
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Math. Meth. Appl. Sci. 2004; 27:2131–2151
Published online 13 July 2004 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/mma.541
MOS subject classi�cation: 74 F 10; 74C 05; 35K 90; 35K 65

Di�usion in poro-plastic media

R. E. Showalter1;∗;† and U. Stefanelli2

1Department of Mathematics; Oregon State University; Corvallis; OR 97331; U.S.A.
2Istituto di Matematica Applicata e Tecnologie Informatiche-CNR; v. Ferrata; 1; I-27100 Pavia; Italy

Communicated by X. Wang

SUMMARY

A model is developed for the �ow of a slightly compressible �uid through a saturated inelastic porous
medium. The initial-boundary-value problem is a system that consists of the di�usion equation for
the �uid coupled to the momentum equation for the porous solid together with a constitutive law
which includes a possibly hysteretic relation of elasto-visco-plastic type. The variational form of this
problem in Hilbert space is a non-linear evolution equation for which the existence and uniqueness of a
global strong solution is proved by means of monotonicity methods. Various degenerate situations are
permitted, such as incompressible �uid, negligible porosity, or a quasi-static momentum equation. The
essential su�cient conditions for the well-posedness of the system consist of an ellipticity condition on
the term for di�usion of �uid and either a viscous or a hardening assumption in the constitutive relation
for the porous solid. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: poromechanics; non-linear di�usion; elastic–plastic porous medium; monotone operators;
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1. INTRODUCTION

1.1. The model

The present analysis is concerned with the modelling of the di�usion of a slightly compressible
�uid through a saturated deforming porous medium. The simplest example of our model
describes the evolution of the �uid pressure scalar �eld p(x; t), the solid displacement vector
�eld u(x; t), and the e�ective stress tensor �eld �(x; t) satisfying the coupled system of partial
di�erential and functional equations

@
@t
(c0p+ �∇· u)− ∇· k(∇p)= c1=20 h0 (1a)
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�
@2

@t2
u − ∇�∗ @

@t
(∇· u)− ∇· �+ �∇p=�1=2g0 (1b)

�=H(�(u)) (1c)

in the cylindrical domain �× (0; T ), where � is a non-empty bounded and open set in R3 with
smooth boundary �≡ @�, and (0; T ) is the time interval of interest. Also, h0 : �× (0; T )−→R
and g0 : �× (0; T )−→R3 are suitably given functions. The system consists of the coupling of
a di�usion equation for the pressure with the conservation of momentum and a constitutive
relation for the motion of the medium, respectively. The constitutive relation (1c) is described
at length below. It involves the stress � and the small strain tensor �(u), namely, the symmetric
part of the derivative of displacement,

�(u)ij ≡ (@jui + @iuj)=2 for i; j=1; 2; 3

The coe�cient c0(x)¿0 is related to the compressibility of the �uid as well as the porosity
of the medium at x∈�. It is a measure of the amount of �uid which can be forced into the
medium by a unit pressure increment with constant volume. Similarly, the coe�cient k¿0
involves the viscosity of the �uid and the permeability of the medium as a measure of the
Darcy �ow corresponding to a unit pressure gradient. The parameter �¿0 accounts for the
mechanical coupling of the �uid pressure and the porous solid. Speci�cally, the term �∇·u(x; t)
represents the additional �uid content due to the dilation of the structure, and �∇p(x; t) is the
additional stress within the structure due to the �uid pressure. The coe�cient �(x)¿0 is the
local density of the porous medium, and �∗¿0 is a physical parameter arising in connection
with secondary consolidation e�ects (see below).
System (1) has to be complemented with suitable boundary and initial conditions. To this

end let us introduce a pair of partitions of the boundary � into complementary sets {�d ;�f}
and {�c;�t}. We shall assume that �c has strictly positive surface measure. Moreover, set
�s ≡�t ∩�f and let the measurable function � : �s −→ [0; 1] be prescribed on this set. We seek
a solution of (1) that satis�es the boundary conditions

p=0 on �d (2a)

k(∇p) · n − ��
@
@t
(u · n) = 0 on �f (2b)

u= 0 on �c (2c)

�∗ @
@t
(∇· u)n+ �n − �(1− �)pn= 0 on �t (2d)

Here n denotes the unit outward normal vector to �, and (�n)i=�ijnj is the corresponding
normal stress.‡ We brie�y comment on these boundary conditions. First of all, the �uid is
drained on the portion �d, and the medium is clamped along �c. The relations (2b) and (2d)
are constraints on �uid �ux and traction, respectively. On the set �s, where neither p nor u is

‡The convention of summation over repeated indices is assumed.

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:2131–2151



DIFFUSION IN PORO-PLASTIC MEDIA 2133

prescribed, the function � comes into play. This function speci�es the fraction of the pores of
the medium that are exposed along �s. Indeed, for these pores, the motion of the solid adds
their contents to the �uid �ux through the term �@=@t(u ·n) in (2b). In the remaining portion,
the sealed pores, the hydraulic pressure contributes to the total stress within the structure, and
this is the origin of the normal pressure term (1− �)pn in (2d). Finally, we shall require the
solution to satisfy the initial conditions

c0p(·; 0) = c0p0(·) on � (3a)

u(·; 0) = u0(·); �ut(·; 0)=�v0(·) on � (3b)

where p0; u0, and v0 are suitably given functions.
The special linear case of the �uid mass conservation (1a) with Darcy’s law for laminar �ow

combined with the momentum balance equation (1b) with Hooke’s law for elastic deformation
comprises the classical Biot di�usion-deformation model of linear poroelasticity. This is based
on the concept of e�ective stress due to von Terzaghi [44]. For the mathematical theory of this
initial-boundary-value problem for the fully dynamic case of (1) with �¿0 in the context
of thermoelasticity, see the fundamental work of Dafermos [13]. Further developments are
presented in the exhaustive and complementary summaries of Carleson [8] and Kupradze
[23]. In the context of strongly elliptic systems, this system was developed by Fichera [16].
There are rather few references to be found for basic theory of even the simplest linear
problem for the coupled quasi-static case of (1) with �=0. Among these is the treatment in
one spatial dimension in Day [14]. For applications to poroelasticity, see Biot [4–6], Rice and
Cleary [30], Zienkiewicz et al. [48]. Mathematical issues of model development and well-
posedness for the elastic and quasi-static case were �rst studied in the fundamental work of
Auriault and Sanchez-Palencia [2]. This work led to a non-isotropic form of the Biot di�usion–
deformation system by homogenization, and they established existence of a unique strong
solution. See also Burridge–Keller [7] for modelling issues. In the papers of Fichera [16] and
�Zeni�sek [46] a weak solution is obtained. The existence, uniqueness, and regularity theory
for the quasi-static Biot system together with extensions to include the possibility of viscous
terms arising from secondary consolidation (see Murad-Cushman [29]) and the introduction of
appropriate boundary conditions at both closed and drained interfaces were given in Showalter
[36]. Extensions to the Barenblatt–Biot double-di�usion deformation model were developed
in Showalter–Momken [38]. The model development and proof of existence of a solution
with both elastic deformation and partial-saturation were given in Showalter–Su [40,41]. See
Reference [37] for a summary of these and additional works, and see Charlez [10], Chen et al.
[11], Coussy [12], Huyakorn-Pinder [19], Lewis-Sukirman [24], Minko� et al. [27], Mourits-
Settari [28], Selvadurai [34], and Zienkiewicz et al. [47] for issues of numerical simulation
and applications to geomechanics.

