the closed and connected support of νj, and assume ν−1

j ∈
L1(Γνj ).

The Weak Formulation. Define linear spaces that are determined in part
by boundary conditions (2.6a), namely, the spaces

V = {v ∈ H1(Ω) : γ(v) = 0 a.e. in H1/2(ΓS)}, H = L2(Ω),

W = {r ∈ L2
div(Ω) : rn = 0 in H−1/2(ΓS) and

∫
Γk

νkr
2
n dS < +∞, k = 0, 1},

for solid displacement, fluid pressure, and flux, respectively. Since the
trace operator is continuous, the set V is a closed subspace of H1(Ω)
with the same norm. The last boundary conditions on W mean that
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ν
1/2
k rn ∈ L2(Γk) ⊂ H−1/2(Γk), k = 0, 1. Wherever νk = 0, the correspond-

ing condition is not necessary. The space W equipped with the norm
‖r‖2

W =
∫

Ω |r|
2 dx+

∫
Ω (∇ · r)2 dx+

∑
k=0,1

∫
Γk
νkr

2
n dS is complete.

Lemma 2.1. We have inclusions ν
1/2
k H1/2(Γk) ⊂ L2(Γk) and V ⊂W.

Proof. Since Γk has dimension 2, the Sobolev imbedding theorems show
that H1/2(Γk) ⊂ L4(Γk). Then the result follows from the Hölder inequal-
ity. �

We also define the set of admissible displacements K by

K = {v ∈ V : γ(vn) ≤ h a.e. in H1/2(Γ1)}.
This is a closed convex subset of V with 0 ∈ K. It determines the first
constraint in (2.6g); the remaining conditions are the complimentary con-
straints.

We seek a solution with p(t) ∈ H, q(t) ∈W, u(t) ∈ K for t > 0. Mul-
tiplying the fluid conservation equation (2.5a) by s ∈ H and integrating
give

(2.7a)

∫
Ω

(c ṗ s+ δ : ε(αu̇ + q)s) dx =

∫
Ω

F (t) s dx.

Next multiply the Darcy law (2.5b) by r ∈W, integrate the gradient term
using Stokes’ formula and use (2.6a), (2.6b), and (2.6e) to obtain

(2.7b)

∫
Ω

(Qq · r− p δ :ε(r)) dx+

∫
Γ0

(ν0n · q + P0)n · r dS

+

∫
Γ1

(ν1n · q + P1)n · r dS =

∫
Ω

g · r dx.

Finally, multiply the momentum equation (2.5c) by v−u with v ∈ K and
make use of the Stokes formula

∫
Ω (∇ ·σ) ·(v−u) dx+

∫
Ω σ : ε(v−u) dx =∫

∂Ω σ(n) ·(v−u) dS and the boundary conditions (2.6c), (2.6d), (2.6f) and
(2.6g) to get

(2.7c)

∫
Ω

(Eε(u) : ε(v − u)− α pδ :ε(v − u)) dx

+

∫
Γ0

P0(v − u) · n dS +

∫
Γ1

P1(v − u) · n dS ≥
∫

Ω

f · (v − u) dx .
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Define the functional P ∈W′ by

(2.8) P (r) ≡ rn(P0) + rn(P1) =

∫
Γ0

P0rn dS +

∫
Γ1

P1rn dS, r ∈W,

where the first equality is the definition and the second equality holds
for smoother rn. In summary, the weak formulation of the problem will
require

(
p(t),q(t),u(t)

)
∈ H ×W ×K for t > 0 such that

(2.9a)

∫
Ω

(c ṗs+ δ : ε(αu̇ + q)s) dx =

∫
Ω

F (t) s dx, s ∈ H,

(2.9b)

∫
Ω

(Qq · r− pδ :ε(r)) dx+

∫
Γ0

ν0qnrn dS +

∫
Γ1

ν1qnrn dS

=

∫
Ω

g · r dx− P (r), r ∈W,

(2.9c)

