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Abstract--The classical Stefan free-boundary problem describes the conduction of heat through a 
medium in which a phase change occurs at a prescribed temperature. Here is considered the more 
general case in which the freezing temperature lies strictly below the melting temperature, so the 
entropy is given by a hysteresis functional which permits super-cooling or super-heating of the 
medium. The. model is developed and formulated as an evolution system in L ~, and well-posedness 
results are described. This model and its connection to the evolution equation are made possible by 
our representation of the hysteresis functional as an ordinary differential equation subject to a 
constraint. 

1. INTRODUCTION 

The objective here is to develop a model of a free-boundary problem of Stefan type in which 
the freezing and thawing occur at different temperatures. This comprises the Super-Stefan 
problem which permits the super-heating or super-cooling of a material. We shall also sketch 
the proof of weltl-posedness of the initial-boundary-value problem with resulting hysteresis 
memory effects distributed over the spatial region. That is, the previous history of the system 
contributes to the present value of the functional, and hence to the current evolution rate. 
Hysteresis effects also arise in the magnetization of a ferromagnetic material. Additional 
examples can be found in biology, chemistry, and economics. 

The method developed here entails coupling a semilinear parabolic equation with an 
ordinary differential equation that generates the hysteresis term in a rather clever way so as to 
preserve the monotone structure of the whole system and thereby permit the direct application 
of standard methods of convex analysis and monotone operator theory. Previous treatments of 
hysteresis nonlinearities have been achieved with formal operators which are inserted in 
problems for partial differential equations in an ad hoc manner. The well-posedness results are 
obtained for the stationary system which represents the resolvent of the evolution operator by 
combining methods of convex analysis with L 1 estimates for semilinear partial differential 
equations. The integral solution is then recovered by an application of the Crandall-Liggett 
theorem. 

2. T H E  S U P E R - S T E F A N  M O D E L  

We begin with a mathematical description of heat conduction through a medium in which a 
change of phase occurs in the vicinity of a given temperature. We develop the example of the 
melting and refreezing of water/ice in a porous medium, and the hysteresis effects result from 
the assumption that the melting and the freezing temperatures are different: the ice melts at a 
slightly positive temperature and freezing occurs after a slightly negative temperature is 
reached. Since this example is so important and has a substantial history (see Section 4), we 
shall develop it in some detail in the style of [1]. 

In order to specify our model of phase change with super-heating or super-cooling, we begin 
with the description of the relation between phase, energy, and temperature. Let a and b be 
given numbers with a < 0 < b. Begin with a unit volume of ice at temperature u < a and apply a 
uniform heat source of intensity F. The temperature increases according to the relation 
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e = c(u), where e -  Ft is the accumulated internal energy, until it reaches the tempera ture  
u = b > 0. Then the temperature  remains at u = b until L units of  additional heat have been 
added; L > 0 is the latent heat. During this period there is a fraction w of water  coexisting with 
the ice, and w increases at the constant rate F/L.  The water fraction w, 0 <- w - 1, is the phase 
variable. When all the ice has melted, w - - 1  and the tempera ture  u begins to rise again 
according to e = c(u) + L. If  the process is reversed by drawing heat out of the unit volume at a 

constant rate, F, the temperature  falls according to e = c(u) + L until it reaches u = a < 0, then 
w decreases at the rate F / L  until it reaches w = 0, and thereafter  the tempera ture  u falls with 

e = c(u). Note that the freezing took place at u = a and the melting at u = b. If a = b this is just 
the traditional Stefan problem, but above we permit  superheated ice and supercooled water. It 
is here that hysteresis occurs. Denote  by H( . )  the Heaviside graph: H ( u ) =  {0} if u < 0 ,  

H(0)  = [0, 1], and H(u) = {1} if u > 0. The relation between energy and tempera ture  is given by 
e ~ c(u) + LH(u - b) when u is increasing and by e ~ c(u) + LH(u  - a) when it is decreasing. 
The difference e - c(u) is just L times the simple relay: w ~ R(u)  means w = H(u - b) if u is 

increasing from below a, w ~ H(u - a) if u is decreasing from above b; also w remains constant 
for a < u < b, since there is no phase change until the threshold values are reached. 