1.2. The plan

The objective in the following is to establish a mathematical theory of well-posedness for a
mixed variational formulation of a substantial generalization of the system (1) with boundary
conditions (2) and initial conditions (3). The constitutive relation will include the linear
model of poroelasticity as well as a wide class of material deformation small strain models

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:2131–2151



2134 R. E. SHOWALTER AND U. STEFANELLI

resulting from a parallel combination of a family of elasto-visco-plastic elements. In particular,
our model includes Prandtl–Ihhlinski�� hysteresis relations of stop-type. Examples of typical
deformation models are described in the following subsection. These include very general
rheological materials made up of the parallel combination of elementary components of various
types, elastic, viscous, and plastic, with combinations of kinematic and isotropic hardening.
Such a construction may require the introduction of internal variables.
Let us emphasize from the very beginning the very extensive variety of models included

in (1). Moreover, this analysis permits any of the parameters c0(·); �(·) and �∗ to vanish!
Speci�cally, we include in our discussion any combination of the models for quasi-static
motion, �=0, the cases of incompressible �uid or solid, c0 = 0, and the uncoupled system,
�=0. In addition, we shall include in our analysis the quasilinear cases that result from
a non-linear permeability k(·) or from a non-linear and degenerate dissipation �∗(·) in the
di�usion or momentum equations, respectively.
In Section 2 we construct the operators of deformation, di�usion, dissipation, and the mixed

coupling terms that will appear in our generalized system. We also address the measurabil-
ity issues concerning the family of maximal monotone operators in the constitutive rela-
tion. In Section 3 we shall prove the existence and uniqueness of a strong solution of the
initial-boundary-value problem for this non-linear and degenerate system without any coercive-
type assumptions on the dissipation in (1b). Rather, the essential assumptions are restricted
to the di�usion term in (1a) and the constitutive relation (1c). The coercivity assumption on
the di�usion operator is standard, and a useful su�cient (hardening) condition is given for
the coercivity assumption on the constitutive relation.

1.3. The constitutive relation, I

A variety of examples will be given to illustrate the material models that are included in
our development, and these include cases of mixed elasto-visco-plastic type with combined
kinematic and isotropic hardening and multiple yield surfaces. We assume the material re-
sponse in the porous solid is determined by a family of such classical models of small-strain
elasto-plasticity with hardening. The theory of each of the components is rather completely
developed in solid mechanics, and they have a well established mathematical basis in convex
analysis. Here we exploit the dual formulation which is the more common approach for the
development of both the mathematical analysis and computational aspects of elasto-plasticity.
In order to describe these, we denote hereafter by � the space of symmetric second-order ten-
sors. The �rst and simplest example of the constitutive law (1c) is the classical case of linear
elasticity, i.e. the generalized Hooke’s law, M�= �, in which the positive-de�nite and sym-
metric fourth-order tensor M is the compliance of the medium. Since only the time derivative
of this relation will appear below, it will relate only the variations of the stress and strain.
More generally, and to introduce a second class of examples, we mention the visco-elastic
model of fading memory type in the form of an implicit evolution equation§

M�̇(t) + L(�(t))= �̇(t); �(0)=�0

§The superscript dot will be used for the derivative with respect to time.
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in which the dissipation L(·) is possibly non-linear and multi-valued as well as degenerate.
Then the constitutive relation (1c) corresponds to the dependence of the stress �(·) on the
strain rate �̇(·).
We shall include rather general constitutive relations of hysteresis type in which the relation

H(·) will account for some possibly rate-independent memory e�ects. Such an example is the
classic Prandtl–Reuss elastic perfectly plastic model, which we brie�y recall from Duvaut–
Lions [15]. Assume we are given a non-empty, convex and closed subset K ⊂� of admissible
stresses, which determines the yield criterion. Then the stress–strain relationship is given by
the �ow rule

M�̇(t) + @IK(�(t))� �̇(t); �(0)=�0 ∈K (4)

Here the multi-valued operator @IK : �−→ 2� corresponds to a variational inequality: the
relation �∈ @IK(�) is characterized by

�∈K and �ij(! − �)ij60; !∈K

This means that � vanishes if � is in the interior of K , and that � belongs to the normal cone
when � is on the boundary of K . (This corresponds to the strain rate of a rigid perfectly
plastic material.) Thus, the �ow rule (4) is formally equivalent to the addition of strain rates
corresponding to an elastic component and a perfectly plastic component arranged in series.
We can combine the preceding examples to obtain a model with kinematic hardening.

Decompose the stress � into the back stress associated with the translation of the yield
surface in stress space and a plastic component by

�=�b + �p

where �b satis�es M b�b = � and �p is the solution of the �ow rule (4). This is formally
equivalent to the addition of stresses due to an elastic component and an elastic perfectly
plastic component arranged in parallel; each is independently determined by the strain.
In order to construct a model of isotropic hardening, we introduce a parameter �∈R

to represent an internal force associated with the size of the (expanding) set of admissible
stresses. Thus, let K be a non-empty, convex, and closed subset of the product space �×R,
and let the pair �p; � be the solution of the system[

M�̇p(t)

�̇(t)

]
+ @IK

([
�p(t)

�(t)

])
�
[
�̇(t)

0

]
;

[
�p(0)

�(0)