∫
Ω

(Eε(u) : ε(v − u)− α p δ :ε(v − u)) dx

≥
∫

Ω

f · (v − u) dx− P (v − u), v ∈ K,

and the initial condition(
c p+ ∇ · αu

)
(0) = b0 in Ω .(2.10)

We have shown that the equations (2.9a) and (2.5a) are equivalent in the
space L2(Ω). Also the equation (2.9b) implies (2.5b) in the space H−1(Ω),
so we get p ∈ H1(Ω), γp ∈ H1/2(∂Ω) and boundary conditions. Finally,
the equation (2.9c) implies (2.5c) in the space H−1(Ω), which gives us
∇ · σ ∈ L2(Ω), hence, σ(n) ∈ H−1/2(∂Ω) and boundary conditions. In
order to arrive at (2.9c), we made use of the boundary conditions (2.6c),
(2.6d), (2.6f), (2.6g). The variational inequality in (2.9c) is equivalent to
(2.5c) and γ′(σ(n)− α pn + P1n) ∈ −∂IK(u).

3. Mixed Variational Formulations

The weak formulation (2.9) is in the mixed variational form of a cou-
pled pair of saddle point problems [20, 29]. We shall construct operators in
Hilbert spaces to represent this problem as a single semilinear implicit evo-
lution equation for a corresponding pair of monotone operators in Hilbert
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space. Then it will follow from the theory for the corresponding Cauchy
problem that the initial-boundary-value problem for this mixed formula-
tion is well-posed in appropriate spaces.

We make use of the equations (2.9) to define the linear and continuous
operators A1 : W→W′, B1 : W→ H ′, and functional ϕ ∈W′ as

A1q(r) =

∫
Ω

Qq · r dx+

∫
Γ0

ν0qnrn dS +

∫
Γ1

ν1qnrn dS,

B1r(s) = −
∫

Ω

∇ · rs dx,

ϕ(r) =

∫
Ω

g · r dx− P (r),

the maximal monotone operator A2 : V → V′, the linear and continuous
operators B2 : V→ H ′, C : H → H ′, and functional ψ ∈ V′ by

A2(u)(v) =

∫
Ω

Eε(u) : ε(v) dx+ ∂IK(u)(v),

B2v(s) = −
∫

Ω

α∇ · vs dx, Cp(s) =

∫
Ω

cps dx,

ψ(v) =

∫
Ω

f · v dx− P (v).

Note that the constraint is part of the nonlinear multi-valued operator A2.
Then the weak problem (2.9) can be written in the mixed form

q(t) ∈W : A1q(t) + B′1p(t) = ϕ in W′,(3.11a)

u(t) ∈ V : A2(u(t)) + B′2p(t) 3 ψ in V′,(3.11b)

p(t) ∈ H : −B1q(t)− B2u̇(t) + Cṗ(t) = F (t) in H ′.(3.11c)

The system (3.11) consists of two standard mixed problems which are
coupled in (3.11c). The flux-pressure pair A1,B1 will be used to construct
a linear operator A and the displacement-pressure triple A2,B2, C will be
used to construct a second operator B. The pair A,B will be used to
express the system as a single implicit evolution equation for pressure in
the space H ′. The second operator contains the variational inequality and
consequently is nonlinear. In order to resolve the system, we first develop
elementary properties of the operators in the system (3.11). Then we
construct from these the corresponding pair of operators for the evolution
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equation. First we recall some range conditions on the operators B1 and
B2. In fact we will confirm that they both have full range.

Lemma 3.1. Rg(B1) = L2(Ω).

Proof. If F ∈ L2(Ω), then there exists a unique p ∈ H1(Ω) such that∫
Ω

∇p ·∇s dx+

∫
Γk

γ(p)γ(s) dS =

∫
Ω

Fs dx, ∀s ∈ H1(Ω).

Set q = ∇p. Since p ∈ H1(Ω), we have q = ∇p ∈ L2(Ω), and −∇ · q =
−∆p = F ∈ L2(Ω) which implies q ∈ L2

div(Ω). Moreover, by Stokes’
formula we have

qn(γ(s)) +

∫
Γ0∪Γ1

γ(p)γ(s) dS = 0, ∀s ∈ H1(Ω).