We shall formulate a f ree-boundary problem which describes heat conduction through a 

domain G in Euclidean space R m subject to the constitutive assumptions above on the 
hysteresis relation between energy, phase, and temperature .  This will be called the Super- 
Stefan problem. Denote  the boundary of G by OG and set D = G × (0, oo). The tempera ture  at 

the point x E G and the time t > 0 is u(x, t) and the smooth monotone  functions c(u), k(u)  are 
given with c(O)=k(O)=O; their derivatives c'(u), k ' ( u )  denote the specific heat and 
conductivity, respectively, of ice-water  at tempera ture  u. The phase change f rom water  to ice 
occurs at u = a  < 0  and from ice to water  at u = b > 0 .  The space- t ime  region D is then 
separated into an always-ice region fl_ where u < a, an always-water region ~+ where u > b, 
and a region fl0 where a -< u -< b and in which the phase depends on it's preceding history. In 
the presence of a distributed source of intensity F(x, t), there may also arise regions f t ,  where 
u = a and Db where u = b consisting of a mixture of  ice and water. Such mushy regions may 

then persist into flo. However ,  we shall postpone mention of these additional history-dependent 
regions until after we have described the simpler case with no mush. 

Let w(x, t) be the fraction of water at (x, t) E fl, and note that according to our constitutive 
assumptions above we have w E R(U). The energy is given by e = c(u)+ Lw. Let S_ be the 
boundary of f~_ in f~ and S÷ the boundary of f~+ in fL The unit normal N = (N~ . . . . .  Nm, N,) 
on S_ U S+ is oriented out of f~_ and f~÷, and hence into ~ .  We shall denote by [g] the saltus 
or jump in values of the function g across the boundaries,  S_ and S÷, in the direction of N: for 
(x,t) ES_uS+ 

[g(x, t)] = lim {g((x, t) + hU) - g((x, t) - hU)}. 
h ~ O  + 

The strong form of the Super-Stefan problem is to find a pair of  functions u and w on f l  for 
which 

0 
~ t c ( u ) - A k ( u ) = O  in f l _ U ~ , U f l + ,  ( l a )  

w ~ R(u)  in fl, ( lb)  

[Vk(u)] .  (N, . . . .  , N,,,) = LN,[w] on S_ t.JS+, ( lc)  

u(x, O) = uo, x E G, (2a) 

w(x, O) = wo(x) e [0, 1], where a <- uo(x) <- b, (2b) 

u(s, t) = O, s ~ OG, t > 0. (3) 

For the moment  one should assume wo(x) is either identically zero or identically one; this is 
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only to avoid introducing a mushy region. The classical (possibly nonlinear) heat equation (la) 
determines the temperature where u ~ a  and u ~ b. The water fraction is given by the 
hysteresis functional ( lb)  which was described above, so we have w = 0 in ~_ ,  w = 1 in f~+, and 
w is either 0 or I in DO according to whether the temperature was last below a or above b, 
respectively. Let n be the unit vector in the direction (N~ . . . . .  Nm), and let V be the velocity of 
S_ or S÷ at time ,t in the direction of n. By dividing (lc) by (N 2 + -  • • + N2) t/2' we obtain 

[~nk(U)]+LV[w]=O on S_US+ 

which is equivalent to (lc). This means the difference in heat flux across the free boundary S+ 
determines the velocity V of that boundary by melting the fraction of ice 1 - w = - [w]  with 
latent heat L, and similarly the velocity of S_ is determined by the freezing of the fraction of 
water w = [w]. The Dirichlet boundary condition (3) is used here for simplicity, but any of the 
usual types can just as easily be attained. 

In order to obtain a weak formulation of the Super-Stefan problem, we consider a solution u, 
w of (1) for which u e H~(f~), u is smooth in each of f~_, Do, f L ,  and discontinuities in Vu drive 

cge 
the surfaces S_ and S+ according to (lc). We begin by computing ~ t -  Ak(u) in the sense 
of distributions on fL Thus, for ~ e C~(f~) we have 

(0e > fn - Ak(u), ~p -= {-(c(u)  + Lw)~, - k(u) A~}. 