]
=


 �0p

�0


 ∈K

The relation �p =H(�) corresponds to a model of isotropic hardening, and for each �∈R,
the set of admissible stresses is given by the projection K(�)= {�∈�: [�; �]∈K}. Note that
both the input to and the output from this system are only through the �rst component; the
second component is a hidden variable. Similar constructions can be used to represent certain
memory functionals of visco-elasticity.
This is a fundamental model, since each of the preceding examples can be obtained as

a special case of parallel sums of this type. For example, if the convex set is a product
K=K ×R, then the system decouples to the elastic perfectly plastic �ow rule (4) for the
component K , and if additionally we take K =�, then @IK =0 and we have a purely elas-
tic component. Moreover, we can combine these into a model for combined kinematic and
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2136 R. E. SHOWALTER AND U. STEFANELLI

isotropic hardening. For such a model, the stress–strain relationship �=H(�) is determined
by �=�b + �p, where the stress components satisfy the system



M b�̇b(t)

M p�̇p(t)

�̇(t)


+




0

@IK

([
�p(t)

�(t)

])

�



�̇(t)

�̇(t)

0


 ;



�b(0)

�p(0)

�(0)


 =



�0b

�0p

�0


 ∈�×K

in which M b; M p are positive-de�nite fourth-order symmetric tensors. In this example, the
input and the output for the system involve only the �rst and second components. That is,
the observation and control are in the �rst two components, and the third component is the
hidden variable.
More generally, we shall permit the operator H(·) to include all of these examples in

the Prandtl–Ihhlinski�� model of elasto-plasticity with multi-yield surfaces and kinematic or
isotropic strain hardening. In order to specify such a model, assume we are given a measure
space (Y;P; 	), where 	 is a �nite Borel measure, a family of fourth-order symmetric positive-
de�nite tensors, M y, and a family of possibly multi-valued and non-linear operators, Ly,
on the space �×R, both families parameterized¶ by y∈Y . Then, for any tensor-valued
�(·)∈H 1(0; T ; �) the corresponding e�ective stress �(·)∈H 1(0; T ; �) is the cumulative output
from the family of components de�ned as

�(t)≡
∫
Y
�y(t) d	

where

[M y�̇y(t)

�̇y(t)

]
+ Ly

([
�y(t)

�y(t)

])
�
[
�̇(t)

0

]
;

[
�y(0)

�y(0)

]
=


 �0y

�0y


 a:e: y∈Y (5)

with �y(0); �y(0)∈Dom(Ly) for almost every y∈Y . If Ly is a diagonal operator, the yth
equation decouples, and there is no e�ect from the hidden variable. If Ly=0 then the yth-
component is elastic, and visco-elastic components are realized as indicated by a bounded dis-
sipation function Ly. Plastic components are obtained from a collection of non-empty closed
convex sets Ky ⊂�×R by setting Ly= @IK y , and then system (5) contains a family of vari-
ational evolution inequalities. The unknowns in this formulation are the pairs [�y(t); �y(t)]
which are called generalized stress. We refer the reader to the references below for an ex-
tensive development of such models. We just emphasize here that our hypotheses will imply
that the system of evolution equations in (5) has indeed a unique solution, and thus the map
�=H(�) is actually well de�ned.
There is a substantial mathematical literature concerning the visco-plastic deformation prob-

lem for the momentum equation (1b) (with �=0) combined with the constitutive relation (1c).
This covers both the dynamic and the quasistatic cases, both dependent and independent rates.

¶Measurability issues for these operators will be addressed in Section 2.4.
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The existence and uniqueness of the weak solution for the fundamental Prandtl–Reuss plas-
ticity model (4) with a single yield surface was given by Duvaut–Lions [15]. For a weak
solution, the strain-rate is not in L2 but resides in a larger dual space. A strong solution
is obtained when the subgradient is replaced by a bounded dissipation operator, such as in
models of viscoelasticity. The extension to some general Prandtl–Ihhlinski	
 models (5) with
multi-yield surfaces was obtained by Visintin [45]. Here we extend these to allow for hidden
variables. An alternative approach is taken in the work of Krej�c�
 [22], where a large class
of such general multiple component models is considered. There the dissipation properties of
the hysteresis functional are developed and exploited.
The quasi-static case, in which the momentum equation (1b) is replaced by the corre-

sponding static equation with �=0, was developed in Johnson [20,21]. There a regularizing
e�ect due to work-hardening of the material appeared, and both weak and strong forms of
solutions were obtained. Showalter–Shi [39] obtained three classes of solutions for the case
of one spatial dimension. The smoother strong solution with strain rate in L2 resulted from
a boundedness assumption on a non-trivial measurable subset of the subgradients in system
(1c), and this assumption arose from a kinematic work hardening component in the stress or
from the presence of viscosity. This shows that each of these characteristics has a regularizing
e�ect. From an additional stability condition relating the convex sets of the plasticity model
to the divergence operator, there was obtained a regular solution for which each component
of � is smooth. For a selection of results, see Li–Bab�uska [25], Bab�uska–Shi [3], Suquet [43],
Han–Reddy [17], Simo–Hughes [42], and their references. See Reference [39] for elementary
examples.

1.4. Preliminary material

We brie�y describe some techniques of convex analysis to be used to construct appropriate
operators below. For details, see [17] and [35]. A (possibly multi-valued) operator or re-
lation A from a real Hilbert space H to its dual space H ′ is a collection of related pairs
[x; y]∈H ×H ′ denoted by y∈A(x); the domain Dom(A) is the set of all such x, and the
range Rg(A) consists of all such y. The operator A is called monotone if for all y1 ∈A(x1),
y2 ∈A(x2), we have 〈y1−y2; x1−x2〉¿0. (We use 〈·; ·〉 to denote any duality pairing of func-
tionals with vectors.) If we denote the Riesz map of H onto H ′ by R, then the monotonicity
of A is equivalent to requiring that (R+ hA)−1 be a contraction on Rg(R+ hA) for every
h¿0. If, additionally, Rg(R + hA)=H ′ for some (equivalently, for all) h¿0, then we say
A is maximal monotone.
Let the function ’ :H → (−∞;+∞] be convex, proper, and lower-semi-continuous. Then

the functional f∈H ′ is a subgradient of ’ at u∈H if

u∈Dom(’) and 〈f; v − u〉6’(v)− ’(u); v∈H

where Dom(’) stands for the e�ective domain. The set of all subgradients of ’ at u is
denoted by @’(u): The subgradient is a generalized notion of the derivative, comparable to
a directional derivative. We regard @’ as a multi-valued operator from H to H ′; it is easily
shown to be maximal monotone.
If K is a closed, convex, non-empty subset of H , then the indicator function IK(·) of K ,

de�ned by IK(x)=0 if x∈K and IK(x)= +∞ otherwise, is convex, proper, and lower-semi-
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2138 R. E. SHOWALTER AND U. STEFANELLI

continuous. Its subgradient is characterized by a variational inequality: f∈ @IK(x) means

f∈H ′; x∈K and 〈f; y − x〉60; y∈K

The following fundamental existence theorem for degenerate semilinear evolution equations
will be used below. See References [35, Theorem IV.6.1, 9, Section 3.6, 18].