This gives qn = 0 on ΓS and qn = −γ(p) on Γ0 ∪ Γ1. So from Lemma 2.1

we obtain ν
1
2

k qn = −ν
1
2

k p ∈ ν
1
2

kH
1
2 (Γk) ⊂ L2(Γk). Hence q ∈ W and

B1q = F . �

Corollary 3.2. B′1 : H →W′ is bounding.

Lemma 3.3. Rg(B2) = L2(Ω).

Proof. First we show that B′2 is injective: if B′2s = 0, then ∇s = 0 which
gives s = c for a constant c. Now notice that for all v ∈ V we have
B′2c(v) = B2v(c) = −c

∫
Ω α∇ · v dx = −c

∫
Γ1∪Γ2

αvn dS = 0, which in turn

implies that c = 0. Hence Ker(B′2) = {0}.
Next we show that B2 is surjective. Since Ω is bounded, we have the

gradient estimate for s ∈ L2(Ω),

‖s‖L2 ≤ c(Ω)

(
|
∫

Ω

s dx|+ ‖∇s‖H−1
)
.(3.12)

For a proof see [57]. We can regard ∇s as the restriction of B′2s to H1
0(Ω),

i.e. α∇s = B′2s|H1
0(Ω). Note that H1

0(Ω) ⊂ V, and for v ∈ H1
0(Ω) we have

‖v‖V ≤ c1 ‖v‖H1
0(Ω). Then we get

α ‖∇s‖H−1 = sup
v∈H1

0

|B′2s(v)|
‖v‖H1

0

≤ c1 sup
v∈V

|B′2s(v)|
‖v‖V

= c1 ‖B′2s‖V′ .(3.13)

We claim that B′2 is bounding, i.e. there is a constant c̃ > 0 such that
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‖B′2s‖V′ ≥ c̃ ‖s‖L2 , ∀s ∈ L2(Ω).

If it is not the case that B′2 is bounding, then there exists a sequence
sk ∈ L2(Ω) with ‖sk‖L2 = 1 and s ∈ L2(Ω) such that sk ⇀ s, i.e. sk con-
verges to s weakly in L2, and ‖B′2sk‖V′ → 0. The weak convergence implies
that

∫
Ω sk dx→

∫
Ω s dx. Then using (3.12) and (3.13) we see that sk is a

Cauchy sequence, hence the convergence is strong, sk → s in L2(Ω) = H
and ‖s‖L2 = 1. Continuity of B′2 leads to B′2sk → B′2s = 0, but by injec-
tivity of B′2 it follows that s = 0, a contradiction. �

A Reduced Weak Problem. By means of a translation we can assume
without loss of generality that ϕ ≡ 0 in (3.11a). To see this, we use the
linear first standard mixed problem for flux and pressure in the system
(3.11).

Lemma 3.4. For ϕ ∈W′, there is a unique pair (qϕ, pϕ) ∈W×H such
that

A1qϕ + B′1pϕ = ϕ in W′,

−B1qϕ = 0 in H ′,

and the map ϕ 7→ (qϕ, pϕ) from W′ to W ×H is linear and continuous.

Proof. The operator A1 is symmetric, non-negative, and W-coercive on
KerB1. Since by Corollary 3.2 the operator B′1 is injective and bounding,
there exists a unique solution (qϕ, pϕ) of the above mixed problem [20]. �

Let u, q, p be a solution to (3.11). Then u, q− qϕ, p− pϕ is a solution
of (3.11) with ϕ = 0 and ψ replaced by ψ − B′2pϕ. The converse follows
similarly, so solvability of the reduced weak problem

q(t) ∈W : A1q(t) + B′1p(t) = 0 in W′,(3.14a)

u(t) ∈ V : A2(u(t)) + B′2p(t) 3 ψ in V′,(3.14b)

p(t) ∈ H : −B1q(t)− B2u̇(t) + Cṗ(t) = F (t) in H ′.(3.14c)

is equivalent to that of (3.11).
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The Fluid-Content Operator. Next we consider the complementary
nonlinear mixed problem for displacement and pressure,