Since k(u) belongs to H~(f~) we have 

fo {-(c(u) + + v,~}= f._{-c(u),~, + v~} Lw )q~, Vk(u).  Vk(u) .  

+ f {-(c(u) + Lw),p, + Vk(u) • V~.} 
) 

+ ~ {- (c(u)  + L)~, + Vk(u) • V~}. 
d e  t'l+ 

From Gauss' theorem we can write these three successive integrals in the respective forms 

fo (c(,,), - ak(u))  + fs {Vk(u) " (N, . . . . .  N~l - c(a-)Nt}~o, 

f ((c(u) + L w ) , -  Ak(u))~o - f {Vk (u ) .  (N, Nm)  - (c(a +) + Lw)Nt}~p 
} " IS  

- I_ {Vk(u)  • (N, . . . . .  Nm) - (c(b-) + Lw)N,}~o, 
a 5  + 

and 

fa (c(u), - + [ {Vk(u) • N,,,) - (c(b +) + L)N,}~o. 
f 

Ak(u))~ (iv, 
+ d S +  

By adding these and using the observations that w,  = 0 in DO and c(.) is continuous we obtain 

( ~ -  Ak(u), ~o> = fu_u~,uu+ (c(u), - Ak(u))~o + fs_us+ (-[Vk(u)] . (N, . . . . .  Nm) + L[w]N,)~o. 

Hence, it follows that ( la)  and (lc) are equivalent to 

O 
~t (c(u) + Lw) - Ak(u) = 0, 
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where (1) holds and w, u are appropriately smooth. 
Conversely, let a distributed source F e L'(f~) be given in addition to c(.), k(.), L, u0, wo, 

and the hystersis functional R as above. The generalized Super-Stefan problem is to find a pair 
u e L1(~), w e L~(f~) for which 

0 
(c(u) + Lw)  - Ak(u) = F in ~ ' ( f l ) ,  (4a) 

w ~ R(u) in f~, (4b) 

(2) holds, and k(u) ~ L2(0, T; H~(G)). This last condition implies (3) if k'(0) > 0. Assume we 
have a solution for which the corresponding sets f~_, D~, ~+,  f~,, and f~b are smoothly 
bounded, i.e. to which Gauss' theorem applies. Let S_ be the boundary between f~_ and f~,, 
and S÷ the boundary between g)÷ and f~h. Denote the boundary between f~, and ~ by So and 
the boundary between f~h and D~ by Sb. The normal N is directed out of f~_ and f~+ and 
directed into D~; this is consistent with the preceding discussion when I2, and fib are empty, and 
in that case S_ = S,, S+ = Sb. Assume u is smooth in each of f~_, ~ ,  f~+. Then from the 
calculations leading to (4) above, we obtain the following: 

0 
~ c ( u ) - A k ( u ) = F  in f2_UD~Uf~+, (5a) 

L w , = F  in floUf~b, (5b) 

w e R(u)  in f~, (5c) 

[Vk(u)] • (N~ . . . . .  N,,) : LN,[w] on S_ U So U Sh U S÷. (5d) 

Of course we have u = a in flo and u = b in f2h by definition, and these complement (5a). 
Likewise from (5c) we have w = 0 in fl_, w = 1 in f~+, and w, = 0 in ~ ,  and these complement 
(5b). According to (5d), the frozen region f~_ will not increase unless F > 0 in f~,, and a dual 

region f~+. A l s o -  ~ ~0~-~] > 0  on SoUSh, s o t h e  velocity direction statement holds for the melted 

there is determined by the difference in water fractions [w] across these boundaries. 
We close with some remarks on some modifications of the enthalpy functional (lb). The 

simple relay R(u) described above is an idealization. Specifically, during the phase change the 
temperature u does not likely remain exactly constant but increases at a very small rate. Thus it 
is reasonable to replace the Heaviside relation by a (single-valued) monotone function which 
closely approximates it. Conversely, if one could manage to force temperatures past either of 
the phase-change temperatures, the phase w, would not be expected to respond instantly, but 
only at a very high rate. We shall permit both of these modifications in our problem below, and 
it happens that we must require at least one of them in order to get a good theory by the 
simplest method. Another construction is required to recover the ideal situation that was 
originally described. 

