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A DIFFUSION SYSTEM FOR FLUID IN FRACTURED MEDIA{
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Abstract. When modeling diffusion phenomena, equations of the form %A(u) +
B(u) = f often arise. When both A and B are non-linear, many of these diffusion
problems remain unsolved. In this paper a class of such problems is presented and
solutions are found. Properties of these solutions are also considered.

1. Introduction. The class of problems we consider may be motivated by the
physical problem associated with the flow of a fluid (liquid or gas) through fractured
porous rock. In such a situation, the majority of the bulk fluid motion will be in
the fissures between the blocks, and the block to block diffusion is small. However,
the blocks will store and release fluid as the pressure in the fissures changes. Since
the block volume will be much larger than the fissures volume, the block to fissure
diffusion is a major component of the system.

If the usual continuum assumptions are made, the balance of mass in the blocks
and fissures may be written as

1o}

"a‘z(mBPB) =mpf —ay
" (1.1)
a(meF) +V - (mpprUp) = mpg + ay

where mp, mp are the ratios of block and fissure volumes to the total volume,
« is the mass flow rate of fluid exchanged between the blocks and fissures, a is a
geometric quantity describing the ratio of the block-fissure surface area per unit
volume, pg, pr are the densities of the fluid in the block and fissure, f, g are the
fluid sources in the blocks and fissures respectively, U is the bulk fluid velocity in
the fissures.

The porous flow assumption (d’Arcy’s law) determines the velocity as

= dp | dp
U= mo i) e,
jgo N8z’ 0z
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where p is the fluid pressure and the x; describe the permeability of the fissure
network. It will be assumed that the fluid density can be described in terms of the
pressure,

p€s(p), peRY.

It is necessary to let s be a graph, since, at p = 0 fluid may only partially fill the
fissures or pores giving an effective density of £py where £ is the fraction of fluid
and po the density at p = 0. In order to have globally defined quantities we extend
s to be zero on R™.

The fluid exchange, v, between the blocks and fissures will depend upon the
pressure difference of the fluid in the blocks and fissures, and upon the density of
the fluid at these pressures. In the sequel it will be assumed that « depends upon
the quantity 5(pp — pr) where j is the average density on the interval [pr;pp].
Defining

S(p) = /0 " s(r)dm, u=S(ps) and v = S(pr)

the identity
PB
u—v= / s(m)dr = p(ps — pr)
P

F

indicates that this is a natural choice. The balance of mass may now be written

%[mgs o 87 (u)] + ay(u—v) > mpf

8 . "9 du . v (12)
Filmrs o ST (V)] —ay(u—v) - ;} Bz, [mFNj(c‘)Tj)ga—i;] > mpg.

The system (1.2) motivates the study of the following problem: find u = (u,v)
such that

%A(u) +Bu)>f, (1.3)

where A(u) = [A;(u), A2(v)] and A, and Ay are (maximal) monotone graphs in
R x R, B(u) = [y(u — v), —y(u — v) + B(v)], 7 is a monotone function on R, and B
is a (possibly degenerate) elliptic operator, f = (f, g) are data.

The monotonicity of A; and A, arises naturally from the physical property that
the density is a non-decreasing function of the pressure, and the monotonicity of
4 reflects the property that larger pressure differences will not decrease the fluid
exchange rate between the blocks and fissures. The ellipticity of B is implied by the
diffusivities k; being non-negative. Initial and boundary conditions will be added
to the problem. In the sequel, Dirichlet boundary conditions will be specified for
simplicity of exposition.

Both DiBenedetto and Showalter [7], and Grange and Minot [9] studied problems
of the form (1.3). The difficulty in applying the results of {7, 9] to the system (1.3) is
the lack of compactness due to the absence of an elliptic term in the first equation.
DiBenedetto and Showalter [8] studied problem (1.3) when B is linear, so required
all the k; to be constant; however, experimental evidence [2] suggests «;(£) ~ 1/
for ¢ large.
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The Cauchy problem (1.3) will be resolved in Section (2) by combining the results
of [7, 9] with the generalized solutions obtained by semigroup theory in L!. Formally
the Cauchy problem for (1.3) can be written as

d
ZTC@3 5 a0)=a, (1.4)
where C = Bo A™'. The Crandall Liggett Theorem [4] implies that the piece-
wise linear functions 4"V constructed from the solution, {alY}N_,, of the difference
scheme:
a{)\l =ag € Rg(A))
anr by =T +al, n=0,1,-- (N-1), (1.5)
bnr1 € Clagyy)

(N eN, 7=T/N, {fN}), given) converge in C[0,T;L!(£)2]. This convergence
result will be used to eliminate the compactness assumption in (7, 9] where corre-
sponding direct approximation schemes for (1.3) are shown to converge. We obtain
thereby additional regularity of the generalized solution of (1.3).