A2(u) + B′2p 3 ψ in V′,(3.15a)

−B2u + Cp = F in H ′.(3.15b)

Since A2 is strongly monotone and V-coercive, it is invertible and the
inverse A−1

2 : V′ → V is monotone and Lipschitz. Define the nonlinear
operator B : H → H ′ for fluid content by

B(p) ≡ Cp− B2A2
−1(ψ − B′2p).

The system (3.15) is equivalent to the single equation

p ∈ H : B(p) = F in H ′.

We show that this operator is monotone. For a pair of solutions (u1, p1)
and (u2, p2) of (3.15) with corresponding F1 and F2, we have

A2(u1)−A2(u2) + B′2p1 − B′2p2 3 0,

−B2u1 + B2u2 + Cp1 − Cp2 = F1 − F2.

Evaluating the first equation at u1 − u2 and the second at p1 − p2, we
obtain

(A2(u1)−A2(u2))(u1 − u2) + (B′2p1 − B′2p2)(u1 − u2) 3 0,

−(B2u1 − B2u2)(p1 − p2) + (Cp1 − Cp2)(p1 − p2) = (F1 − F2)(p1 − p2).

Add these equations together and use the duality of B2 and B′2 to get

(A2(u1)−A2(u2))(u1 − u2) + (Cp1 − Cp2)(p1 − p2) 3 (F1 − F2)(p1 − p2).

Since A2 and C are monotone, this shows the following.

Lemma 3.5. The operator B is a monotone Lipschitz function from H
into H ′.

It follows that B is a maximal monotone relation on H×H ′. Without ad-
ditional assumptions, it is not necessarily injective, but B−1 is a maximal
monotone and possibly multi-valued relation.

Commonly c(x) ≥ c2 > 0, and then we are in the following situation.

Corollary 3.6. Assume C is H-coercive. For ψ ∈ V′ and F ∈ H ′, there
is a unique pair u ∈ V, p ∈ H such that (3.15) holds.
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Proof. Since A2 is strongly monotone and C is coercive, it follows from the
preceding monotonicity estimate that there exist constants c1 > 0, c2 > 0
such that

c1‖u1 − u2‖2
V + c2‖p1 − p2‖2

H ≤ (F1 − F2)(p1 − p2),

and this shows that B is strongly monotone.
Next we prove that B is coercive. Proceeding as above, (3.15) implies

A2(u)(u) + B′2p(u) 3 ψ(u),

−B2u(p) + Cp(p) = B(p)(p),

and adding these two equations yields

A2(u)(u) + Cp(p) 3 B(p)(p) +ψ(u).

Since A2 and C are coercive, we obtain

c0‖u‖2
V + c2‖p‖2

H ≤ B(p)(p) + ‖ψ‖ ‖u‖V ,

with positive constants c0 and c2, which in turn implies that

c2 ‖p‖2
H ≤ B(p)(p) +

‖ψ‖2

4c0
2
.

This inequality shows that

lim
‖p‖H→∞

‖p‖−1
H B(p)(p) = +∞.

Thus the operator B is coercive, and the Minty-Browder Theorem ([49],
Ch.II) asserts that for each F ∈ H ′, the equation B(p) = F has a unique
solution. Set u ≡ A−1

2 (ψ−B′2p) to obtain the corresponding solution u, p
of (3.15). �

Note that in the situation of Corollary 3.6 the matrix operator

(
A2 B′2
−B2 C

)
:

V ×H → V′ ×H ′ is strongly monotone, so the Minty-Browder Theorem
shows directly it is surjective. However, compressibility can be very small,
so any estimates obtained from c > 0 could be delicate.
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4. The Evolution Equation