3. THE P A R A B O L I C  HYSTERESIS PROBLEM 

Our objective here is to reduce the Super-Stefan problem to an evolution equation in Banach 
space for which there is a theory of well-posedness for the initial value problem and thereby to 
show that this problem is well-posed. For the sake of completeness we first give a brief 
description of this theory; the estimates necessary to apply this theory will also show that 
standard numerical schemes are applicable. This reduction will be achieved by showing that the 
simple relay hysteresis functional (4b) is duplicated by an ordinary differential equation with 
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convex constraint. Additional remarks on alternative models and related results are given in 
the final section. 

First we briefly review the theory of evolution equations in a Banach space X as it applies to 
our system below. A (possibly multi-valued) operator or relation C in X is a collection of 
related pairs [x, y] • X × X denoted by y E C(x); the domain D(C) is the set of all such x and 
the range Rg(C) consists of all such y. For such an operator C we shall consider the evolution 
equation 

x'(t) + C(x(t)) 3 F(t) in X. 

The Cauchy problem is to find a solution x(t) on the interval (0, T) for which x(0) = xo, where 
xo e D(C) and F:(0,  T ) ~ x  are given. 

The operator C is called accretive if for all y~ • C(Xl), Yz e C(x2) and e > 0  

Ilxl -x211 -< Ilxl - x 2  + e(yl - Y2)II. 

This is equivalent to requiring that (I + eC)-I be a non-expansive function on Rg(l + eC) for 
every e > 0. If, in addition, Rg(l + e C ) =  X for some (equivalently, for all )e > 0, then C is 
called m-accretive. For such an operator, one can approximate the derivative in the evolution 
equation by a backward-difference quotient of step size h > 0 and the function F(t) by the step 
function Fh(t) (= F~ for kh <- t < (k + 1)h) and get a unique solution {x~: 1 - k} of 

x~ - x~_, + C(x~) ~ F~, k = 1, 2 . . . . .  
h 

with x~ = xo. Since: C is m-accretive, this scheme is uniquely solved recursively to obtain x~ and, 
hence, the piecewise-constant approximate solution xh(t) (=x! l for kh <-t < (k + 1)h) of the 
Cauchy problem. The fundamental result is the following. 

C - L  THEOREM. Assume C is m-accretive, xo • D(C), F e L1([0, T], X)  and that F~'---~ F in 
Ll([0, T], X). Then Xh---> X(") uniformly as h---~O and x(.) e C([0, T], X). 

Thus x(-) is an obvious candidate for a solution of the Cauchy problem. It can be uniquely 
characterized as an integral solution. This rather technical characterization does not require any 
differentiability of the solution. However, if F is Lipschitz continuous and x0 E D(C), it is 
known that x is also Lipschitz continuous. For an introduction to the abstract Cauchy problem 
in Banach space and its applications to initial-boundary-value problems for partial differential 
equations, see [2]. For further details, refinements and perspective, see [3, 4]. 

Next we describe our representation of the hysteresis functional (4b) by means of an 
ordinary differential equation subject to a constraint. This will permit us to write the system (5) 
as an evolution equation in L ~. To do so we use the maximal monotone graph, sgn, defined by 
sgn(y) = {-1} i fy  <0 ,  sgn(0) = [ -1 ,  1], and sgn(y) = {1} i fy  >0.  To be precise, we shall use the 
inverse graph sgn-t obtained by reflection of the coordinates about the diagonal. Thus, the 
graph y • sgn-~(x) is equivalent to 

- l<_x<_l ,  

That is, we have exactly one of 

( 1 - x ) ( l  +x)y=O, and xy>-O. 

- l < x < l  and y=O, 

x = - I  and y-<0,  or 

x = l  and y>-0,  

and this shows why such graphs arise naturally in problems containing variational inequalities. 
We construct a hysteresis model from an ordinary differential equation as follows. Let a 

maximal monotone graph b(.) be given; our hysteresis model will be of the type generalized 



72 T . D .  LITTLE and R. E. SHOWALTER 

play described by horizontal translates of w • b(u). (The simple relay from Section 2 is 
obtained as a special case by choosing b = H.) Thus, we introduce a new variable, v, in order to 
represent the phase constraints: 

w e b ( v ) ,  u - l < _ v < _ u + l .  