Theorem 1.1
Let the linear, symmetric and monotone operator B be given from the real vector space E to
its algebraic dual E∗, and let E′

b be the Hilbert space which is the dual of E with the seminorm

|x|b= 〈Bx; x〉1=2; x∈ E
Let A⊂ E× E′

b be a relation with domain Dom(A)= {x∈ E: A(x) �= ∅}.
(a) Assume A is monotone. If wj is a solution of

d
dt
(Bw(t)) +A(w(t))�f(t); 0¡t¡T (6)

with data fj : [0; T ]→ E′
b for j=1; 2, then it follows that

|w1(t)− w2(t)|b6|w1(0)− w2(0)|b +
∫ t

0
‖f1(s)− f2(s)‖E′

b
ds; 06t6T

If f1 =f2 and if Bw1(0)=Bw2(0), then Bw1(t)=Bw2(t) for all 06t6T . Furthermore,
if B+A is strictly monotone, then there is at most one solution of the Cauchy problem
for (6).

(b) Assume A is monotone and Rg(B+A)= E′
b. Then, for each w0 ∈Dom(A) and each

f∈W 1;1(0; T ; E′
b), there is a solution w of (6) with

Bw∈W 1;∞(0; T ; E′
b); w(t)∈Dom(A) for all t ∈ [0; T ]; and Bw(0)=Bw0

(c) Let A be the subdi�erential, @’, of a convex lower-semi-continuous function ’ : Eb →
[0;+∞] with ’(0)=0. Then for each w0 in the Eb-closure of Dom(’) and each f∈L2

(0; T ; E′
b) there is a solution w of (6) with

’ ◦ w∈L1(0; T );
√
t
d
dt

Bw(·)∈L2(0; T ; E′
b); w(t)∈Dom(A); a:e: t ∈ [0; T ]

and Bw(0)=Bw0. If in addition w0 ∈Dom(’) then

’ ◦ w∈L∞(0; T );
d
dt

Bw∈L2(0; T ; E′
b)

Part (c) will imply that the system (5) is well-posed and, hence, the constitutive relation
(1c) is well-de�ned. Part (b) will be used to show that the initial-boundary-value problem for
the full non-linear system is well-posed.

2. VARIATIONAL FORMULATION

We shall start by �xing some notation. As usual we will use bold letters to indicate vectors in
R3 and Greek letters to indicate (symmetric second-order) tensors in �. Let � be a smoothly

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:2131–2151



DIFFUSION IN PORO-PLASTIC MEDIA 2139

bounded region in R3, and denote its boundary by �= @�. We will make use of the Sobolev
spaces L2(�); H 1(�); H 1

0 (�), etc., and the reader is referred to Adams [1], Lions-Magenes
[26], or Showalter [35] for de�nitions and properties. We shall denote the corresponding
spaces of vector-valued functions by L2(�)= (L2(�))3;H1(�)≡ (H 1(�))3, etc. In particular,
we will use the notation (·; ·) for the scalar product in any of the L2-type spaces and 〈·; ·〉
for the duality pairing on a space and its dual, possibly including subscripts. Finally, we will
indicate topological dual with a prime.

2.1. The di�usion

For the representation of pore �uid pressure, let us introduce the Hilbert space

V ≡ {p∈H 1(�): p=0 on �d}
For the construction of the classical linear di�usion operator appearing in the pressure equation
(1a), let the coe�cient function k(·)∈L∞(�) be given with k(x)¿k0¿0, and de�ne the
symmetric monotone linear operator A :V −→V ′ by

〈Ap; q〉 ≡
∫
�
k(x)∇p(x) · ∇q(x) dx; p; q∈V

The formal part is de�ned to be the restriction of A(p) to C∞
0 (�), and it is given in H−1(�)

by the elliptic operator, A0p=−@j(k@jp) (in the distributional sense) for p∈V . If addi-
tionally A0p∈L2(�), and if k(·) is smooth, then the elliptic regularity theory implies that
p∈V ∩H 2(�), and then Stokes’ theorem yields

〈Ap; q〉=(A0p; q)L2(�) + (k@p=@n; q)L2(�f ); q∈V

This provides the decoupling of A into a formal part on � and a boundary operator corre-
sponding to �ux on �f , and we denote this representation by

A(p)= [A0(p); k@p=@n]∈L2(�)×L2(�f )

More generally, we can expect a non-linear Darcy law which gives rise to a quasi-linear
operator de�ned as follows. Assume given the functions Aj : �×Rn →R for j=1; : : : ; n which
satisfy

(i) Aj(x; 
) is measurable in x for all 
 and continuous in 
 for a.e. x∈�,
(ii) |Aj(x; 
)|6C‖
‖Rn + K(x); 
∈Rn, for a.e. x∈�,
(iii) (Aj(x; 
)− Aj(x; �))(
j − �j)¿0; 
; �∈Rn, for a.e. x∈�,

where K(·)∈L2(�). The special case of a linear Darcy law for non-homogeneous and non-
isotropic material is given in the form Aj(x; 
)= kij(x)
i with a positive-de�nite symmetric
matrix kij(x) at almost every x∈�. From (i) and (ii) we de�ne A :V →V ′ by

〈A(p); q〉=
∫
�
Aj(x;∇p(x))@jq(x) dx; p; q∈V (7)

and it is continuous and bounded by ‖A(p)‖V ′6C‖p‖V + ‖K‖L2
√
n; also A is monotone by

(iii), hence, it is maximal monotone. The formal part of this operator in H−1(�) is given by
the quasi-linear elliptic operator

A0(p)=−@jAj(·;∇p(·)); p∈V
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and the corresponding boundary part on �f is

@A(p)=Aj(·;∇p(·))nj
This is made precise by the abstract Green’s theorem, and we recall this construction from
[35, Proposition II.5.3, p. 65].
Let � :V →B denote the trace operator that assigns boundary values in B= �(V )⊂L2(�f ) to

functions from V ⊂H 1(�). The kernel of � is V0 =H 1
0 (�), and this is dense in L2(�), so we

have the continuous inclusions V0 ,→L2(�) ,→V ′
0 . The annihilator V

⊥
0 of V0 in V ′ is isomorphic

to the dual space B′, and we have continuous and dense inclusions B ,→L2(�f ) ,→B′. Thus, if
p∈V and if the formal part satis�es A0(p)∈L2(�), then A(p)−A0(p)∈V⊥

0 , so this di�erence
determines a unique functional @A(p)∈B′ for which we have

〈A(p); q〉=(A0(p); q)L2(�) + 〈@A(p); �(q)〉; p; q∈V

Of course, when p is smooth, this boundary operator is given as above in L2(�f ).
Also, we introduce the functional h∈L2(0; T ;L2(�)) as

〈h(t); q〉 ≡
∫
�
c1=20 h0(x; t) q(x) dx; q∈V

The latter functional is well de�ned for any h0 ∈L2(0; T ;L2(�)).