Since we are considering a system of equations we will work in products of Banach
spaces, eg. V = V1 x V3, elements of the product space will be identified as ordered
pairs, (u,v) etc. Duals of Banach spaces will be denoted by a prime, V’ = Vi x V4.
The action of a dual element, v’ upon and element v is denoted (v’ ,v). When L?
spaces, or the associated Sobolev spaces, are involved, the dual exponent will be
denoted by p'; i.e., 1/p+1/p’ = 1. Only the duals of reflexive spaces are considered,
so 1 < p < co. The measure of a set & C R" is denoted |Q2]. The notation
V — W will indicate that the Banach space V is continuously embedded in W.
In all instances the embeddings will be dense. A compact embedding is denoted
V « W. The notation u,, — u will indicate norm convergence and u, — u will
indicate a weakly convergent sequence.

We will let convex functions defined on the real line take values in Ry, = RU{o0}.
Realizations of a convex function ¢ : R — Ry on LP spaces, given by fQ ¢ou if
the integral is finite and infinity otherwise, will also be denoted ¢. The domain of a
convex function ¢ : V' — R, defined on a Banach space V is the subset D(¢) C Von
which ¢ is finite. The subgradient of a convex function ¢ : V — Ry is the mapping
8¢ : V — 2V' (the power set of V') given by Op(u) = {v € V'|{v),v —u) <
¢(v) — ¢(u), for all v € V}. A convex function ¢ : V — R has an associated
convex conjugate ¢* : V' — Ry, given by ¢*(v') = sup{v'(v) — ¢(v) |v € V}. When
V is reflexive, ¢ inherits many properties from ¢, in particular the subgradient
d¢" is the inverse graph of d¢ (considered as subsets of the product V x V'). If
$:V — Ry is convex, then d¢(v) will be a closed convex set in the dual space. If
V' is strictly convex and reflexive it follows that ¢(v) will have a unique element
of minimal norm. The mapping from V to V' which selects the element of minimal
norm is the minimal section of 8¢ and is denoted J¢y.

2. The Cauchy problem. We first construct operators A, B, and C on the
appropriate spaces. Then the semigroup generation theorem [4] is combined with
the direct integrations of (1.3) by [7, 9] to get a solution.

The functions v, x; and A; appearing in equations (1.3) may all depend upon the
position x € ( as well as the pressures u and v. To indicate this dependence would
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be cumbersome, so the dependence of v, x; and A; upon x € Q will be suppressed
(i.e., y{z, u) is denoted y(u) etc.). Any estimates or assumptions pertaining to these
quantities are to hold uniformly in x € Q. Let  C R™ denote a bounded open set.
The functions v and x; will satisfy Caratheodory conditions, so measurablility of
compositions with u, Vu, etc., will never be in question. When making selections
from A;, only measurable selections will be considered.

Assumptions: Let & € R be fixed.

[C] Choose Banach spaces V = LI(Q) x WpP(Q), W = LI(Q) x LP(Q), V =
L0, T; L) x LP[0, T; WP ()] and W = L0, T; LI(Q)] x L2[0, T; LP ()]
where l<p<oand1<g<np/(n—p)ifp<nandl<g<ooifp>n.

[A] The maximal monotone graphs A4;, A2 C R x R satisfy

lol < aolgl* Vo€ A(E), €] 2 &;
lal < aol¢l™ Va € Ax(€), [€]> &o;
where 0 € 81 < (¢—1),0 < B2 <n{p—1)/(n—p) and ag € Ry is a constant.

[G] The maximal monotone function v : R — R satisfies v(0) = 0 and

Yl|T < O] S mlElr, K> &

where 9 and ~y; are positive constants.
K]k : R - R, j = 1,2,---,n, are maximal monotone functions satisfying
k‘J(O) =0and

kolélP~" < [k;(€)] S kal€PP™?, 1€l > &o
where ko and k; are positive constants (k;(€) = k;(£)§).

Definition 1. Let A;, A, C R x R be maximal monotone graphs satisfying As-
sumption [A] and v, k; : R — R be functions satisfying Assumptions [G] and [K]
respectively. Then define ¢;, I' and K; : R — R by

bils) = /0 " AdE)de, T(s) = /0 Cy(©)de, Ki(s) = /0 “ky(©)de.

Lemma 1. Let ¢ = (¢1, $2), where ¢ and ¢, are the realizations in LI() and
WyP(Q) of the functions defined in Definition (1), and let Assumption [C] hold.
Then ¢ : V — R is continuous and 8¢ : V — 2W' s bounded.