Finally, we use the sgn -~ graph to realize these constraints. Let u(t) be a time-dependent input 
to this generalized play model, and let w(t) be the corresponding output or response. There is 
at each time a corresponding phase variable v(t) which is related to w(t)  and u(t) as above, and 
so it is required that w(t) be non-decreasing when v ( t )=  u ( t ) -  1, non-increasing when 
v(t) = u ( t ) +  1, and stationary ( w ' ( t ) = 0 )  in the interior region, u -  1 < v  < u  + 1. This is 
equivalent to requiring that w(t), v(t) satisfy 

w(t) • b(v(t)) ,  w'( t )  + sgn-l(v(t) - u(t)) ~ O. 

Thus we are led to ordinary differential equations of the form 

w(t) • b(v(t)),  w'( t)  + c(v(t) - u(t)) ~ 0 

with maximal monotone graphs b(.) and c(.) as models of hysteresis in which the output is the 
solution w(t) with input u(t). We explore below conditions on the pair of graphs for which an 
appropriate Cauchy problem is well-posed. 

In view of our development above of an ordinary differential equation as a hysteresis model, 
we shall consider the Cauchy problem for the system 

0 
~ a(u) - Au - c(v - u) ~ f (6a) 

0 
~ b ( v )  + c ( v -  u) ~ g (6b) 

with (2) and (3). Such a system results from (5) after a substitution for the strictly monotone 
k(u); we need only to take b = H, c = sgn -~ and set g---0. Under appropriate assumptions to 
be given below we can show that the dynamics of the system (6) is determined by a non- 
linear semigroup of contractions on the Banach space L~(G) × LI(G).  This semigroup is con- 
structed by the C-L Theorem above from an operator C for which the resolvent equation, 
(I + eC)([a, b]) 3 [f, g] with ~ > 0, takes the form 

a(u) - e Au -- ec(v -- u) 3 f (7a) 

b(v)  + ec(v - u) ~ g (7b) 

in the state space L~(G) x L I (G)  with u e H~(G), v e L2(G) when f and g are in L2(G). In 
order to motivate the necessary estimates we consider the special case of functions a(.), b(.), 
c(.). To get the variational form of this problem, multiply the equations by appropriate test 
functions ~ and ~ on G and integrate to obtain 

f c ( a ( u  )~ + e Vu . V~  + b(v)~b + ec(v - u )(~b - ~) ) dx = fc ( f~  + g~b ) dx. 

By choosing ~ = sgn(u), qJ = sgn(v) we formally obtain the stability estimate 

Ila(u)llL,tC~ + IIb(v)llL,~C)~ IlfllL'tC) + IlgllL'tC)" 
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By employing the corresponding argument to differences of solutions, we find that the map 
[f, g]--, [a(u), b(u)] given by (I + eC) -~ is a contradiction on Lt(G)  × L~(G). The proof of the 
following result is contained in [6]. 

L-S THEOREM. Assume a(.) and b(.)  are continuous monotone functions, a(O) = b(O) = O, 

a(t) dt >- kns 2 - k2, b(t) dt <- Kns 2 + K2, s • R 

for some k~ > O. Assume c(') is a maximal monotone graph whose antiderivative is quadratically 
lower-bounded. Then the dynamics o f  the system (6) is given by a nonlinear semigroup of  
contractions in Ln(G)× L1(G). That is, i f  f and g belong to Ll([0, T], LI(G)), and if  
ao, bo • LZ(G) with ao(x) ~ a(uo(x)), bo(x) ~ b(v(x))  at a.e. x ~ G for some pair Uo ~ H~(G) A 
H2(G), voe L2(G) for which Co(X) e C(Vo(X) - Uo(X)) at a.e. x ~ G for some Co E L2(G), 
then there is a unique generalized solution (= integral solution) o f  the system (6) with 
lim,_o a(u(t)) = ao and limt_o b(v(t))  = bo in L I(G). 