2.2. The deformation

For the representation of displacements and velocities of the porous structure, we introduce
the Hilbert space

V≡ {v∈H1(�): v= 0 on �c}
endowed with the scalar product given by the bilinear form

e(u; v)≡
∫
�
@jui@jvi dx; u; v∈V

It will be assumed that �c has a strictly positive measure, so it follows from Korn’s inequality
that this form is H1(�)-coercive (see, e.g. Reference [15, Theorem 3.1, p. 110]). The vector-
valued trace operator is likewise denoted by �, and its kernel is V0 =H1

0(�). The annihilator
V⊥
0 in V′ is isomorphic to the dual B′ of the space of boundary values B= �(V), i.e. the
range of the trace operator, and we have the continuous and dense inclusions B ,→L2(�t) ,→B′

as before.
Next, we introduce the Lebesgue space of square-summable symmetric second-order tensors

L2(�;�) with the usual scalar product,

(�; �)≡
∫
�
�(x) : �(x) dx=

∫
�
�ij(x)�ij(x) dx; �; �∈L2(�;�)

and identify it with its dual. The linearized strain operator � :V−→L2(�;�) was de�ned
above, and it is straightforward to check that, for any pair u; v∈V, one has

e(u; v)= (�(u); �(v))
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Denote by �′ :L2(�;�)−→V′ the indicated dual operator,

〈�′�; v〉 ≡
∫
�
� : �(v) dx=

∫
�
�ij@jvi dx; �∈L2(�;�); v∈V

This operator has a formal part that is de�ned as above by the restriction to (C∞
0 (�))

3, and
it is given in H−1(�) by the vector divergence, �′

0�=−∇· � for �∈L2(�;�). If we have
�∈L2(�;�) and additionally �′

0�∈L2(�), then as above there is a functional �(n)∈B′ for
which

〈�′�; v〉=(−∇· �; v)L2(�) + 〈�(n); �(v)〉; v∈V
When � is smooth, we have from Stokes’ theorem that this functional is given by �(n)=� ·
n∈L2(�t). This displays the decoupling of �′ into a formal part on � and a boundary operator
on �t.
Assume that we are given a function �∗ : �×R→R such that

(i) �∗(x; 
) is measurable in x for all 
 and continuous in 
 for a.e. x∈�,
(ii) |�∗(x; 
)|6C|
|+ K(s); 
∈R, for a.e. x∈�,
(iii) (�∗(x; 
)− �∗(x; �))(
 − �)¿0; 
; �∈R, for a.e. x∈�.

From (i) and (ii) we can de�ne the dilation operator D :V−→V′ by

〈Du; v〉 ≡
∫
�
�∗(x; @iui)@jvj dx=

∫
�
�∗(x; �(u)ii)�(v)jj dx; u; v∈V (8)

and note that it can likewise be decomposed into formal and boundary parts if ∇· u is
appropriately smooth. The linear dilation operator appearing in (1b) is obtained by specializing
�∗ to be a non-negative constant. We stress that the operator D is monotone and continuous,
hence, maximal monotone, but it degenerates on the subspace {u∈V : �(u) : 1=0} ⊂V.
Next, let us de�ne the functional g(·)∈L2(0; T ;L2(�)) as

〈g(t); v〉 ≡
∫
�
�1=2g0(x; t) · v(x) dx; v∈V

Once again, it su�ces to ask for g0∈L2(0; T ;L2(�)) in order to ensure that g∈L2(0; T ;L2(�)).

2.3. Coupling terms

We construct the operators corresponding to the coupling between (1a) and (1b). Denote by
�s that portion of the boundary on which neither pressure nor displacement is speci�ed, i.e.
�s =�t ∩�f . Let the function �(·)∈L∞(�s) be given; we shall assume that 06�(·)61. The
trace map gives a natural identi�cation v �→ [v; �(v)|�s ] of

V⊂L2(�)×L2(�s)
and this identi�cation will be employed throughout the following. It also gives the identi�ca-
tion p �→ [p; �(p)|�s ] of

V ⊂L2(�)×L2(�s)
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Note that both of these identi�cations have dense range, and so the corresponding duals can
be identi�ed. That is, we have

L2(�)×L2(�s)⊂V′; L2(�)×L2(�s)⊂V ′

These density conditions result from the respective requirements �s ⊂�t and �s ⊂�f .
We de�ne the divergence operator

∇̃· :V→L2(�)×L2(�s)

consisting of a formal part in � as well as a boundary part on �s. The part in L2(�) is the
usual divergence given by ∇ · v= @jvj, and the full operator is indicated by

∇̃· v=[∇ · v;−�v · n]∈L2(�)×L2(�s); v∈V (9)

Then de�ne the gradient operator

∇̃ :L2(�)×L2(�s)→V′

to be the negative of the corresponding dual operator. This is given by

〈∇̃[p; q]; v〉 ≡ −〈[p; q]; ∇̃· v〉=−
∫
�
p∇ · v dx +

∫
�s
� qv · n ds

[p; q]∈L2(�)×L2(�s); v∈V

For the smoother functions p∈V ⊂L2(�)×L2(�s), we obtain from Stokes’ Formula

〈∇̃p; v〉=
∫
�
@jp vj dx −

∫
�s
(1− �)pnjvj ds p∈V; v∈V

This consists of the usual gradient ∇p in � and the boundary part −(1−�)pn on �s, and we
denote this representation by

∇̃p=[∇p; −(1− �)pn]∈L2(�)×L2(�s); p∈V (10)

2.4. The constitutive relation, II

We shall realize system (5) in a form distributed over the measure space Y . Thus, let (Y;P; 	)
be a measure space with �nite Borel measure 	. Assume that {M y}y∈Y is a family of sym-
metric fourth-order tensors which is uniformly bounded and uniformly positive-de�nite on
�. Furthermore, we assume that this family is 	-measurable. By this we mean that for each
pair, �1; �2 ∈� the map y �→ 〈M y�1; �2〉 is measurable from Y to R. It follows that for each
measurable function �(·) from Y to � the composite function y �→M y�(y) is likewise mea-
surable. See Reference [35, pp. 103–108] for details. De�ne a bounded invertible symmetric
and monotone operator M on L2(Y;�×Rm) by means of