The monotone Lipschitz continuous operator B : H → H ′ constructed
from the displacement-pressure system (3.15) is the first of the two that
will be used to represent the 3-field system (3.14) as a single nonlinear
evolution equation. For the second operator, we return to the flux-pressure
system. Define a linear function A : Dom(A)→ H ′ by p ∈ Dom(A) ⊂ H
with Ap = F if there exists a q ∈W for which the pair (q, p) ∈W ×H
is the unique solution to the system

A1q + B′1p = 0 in W′,(4.16a)

−B1q = F in H ′.(4.16b)

Since A1 is invertible on Ker(B1) , we have Rg(A) = Rg(B1) = H ′. The
uniqueness of p follows from Ker(B′1) = {0}. Now we can rewrite the
system (3.14) as the implicit nonlinear evolution equation

(4.17) p(t) ∈ Dom(A) ⊂ H : d
dtB(p(t))+Ap(t) = F (t) in H ′, 0 < t < T,

for fluid pressure. The first term represents the rate of increase of fluid
content in each local cell, and the second is the outward flux across its
boundary.

The 3-field Biot System. We shall show that the Cauchy problem is
well-posed in a superspace of H ′ (with a weaker norm) for a formally
weaker form of (4.17) determined by an extension of the operator A. This
will be a weak solution that takes values in the domain of a restriction of
the operator B. Note that A is not defined on all of H and that B need
not be injective, e.g., if C = 0. That is, A is an unbounded linear operator
and B is nonlinear and possibly degenerate, i.e., not injective.

Lemma 4.1. The operator A constructed from (4.16) is a symmetric
monotone bijection of Dom(A) ⊂ H onto H ′.

Proof. Let Ap = −B1q and As = −B1r. Using the facts that A1 is linear
continuous and symmetric, we have

Ap(s) = −B1q(s) = −B′1s(q) = A1r(q)

= A1q(r) = −B′1p(r) = −B1r(p) = As(p).

Since Q = κ−1 is positive-definite and ν0, ν1 ≥ 0, the operator A1 is
monotone, so Ap(p) = A1q(q) ≥ 0. Also B′1 is injective, and this gives
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the strict monotonicity of A. Notice that A is onto H ′, and from the
Poincaré inequality it follows that it is H-coercive, therefore the inverse
A−1 : H ′ → H exists and is continuous. �

First we extend A from Dom(A) to a larger Hilbert space Ha. Since
A is a closed linear bijection onto H ′, its domain Dom(A) is a Hilbert
space with the scalar-product (p, s)Dom(A) = (Ap,As)H ′. A continuous
scalar-product on Dom(A) is given by (p, s)Ha

≡ Ap(s), p, s ∈ Dom(A).
Define Ha to be the completion of Dom(A) with that scalar-product; Ha

is a Hilbert space in which Dom(A) is dense and continuously imbedded.
The dual space H ′a consists of those linear functionals in Dom(A)′ that are
continuous with the weaker norm of the Ha scalar-product. Then A has
a unique extension by continuity from Dom(A) to Ha, and this extension,
denoted also by A : Ha → H ′a, is the Riesz isomorphism of the Hilbert
space Ha onto its dual. Since A is coercive over H, we have the second of
the continuous inclusions Dom(A) ⊂ Ha ⊂ H of the three Hilbert spaces.
The identity (u, v)H ′a = v(A−1u) for the scalar product in H ′a will be crucial
below. Next restrict the function B : H → H ′ to Ha → B(Ha). Then
the inverse is a (possibly multi-valued) relation B−1 : B(Ha)→ Ha. Note
that B(Ha) ⊂ H ′ ⊂ H ′a and that the relation B−1 is monotone. These are
summarized in the following diagram.

H ′
B←− H⋃ ⋃

B(Ha)
B←− Ha

A−→ H ′a⋃ ⋃
Dom(A)

A−→ H ′

Finally, we define Dom(C) ≡ B(Ha) and set C ≡ AB−1 to obtain the
composition C : Dom(C)→ H ′a with domain Dom(C) ⊂ H ′ ⊂ H ′a.