REMARK. Since b(.) is required to be a function, this Theorem does not apply to the original 
Super-Stefan problem with the Heaviside functional. However it does work for the more 
physically likely case where b(.) is a monotone function approximating the Heaviside graph. 
Also, we obtain essentially the same results as in the Theorem but with (multi-valued) maximal 
monotone graphs a(.) and b(.) if we require that c(.) be a function. If we choose c(.) to be a 
monotone function approximating the sgn -~ graph, for example, the Yosida approximation 
(sgn + el ) -  ~ with e > 0, then we obtain a dynamic hysteresis model which is a rate-dependent 
approximation to the hysteresis functional (lb). (See [5].) Each of these two modifications 
should be regarded as a regularization of the Super-Stefan problem. By an averaging 
construction due to Preisach, one can obtain the original form of the problem as well as a very 
general class of hysteresis models. See [6]. 

4. REFERENCES AND COMMENTS 

The Super-Stefan problem provides an example of a simple but basic form of hysteresis in 
which the output (phase) depends not only on the current value of the input (temperature) but 
on the history of the input. For an excellent well-motivated introduction to this topic, see the 
monograph [5]. Hysteresis is a very common and general concept, and one should consult the 
recent survey [7] for a concise description of recent results on the development and application 
of mathematical models of hysteresis. Due to the complex description of the operators 
traditionally used to represent hysteresis [8], their addition to systems of differential equations 
has led to substantial technical problems for the development of a good theory. We have shown 
above that it is possible to model some forms of hysteresis in a fashion that is strikingly 
compatible with standard methods for differential equations. 

The model problem of a parabolic diffusion equation coupled to hysteresis, which we 
introduce above as the system (6), has been studied extensively by A. Visintin. In the case of a 
linear equation he has proved existence by backward-difference discretization and compactness 
methods applied to the monotone steps that describe the discretization. In [9] is covered the 
(regularized) case without jumps in the defining functions of the hysteresis model, and this is 
extended in [10] to the case with jumps. The (nondegenerate) semilinear case with a general 
Preisach hysteresis is covered in [11]. The uniqueness of a solution is established in [12]. 

The device of representing hysteresis by (systems of) ordinary differential equations with 
constraints is certainly not new, but the special form appearing in (6) was developed in [13] 
based on the idea in the earlier work [14]. The extension to (possibly degenerate) semilinear 
equations with rather general Preisach hysteresis models is given in [6] as an application of 
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evolution equations in general Banach space (as in Section 3). A related construction is 
recently described in [15] with corresponding results announced to appear; the distinction there 
is that the coupling function there is specified as a function of two variables instead of a 
function of the difference of the variables. 

Systems of the general form of (6) appear in many other contexts in which (6b) is frequently 
a local storage or capacity in immobile (nondiffusive) sites. A similar quasilinear system in 
which all three of the monotone functions a ( ) ,  b ( ) ,  and c( ) have power growth rates was 
developed in [16]. The device used there to prove regularity of solutions, i.e. to show the 
difference scheme also converges in a dual Sobolev space, could be used to get properties of 
solutions here. Also the technique of approximating the generalized solutions by smooth 
solutions of a corresponding problem with regularized functions is applicable here. See [17] and 
[18] for additional related systems. For control of Stefan problems by hysteresis functionals, see 
[19] and [20]. 

Finally we would like to mention that the term 'super-cooled' is used in other contexts, 
especially in variations on the classical Stefan problem, where it has a different meaning from 
what is given here and is not directly related to hysteresis. For example, in the classical strong 
formulation of the Stefan problem in which the phase change takes place at u = 0, in one 
spatial dimension where the free boundary is given by an explicit function, one can study the 
properties of solutions for which the initial temperature in the water phase is nonnegative and 
not identically zero. Then the global existence, finite time extinction, or blow-up of solutions is 
determined by an explicit energy functional [21]. Other than the few references cited above, we 
could not find explicit models of heat conduction with hysteresis of the type presented here. On 
the other hand, there is a substantial quantity of literature on the representation of hysteresis in 
the literature of engineering, as well as that of physics and mathematics, and some of this can 
be found and compared in [7] and [5]. 

Acknowledgements--The second author would like to thank Karl-Heinz Hoffman for introducing him to the 
remarkable Preisach representation of hysteresis. This material is based upon work supported by a grant from the 
National Science Foundation. 
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