This lemma follows from the Holder and Sobolev inequalities for bounded do-
mains.

Theorem 1. Let ¢ : V — R (¢ : V — R) be defined by ¥(u,v) = I'(u — v) +
E;'L=1 Kj(-é%), where I' and K; are defined in Definition (1), and let V' (V) be
given in Assumption [C). Then 1 has a coercive, bounded derivative,

W (4,0) = Bp(u,0) = [r(w - v), —1(u—v) = 3 %[kj<§—;>n.
i=1

The proof of this theorem follows from elementary properties of convex functions
and their realizations on L? spaces.
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Lemma 2. Let 2 C R™ be bounded and p > 1. Set

D(B) = {ue Wrr(@) nL2(@) | %{@(%)} e (@)}

j=1

where the k; satisfy Assumptions [K]. Then B : D(B) — L%(Q), defined by B(u) =
—- Y=t % kj(g—z“j)], is maximal monotone in L*(Q).

The proof of this lemma follows immediately from the observation that B is the
derivative of a convex function defined on the space Wy?(2) N L2(£2). The next
result is a modification of Brezis and Strauss [3], and is the key to the demonstration
of m-accretivity.

Theorem 2. Let B be defined as in Lemma (2) and let j : R — R be a convex
function satisfying (0) = 0. Then

(B(u) = B(v),8)2(0) 2 0

where s is any selection from 85(u — v) in L*(Q).

Proof: Consider the two convex functions j;(z) = z—t if £ > ¢ and zero otherwise,
t > 0 and ja(z) = —z + ¢t if £ < ¢ and zero otherwise, ¢ < 0. The elementary
properties of convex functions imply that j;(z — y) > ji(z) — (8Ji)o(z)y, i = 1 or 2,
where the zero subscript on a sub-gradient indicates the minimal section.

Next, recall the Yosida approximant of B defined by

B, = i(z ~Jy), Ja=(I+AB)"L, A>o0.

The Yosida approximant is well defined for maximal monotone operators, so is well
defined in this instance.

Claim: If f,g € L?() then

JRIGEE 1</Qj,-(f—g), i=1,2

Proof: Put u = Jy(f), v = Ji(g), and observe that u,v € D(B) and

HF=0) = dilu=v =AY Sl (5 - k()
Jj=1
> Ji(u — v) — A(ji)o(u Zai k; ( k](aa—;)]

Integrating yields

/sz 9) /{J, u—v) 6Jz)o(u—v)za gt)_kj(%)]}'
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Let ¢, : R — R be the Yosida approximant to 83, so ¢ € C*%(R) with non-negative
derivative and lim.jo ¢c(s) = (d4i)o(s) Vs € R. Moreover, ¢.(u —v) € WaP (),
since j;(0) = ¢¢(0) = 0, consequently

=~ 0 Ou Ov .
/n_;gj[ki(gj)—kj(aTj)](aji)o(U—v)
. =9 Ou v
N 13{51/9 "; '3?].[’91'(55;) - kj(a—zj)]¢e(u—v)

. Ou
=tim [ ° Z[k (52~ b Ny — (=) 20

This is extends, as in [3], to hold for the more general convex function j. To
complete the proof, consider u,v € D(B). The convexity of j implies

JlIa () = (V)] = ji(u = v) 2 s[Ja(u) = Ja(v) = (w — )]

Integrating and recalling the definition of the Yosida approximant yields
02> —)\/ [Ba(u) — Ba(v)]s.
Q

The Theorem now follows from the fact that limy o Bx(u) = B(u) in L?(Q2) when
u € D(B) and B is single valued.

Remarks:

e The operator B is accretive in L}(Q) and its closure, B, in L*(Q)? is m-
accretive.
e Let 2 C R™ be bounded and p > 1. Set

n
0
={ueWy?(@) | ), 37[ ( )] e L'(Q)}
j=1""
and
z": 2
ot Oz;
then B C B C B.
When Wol”’ () is not embedded in L?(Q), the following technical lemma indicates
when an element of D(B) may also be in D(B)
Lemma 3. Let u € W}P(Q) and -2 5=1 321 [k (2 Sl=fe€ L¥ (Q), where the k;
satisfy Assumption [K] andt' > 2. Thenu € WP (Q) N L*(RQ).