M(�)(y)= [M y�(y); �(y)]; for a:e: y∈Y; �=[�(·); �(·)]∈L2(Y;�×Rm)

We denote by � the product space �×Rm for integer m¿0, with the understanding that
R0 = {0}. Let {Ly}y∈Y be a family of maximal monotone operators on the product space �
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with Ly(0)� 0 for almost every y∈Y . Assume additionally that for each h¿0 and �∈�
the map y �→ (I + hLy)−1(�) is measurable from Y to �. Then, for each �(·)∈L2(Y;�), it
follows that the composite map y �→ (I +hLy)−1(�(y)) is measurable and belongs to L2(Y;�),
and we have the estimate ‖(I + hL(·))−1(�(·))‖L2(Y;�)6‖�(·)‖L2(Y;�). Now de�ne similarly the
corresponding distributed operator L on L2(Y;�); �=�×Rm; by

L(�)(y)= Ly([�(y); �(y)]); for a:e: y∈Y; �(·)= [�(·); �(·)]∈L2(Y;�)

That is, f∈ L(�) means that f; �∈L2(Y;�) and they satisfy f(y)∈ Ly(�(y)) for a.e. y∈Y . It
follows that L(·) is maximal monotone on L2(Y;�).
Finally, we denote by 
 : �→L2(Y;�×Rm) the realization of the tensors in � as constant

�-valued functions on Y , i.e. 
(�)(y)= [�; 0]; y∈Y . The dual operator is given by the integral,


′(�)=
∫
Y
�(y) d	y ∈�; �=[�(·); �(·)]∈L2(Y;�)

With these operators, the constitutive relation (5) may be rewritten and made precise as

�(t)= 
′(�(t)) in �; for a:e: t ∈ (0; T ); �(0)= �0 in L2(Y;�)

M�̇(t) + L(�(t))� 
(�̇(t)) in L2(Y;�); for a:e: t ∈ (0; T )
(11)

Note also that M(·) is diagonal, so any coupling between the components can come only
from L(·).
We shall need to restrict attention to the case in which L(·) is a subgradient.

De�nition 2.1
For each y∈Y , let the function ’(y; ·) :�→ [0;+∞] be convex and lower-semi-continuous,
with ’(y; 0)=0. The function ’ :Y ×�→ [0;+∞] is called a normal integrand if there exists
a countable collection M of measurable functions from Y to � such that y �→’(y;m(y)) is
measurable for every m∈M and the set M (y)= {m(y):m∈M} satis�es that M (y)∩Dom
(’(y; ·)) is dense in the set Dom(’(y; ·))= {�∈� : ’(y; �)¡+∞} for every y∈Y .

It follows, that, whenever ’ is a normal integrand, y �→’(y; �(y)) is a measurable function
for every measurable function � :Y →�, and so we can de�ne

’̂(�)=
∫
Y
’(y; �(y)) d	; �∈L2(Y;�) (12)

which is again a convex and lower-semi-continuous function. When the interior of Dom
(’(y; ·)) is non-empty for every y∈Y , ’(·; ·) is a normal integrand if and only if the function
y �→’(y; �) is measurable for each �∈�. Also note that ’(·; ·) is a normal integrand if it is
independent of y∈Y . This holds more generally in the discrete situation where the measure
d	 assigns the mass 	y¿0 to each point y∈Y , and then the integral in (12) is a series

’̂(�)=
∑
y∈Y

’(y; �(y))	y; �∈L2(Y;�)

See Rockafellar [31–33] for these and additional issues of measurability.
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Assume that the normal integrand ’(·; ·) has been given. For each y∈Y , we denote the
subgradient of ’(y; ·) at the point �∈� by Ly(�)= @’(y; �).

Lemma 2.2
For each h¿0 and �∈�, the map y �→ (I + hLy)−1(�) is measurable from Y to �.

Proof
For each y∈Y and h¿0, consider the Yosida approximation

’h(y; �)= inf

∈�

{
1
2h

‖
 − �‖2 + ’(y; 
)
}

Each of these convex functions ’h(y; ·) is Fr�echet di�erentiable, and we denote the deriva-
tive by Lhy(·)= @’h(y; ·). Each of the maps y �→ Lhy(�) is measurable, since it is the limit of
measurable functions, and these are related to the resolvents of Ly(·) by

Lhy(�)=1=h(I − (I + hLy)−1)(�)

Thus, each resolvent map y �→ (I + hLy)−1(�) is measurable.

Corollary 2.3
The subgradient L= @’̂ of the convex function (12) in L2(Y;�) is given by the distributed
operator

L(�)(y)= Ly(�(y)); a:e: y∈Y

Proof
This is now a straightforward exercise, since we have established the measurability of the
various operators. See Reference [35, Section II.8], for example.

Now it follows from Theorem 1.1 that for each �0 ∈Dom(L) and each �∈H 1(0; T ; �), the
implicit subgradient evolution equation (11) has a unique solution with

�∈H 1(0; T ;L2(Y;�)); �(t)∈Dom(L) for a:e: t ∈ [0; T ]; and �(0)= �0

and so we have �=H(�)∈H 1(0; T ; �). Note that we needed for L to be a subgradient because
we only have the right side 
(�̇)∈L2(0; T ;L2(Y;�)). Moreover, we needed to introduce the
degenerate operator 
 in order to include hidden variables �y for the case of isotropic strain
hardening in plasticity models or the representation of memory functionals in viscosity models.

3. THE MAIN RESULT

3.1. The system

It is now straightforward to check that the variational formulation of the system of partial
di�erential equations (1) and boundary conditions (2) takes the form

p(t)∈V : c0ṗ(t) + �∇̃· v(t) + A(p(t))= h(t) in V ′ (13a)
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v(t)∈V : �v̇(t) +D(v(t)) + �′
′�(t) + �∇̃p(t)= g(t) in V′ (13b)

�(t)∈L2(�×Y;�) : M�̇(t) + L(�(t))� 
�(v(t)) in L2(�×Y;�) (13c)

and then we recover displacement u(t) from u̇(t)≡ v(t) with u(0)= u0 and stress �(t) from
�(t)= 
′�(t). We intend to reformulate system (13) as an implicit evolution equation. Indeed,
letting w(t)≡ [p(t); v(t); �(t)], f(t)≡ [h(t); g(t); 0], it is a standard matter to check that the
system may be rewritten in the form (6), where the operators A;B : E≡V ×V×L2(�×Y;�
×Rm)−→ E′=V ′ ×V′ ×L2(�×Y;�×Rm) are given by

B=


 c0 0 0
0 � 0
0 0 M


 ; A=


 A �∇̃· 0

�∇̃ D �′
′

0 −
� L




Moreover, we �nd that the dual of the space E with the seminorm determined by B is given
by

E′
b= c1=20 L2(�)×�1=2L2(�)×L2(�×Y;�×Rm)

Of course, the initial conditions (3) are rewritten as w(0)=w0 in Eb, i.e.

lim
t → 0+

c1=20 p(t)= c1=20 p0 in L2(�); lim
t → 0+

�1=2v(t)=�1=2v0 in L2(�)

and �(0)= �0 in L2(�×Y;�×Rm)
(14)

We are now in position to state our main result.