Lemma 4.2. The relation C ⊂ H ′a ×H ′a is accretive and the range of the
sum C + I = (A + B)B−1 is H ′a.

Proof. Let uj ∈ C(vj) for j = 1, 2. That is, uj = Asj for some sj ∈
B−1(vj), so vj = B(sj). Then we have

(u1 − u2, v1 − v2)H ′a = (v1 − v2)(s1 − s2) = (B(s1)−B(s2))(s1 − s2) ≥ 0

since B is monotone, and this shows C is accretive on H ′a. Moreover,
we have u ∈ (C + I)(v) in H ′a if and only if there is an s ∈ Ha with
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u = As + B(s) and v = B(s). Since the range of B is equal to Dom(C),
it suffices to check that A + B maps Ha onto H ′a. But B is monotone and
Lipschitz, hence, maximal monotone, and A is the Riesz isomorphism for
Ha, so this follows from Minty’s Theorem. �

As a consequence of Lemma 4.2, the relation C is m-accretive, so its
negative is the generator of a nonlinear semigroup of contractions in the
Hilbert space H ′a. This implies that the initial-value problem for the cor-
responding abstract evolution equation is well-posed in H ′a [10, 21, 33, 49].

Theorem 4.3. Let C be m-accretive in the Hilbert space H ′a. For each
b ∈ Dom(C) and absolutely continuous F ∈ W 1,1(0, T ;H ′a), there is a
unique absolutely continuous solution w ∈ W 1,1(0, T ;H ′a) of the initial-
value problem

(4.18) ẇ(t) + C(w(t)) 3 F (t) in L1(0, T ;H ′a), w(0) = b.

This solution is Lipschitz continuous (w ∈ W 1,∞(0, T ;H ′a)) and w(t) ∈
Dom(C) for every t ∈ [0, T ].

Choose p(t) ≡ A−1(F (t) − ẇ(t)) ∈ B−1(w(t)). Then p(t) ∈ Ha for
almost every t ∈ [0, T ] and we have a weak solution of (4.17). Since B is
a function, B(p(t)) ∈ W 1,∞(0, T ;H ′a) and we have obtained the following
result.

Corollary 4.4. Assume the conditions of Section 2.2. Let the data F ∈
W 1,1(0, T ;H ′a) and b ∈ B(Ha) be given. Then the reduced weak problem
(3.14) is equivalent to (4.17). It has a unique weak solution
(4.19)

p ∈ L∞(0, T ;Ha) : d
dtB(p(t)) + Ap(t) = F (t) a.e. in L∞(0, T ;H ′a),

with B(p(0)) = b.

It remains to characterize the space Ha and the corresponding extension
of A. Each p ∈ Dom(A) with Ap = F ∈ H ′ satisfies

p ∈ H : Qq + ∇p = 0, ∇ · q = F in Ω,(4.20a)

qn = 0 on S, νjqn − p = 0 on Γj, j = 0, 1,(4.20b)
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for some q ∈W. Thus p ∈ H1(Ω) and

(4.21) Ap(p) =

∫
Ω

Qq · qdx+

∫
Γ0

ν0q
2
ndS +

∫
Γ1

ν1q
2
ndS

=

∫
Ω

κ∇p ·∇p dx+

∫
Γν0

ν−1
0 p2dS +

∫
Γν1

ν−1
1 p2dS < +∞.

Recall that Γνj denotes the support of νj, j = 0, 1.
Suppose Ap(p) = 0. Then qn = 0 and p = p0, a constant; then (4.20b)

shows p = 0, so Ap(p)1/2 is a norm. Completion of Dom(A) in this norm
yields the space

(4.22) Ha = {s ∈ H1(Ω) : γ(s) ∈ ν1/2
0 L2(Γ0)⊕ ν1/2

1 L2(Γ1)}.

Conversely, note that for every p ∈ H1(Ω) the boundary integrals in (4.21)
are finite by Lemma 2.1, so Ap(p) is equivalent to the H1(Ω) norm.