Theorem 3.1
Assume that we are given the spaces V and V, with �c having strictly positive surface mea-
sure, and that the operators of strain � :V−→L2(�;�), divergence ∇̃· :V→L2(�)×L2(�s),
gradient ∇̃ :L2(�)×L2(�s)→V′, the maximal monotone di�usion operator A :V −→V ′, and
the maximal monotone dilation operator D :V−→V′ are given as in Section 2. In addi-
tion, let (Y;P; 	) be a �nite Borel measure space, let {M y}y∈Y be a measurable uniformly
bounded family of symmetric positive-de�nite fourth-order tensors, and de�ne M on L2(Y;�)
pointwise as above, where �=�×Rm. Let ’ :Y ×�→ [0;+∞] be a normal integrand with
’(y; 0)=0, and set Ly= @’(y; ·) for a.e. y∈Y , the indicated subgradients on �. The corre-
sponding subgradient @’̂(·) of (12) on L2(Y;�) is given by L(�)(y)= Ly(�(y)) for a:e: y∈Y .
Denote by 
 : �→L2(Y;�) the realization of a tensor �∈� as a constant function [�; 0]∈�
on Y .
Assume the following:

A1: The coe�cient functions c0(·) and �(·) are bounded, measurable, and non-negative on
�.

A2: The tensors {M y}y∈Y are uniformly positive-de�nite, i.e. for some m0¿0, we have

(M y 
; 
)¿m0|
|2 for all 
∈�; for a:e: y∈Y

A3: The operator c0I + A :V →V ′ is V -coercive.
A4: The �-distributed operator 
′(M+ L)−1
 is L2(�;�)-coercive.
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In addition to these structural assumptions, we assume the given data satis�es

p0 ∈V; v0 ∈V; �0 ∈L2(�×Y;�) such that (15a)

�∇̃· v0 + A(p0)∈ c1=20 L2(�); D(v0) + �′
′�0 + �∇̃p0 ∈�1=2L2(�) (15b)

L(�0)− 
�(v0)∈L2(�×Y;�); and that (15c)

h(·)∈W 1;1(0; T ; c1=20 L2(�)); g(·)∈W 1;1(0; T ;�1=2L2(�)) (15d)

Then there exists a triplet of functions

p(·) : [0; T ]→V; v(·) : [0; T ]→V and �(·) : [0; T ]→L2(�×Y;�)

such that

c1=20 p(·)∈W 1;∞(0; T ;L2(�)); �1=2v(·)∈W 1;∞(0; T ;L2(�))

�(·)∈W 1;∞(0; T ;L2(�×Y;�))

the system of evolution equations (13) is satis�ed almost everywhere in (0; T ), and the initial
conditions (14) hold.
Assume A1, A2, and the following:

A5: The operator c0I + A :V →V ′ is strictly monotone.
A6: The �-distributed operator 
′(M+ L)−1
 is strictly monotone on L2(�;�).

Then there is at most one such solution of system (13) subject to (14).

Remark 3.1
The assumption A1 permits important special degenerate cases. Speci�cally, if c0(·)=0, the
�uid and solid are incompressible. If �(·)=0, the momentum equation is quasi-static. Also,
the operators D and {Ly}y∈Y may be degenerate, and if �=0 the �uid �ow equation is
decoupled from the deformation system.

Remark 3.2
The assumption A2 implies that M + L is strongly monotone, hence coercive. Since M +
L is maximal monotone on L2(Y;�), it is necessarily onto L2(Y;�), and (M + L)−1 is
Lipschitz continuous. The same holds for the corresponding pair of �-distributed operators
on L2(�×Y;�).

For the combined kinematic and isotropic hardening model, the assumption A4 means the
yield surface in �×Rm is not perpendicular to the �-axis. In this case, this basic plasticity
example also satis�es the safe load condition of Johnson [20,21] and that of Han–Reddy [17].
A direct comparison of their assumptions with A4 is not obvious in the general situation.
However, in the special case of a single element in one spatial dimension, A4 requires less
than the condition of Han–Reddy. In particular, we do not require that the stress operator
be strongly monotone. A convenient condition su�cient for A4 is given in the following
Proposition, and it shows that the more general assumption A4 is ful�lled in the situation of
Reference [39]. This last assumption means that there is a non-trivial stress component which
is either viscous or elastic.

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:2131–2151



DIFFUSION IN PORO-PLASTIC MEDIA 2147

Proposition 3.2
Assume that there is a subset Y0 ⊂Y with 	(Y0)¿0 on which the operators {Ly}y∈Y0 are
uniformly linearly bounded, i.e. they satisfy∫

Y0
‖[�;  ]‖�×Rm d	6C0

∫
Y0

‖[�; �]‖�×Rm d	 [�;  ]∈ L([�; �])

Then the assumption A4 holds, i.e. the �-distributed operator 
′(M + L)−1
 is coercive on
L2(�;�).

Proof
To see this, let (M+ L)([�; �])� 

; 
∈�. Since L is monotone, we have

(
′([�; �]); 
)� = ([�; �]; 
(
))L2(Y;�×Rm)

¿ ([�; �];M([�; �]))L2(Y;�×Rm)¿m0‖[�; �]‖2L2(Y0 ;�×Rm)

Let [�;  ]= 

 −M([�; �])∈ L([�; �]), so we have

	(Y0)|
|2� =
∫
Y0

‖(M([�; �])(y) + [�(y);  (y)])‖2�×Rm d	

6 (M0 + C0)2‖[�; �]‖2L2(Y0 ;�×Rm)

where M0¿1 is the uniform bound on the M y, and consequently

(
′([�; �]); 
)�¿m0‖[�; �]‖2L2(Y0 ;�×Rm)¿
m0	(Y0)
(M0 + C0)2

|
|2�

This shows that 
′(M+ L)−1
 is coercive.

By the same calculations on di�erences, we obtain the following result, which provides a
useful condition for uniqueness.

Proposition 3.3
Assume that there is a subset Y0 ⊂Y with 	(Y0)¿0 on which the operators {Ly}y∈Y0 are single
valued. Then the assumption A6 holds, i.e. the �-distributed operator 
′(M+ L)−1
 is strictly
monotone on L2(�;�).

3.2. Proof of Theorem 3.1

Proof
In order to prove the existence claim of Theorem 3.1, it su�ces to show that the abstract
Cauchy problem for (6) has a solution w : [0; T ]→ E with Bw(·)∈W 1;∞(0; T ; E′

b) for any
given f∈W 1;1(0; T ; E′

b), where the operators and spaces are given as in Section 3.1. For this,
we apply Theorem 1.1 to the semilinear Cauchy problem for system (13). Of course it is
straightforward to check that B is linear symmetric and monotone and that A is monotone.
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In order to establish the existence of a solution, it su�ces to prove that Rg(B +A)= E′
b.

This range condition requires that, for each f∈ E′
b, there exists a solution w=[p; v; �]∈ E to

the resolvent equation

(B+A)w�f (16)

That is, we want to solve the stationary system

p∈V : c0p+ A(p) + �∇̃· v= c1=20 h0 in V ′ (17a)

v∈V : �v+D(v) + �′
′�+ �∇̃p=�1=2g0 in V′ (17b)

�∈L2(�×Y;�) : M�+ L(�)− 
�(v)��0 in L2(�×Y;�) (17c)

with h0 ∈L2(�), g0 ∈L2(�) and �0 ∈L2(�×Y;�) given. Let us now exploit Remark 3.2 and
write the last line (17c) as

�=(M+ L)−1(
�(v) + �0)

Substitute this into (17b) to obtain the equivalent system

p∈V : c0p+ Ap+ �∇̃· v= c1=20 h0 in V ′ (18a)

v∈V : �v+Dv+ �′
′(M+ L)−1(
�(v) + �0) + �∇̃p=�1=2g0 in V′ (18b)

Now from assumption A4 we see that the operator v �→ �′
′(M + L)−1(
�(v) + �0)≡ S(v) is
monotone, coercive and Lipschitz continuous from V to V′, and so the sum � + D + S is
maximal monotone and coercive. The same holds for the system (18) by A3. The existence
of a solution of the stationary system (17) now follows by solving (18) for p∈V; v∈V, and
then de�ning � as above to get the required solution of (17).
As for the uniqueness for the Cauchy problem, it su�ces to show that (B + A)−1 is

single-valued. But this can be shown from the equivalence of (17) and (18) and the strict
monotonicity conditions A5 and A6. This �nishes the proof of Theorem 3.1.

Remark 3.3
For the existence, it is clearly su�cient for the sum �+D+S to be coercive, hence, surjective.
This corresponds to a combination of viscous or plastic hardening assumptions in the model.

Example
We now aim to give an easy example of a model in this class. To this end, let Y be the
semi-line (0;+∞) and take d	≡’dy where dy is the standard Lebesgue measure on Y
and ’∈L1(Y ). For the sake of simplicity let us set M≡ 1 (that is M ijlk =(�ik�jl + �il�jk)=2
where � is the Kronecker symbol) and Ky= {�∈� : (� :�)6y2}. Then, it is straightforward
to compute that the coercivity of the stress operator is indeed equivalent to the condition∫

Y
y ’(y) dy=+∞
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4. CONCLUDING REMARKS

We have shown existence and uniqueness of a strong solution of system (13) on (0; T ) subject
to the initial conditions (14). Consequently, we have each term of (13a) is in
L2(�)×L2(�f ) at a.e. t ∈ [0; T ], and this implies in particular that A0(p(t))∈L2(�), so the
di�usion operator can be decoupled into its formal and boundary parts. That is, Equation
(13a) is equivalent to the pair

c0ṗ(t) + �∇· v(t) + A0(p(t)) = c1=20 h0(t) in L2(�)

−��v(t) · n+ @A(p(t)) = 0 in L2(�f )

Similarly, the left side of the momentum equation (13b) is in L2(�)×L2(�t) at a.e. t ∈ [0; T ],
but this implies only that the sum of the dilation and stress terms belongs to L2(�)×L2(�t)
at a.e. t ∈ [0; T ]. Thus, we need consider the decoupling of this sum into formal and boundary
parts. Proceeding as in Section 2, suppose that we have a pair �∈L2(�;�); v∈V so that
D(v) + �′�∈V′. Assume furthermore, that the formal part, namely, the restriction of the sum

(D(v) + �′�)|(C∞
0 (�))3 =−∇�∗(∇· v)− ∇· �

belongs to L2(�). Then the abstract Green’s theorem [35, Proposition II.5.3] shows that there
is a functional b∈B′ on the space of boundary values for which

〈Dv+ �′�;w〉=−(∇�∗(∇· v)− ∇· �;w)L2(�) + 〈b; �(w)〉; w∈V
When ∇· v and � are su�ciently smooth, the Stokes’ theorem shows that this boundary
functional is given by

b= �∗(∇· v)n+ �(n)

Thus, for our strong solution we have

D(v(t)) + �′
′�(t)∈L2(�)×L2(�t)
and the abstract Green’s theorem shows that we can write this as

[−∇· (�∗(∇· v(t))�+ �(t)); (�∗(∇· v)�+ �)n]∈L2(�)×L2(�t)
where (�)ij= �ij is the unit tensor. The solution of (13) satis�es the system

p(t)∈V : c0ṗ(t) + �∇· v(t)− @jAj(·;∇p(t))= c1=20 h0(t) in L2(�) (19a)

v(t)∈V : �v̇(t)− ∇· (�∗(∇· v(t))�+ �(t)) + �∇p(t)=�1=2g0(t) in L2(�) (19b)

�=H(�(v)) in L2(�;�) (19c)

and the boundary conditions

p(t) = 0 in B⊂L2(�d) (20a)
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@A(p(t))− �� v(t) · n=0 in L2(�f )⊂B′ (20b)

v(t) = 0 in B⊂L2(�c) (20c)

b(t)− �(1− �)p(t)n= 0 in L2(�t)⊂B′ (20d)

where the boundary operators @A(p(t)) and b(t) are extensions of Aj(·;∇p(t))nj and (�∗(∇·
v(t))�+ �(t))n taking values in B′ and B′, respectively.
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