The extension A : Ha → H ′a is defined by

(4.23) Ap(s) =

∫
Ω

κ∇p ·∇s dx+

∫
Γν0

ν−1
0 ps dS+

∫
Γν1

ν−1
1 ps dS, p, s ∈ Ha.

This is the Riesz map of Ha with the norm determined by (4.21). It is the
classical minimization formulation of the elliptic equation −∇ · κ∇p = F
with Neumann and Robin boundary conditions (4.20b) for the reduced
weak formulation (3.14). Note that for s ∈ Ha we have γ(s) = 0 on
ΓkrΓνk. Also, the space H ′a has boundary values, unlike H ′, and these are
part of an equation in H ′a.

The 2-field Biot System. Finally we show directly that the space Ha

is the pressure-space for the weak formulation of the 2-field system (2.3).
Recall that Q−1 = κ. Define κj = ν−1

j on Γνj for j = 1, 2 so that

Ha = {s ∈ H1(Ω) : κ
1/2
j γ(s) ∈ L2(Γνj ) for j = 1, 2}.

For a stationary solution of equations (2.5a), (2.5b) and boundary condi-
tions (2.6a), (2.6b), (2.6e) we compute

(4.24)

∫
Ω

Fs dx =

∫
Ω

∇ · qs dx = −
∫

Ω

q ·∇s dx+

∫
∂Ω

qns dS

=

∫
Ω

κ(∇p− g)∇s dx+

∫
Γ0

κ0(p− P0)s dS +

∫
Γ1

κ1(p− P1)s dS
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for s ∈ V . After translating to obtain homogeneous data g = 0, P0 =
P1 = 0, we obtain the characterization (4.23) of A.

5. Summary: The Weak Solution

Theorem 5.1. Assume the conditions of Section 2.2 and define Ha by
(4.22). Let the data be given with F ∈ W 1,1(0, T ;H ′), b ∈ B(Ha). Then
the reduced weak problem (3.14) has a unique weak solution for which
u ∈ L∞(0, T ; V), p ∈ L∞(0, T ;Ha),

A2(u(t)) + B′2p(t) 3 ψ in L∞(0, T ; V′), and(5.25a)

Ap(t) + d
dt

(
Cp(t)− B2u(t)

)
= F (t) in L∞(0, T ;H ′a),(5.25b)

and Ap(t) is given by (4.23).

The weak solution obtained in Theorem 5.1 differs somewhat from the
weak problem (3.14). The pressure p(t) is obtained in the space Ha, so
it is smoother than the required p(t) ∈ H for (3.14). If additionally
p(t) ∈ Dom(A), then

A1q(t) + B′1p(t) = 0 in L∞(0, T ; W′),(5.26a)

A2(u(t)) + B′2p(t) 3 ψ in L∞(0, T ; V′), and(5.26b)

−B1q(t) + d
dt

(
Cp(t)− B2u(t)

)
= F (t) in L∞(0, T ;H ′a),(5.26c)

and the equation (5.26c) holds in the larger dual space H ′a.
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[30] R. P. Gilbert and A. Mikelić. Homogenizing the acoustic properties of the seabed. I. Nonlinear
Anal., 40(1-8, Ser. A: Theory Methods):185–212, 2000. Lakshmikantham’s legacy: a tribute on his
75th birthday.

[31] Boris Gurevich and Michael Schoenberg. Interface conditions for biot’s equations of poroelasticity.
J. Acoustical Society of America, 105(5):2585–2589, 1999.



24 ALIREZA HOSSEINKHAN AND RALPH E. SHOWALTER

[32] Weimin Han and Mircea Sofonea. Quasistatic contact problems in viscoelasticity and viscoplasticity,
volume 30 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Provi-
dence, RI; International Press, Somerville, MA, 2002.

[33] Tosio Kato. Nonlinear semigroups and evolution equations. J. Math. Soc. Japan, 19:508–520, 1967.
[34] N. Kikuchi and J. T. Oden. Contact problems in elasticity: a study of variational inequalities and

finite element methods, volume 8 of SIAM Studies in Applied Mathematics. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1988.
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