Proof: This is proved using Moser iteration. Assume that u € L"(€2), and observe
that r = np/(n — p) suffices for the first iterate. Define G, H € C*(R) by

|sI? ls| < so
linear ls| > so,

H(s) = Ha(s) = {
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G(s) = [ |H'(€)P d¢, where B =1+ (r —t)/(tp), and t = '/(t' — 1) < n/(n — p).
Both G and H vanish at zero, so G(u), H(u) € WyP(). Also (/(s) is monotone
on Ry, so [G(s)] < |s|G(s), similarly |H'(s)| < B|s|P~1. Selecting G(u) as a test

function yields
Ou, Ou ,
/Zk (6.1:] )5, G /fG(u

’COZ / " O by < £l e oy [ /9 (Jul [H (w)P)t] ¥

|>§o Tj

r —t
ko /Q IVlf 1 @) < 17 P el oy + mbof8 7Nl e

_r=t, It
kol VH (u )“Lp oy = ”f”L"(Q):Bp““”Lr ot nkOESﬂ"lﬂll e ”“”]} Q
() ()] ()

CrollH )P g, < (ISl oy + mho€f max(L, 12)]8” max(L, ] o)

where the Sobolev embedding Theorem was used to obtain the last line. Letting
so — 00 yields ||u||LB(_L) < CBP max(1, “U”Z,(Q)). Put x = (;L—'_‘—p)% > 1 and note
that ,B(n—}p) > xr; therefore,

r—t

1
] max(L, [l @)).

flullLxr ) < CFr=t [1+

Iterating this NV times shows

X r— TLxtr—t
llell vy < { H CcwFr[1 4 2~ = ]1+‘1— } max(1, |[uf|rq))-

n=0
Since the product in the above estimate converges as N — oo, the Lemma, is proved.

Definition 2. Let

D(C) = {(a,a) € W' |3 (u,v) € LYQ) x D(B), such that
(o, a) € d¢(u,v) and B(v) € )24 @},

then C : D(C) — 2% is defined by
C(a:a) = {['Y(u - 'U)7 - ( - 'U) + B ’U)] | u,v E D(C) (a’a) € a¢(uav)}1

where v and W satisfy Assumptions [G] and [C] respectively, and ¢ and B are
defined in Definition 1 and Lemma 2 respectively.
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Lemma 4. The operator C, defined in Definition 2, is accretive in L*(2)2.

Proof: Let (a,a), (&,4) € D(C) and let (y,2) = [y(u — v),—y(u — v) + B(v)] €
C(a,a), (§,2) = [v(& — 9), —y(i — o) + B(9)] € C(&,a).

(e =)+ Aly — Dl @) + l(a — &) + Mz — )|z

/ la — @] +|a —a| + A[y(u — v) — y(& — 9)](s1 — s2) + A[B(v) — B(9)]s2

where
1 fa>a 1 ifa>a
s1 =< sgno(u— @) ifa=a, s = ¢ sgng(v — 7) ifa=a
-1 ifa<a -1 ifa<a.

Since s; € sgn(u — i), s2 € sgn(v — ), the latter two terms in the integral are
non-negative VA > 0.

Theorem 3. Let (f,g) € L(2)%. Then the problem (a, a) € D(C) (I+C)(a,a) >
(f,9), has a solution, where C is the operator defined in Definition 2. Consequently,
the closure of C in L*(Q)* is m-accretive. Moreover, (a, a) satisfy the estimates

laFllze(ay + llat ooy < NF Loy + g7 Lo ()

e L) + lla” oo (@) < N1F 7 Nlzee) + 97 llLoo @)

Proof: Let A;(s) = Ai(s) if |A1(s)] < N, A1(s) = N if A1(s) > N and A(s) =
—N if A1(s) £ —N, where A;(-) is the monotone graph defined in Section 2 and
N > |Ifllzeo(@) + llgllzo(n). Define A, similarly. Let (u,v) be a solution of the
problem (u,v) € L4(Q) x WyP(),

J

2.9
a+7(u—v)=fa a—’Y(U—'U Z'a_ Bz =g

a € /11( ), a € /ig('u) A solution can be found as the minimum of a convex
function. The constructlon of A; and A, guarantees (,a) € L®(Q )2. It is then
clear that 3°7_, 81:] [k;( am, )] € L*°(Q), so, by Lemma 3, v € D(B).

Let k € R be chosen so large that 3k; € A;(k) and k; € Ay(k) where ky +ky >
5t oy + llgtllLee(q). If no such k exists A; and Ay are upper bounded, and
the estimate on (a*,at) is trivially satisfied. Define

sy =sgnf(u+a—k—k)€sgnt(u—k)Nsgn*(a — k),
sy =sgni(v+a—k—kz) €sgn’(v—k)Nsgnt(a— k).

Subtracting k; and ks from both sides of the equations for (e, a) and multiplying
them by s; and s respectively results in the following estimate

/{(a—k1)++(a—k2) +’y(u-—v)(sl—32)+B(v)32}</ Frrgt—ki— k).
Q
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Since the right hand side is non-positive and the latter two terms in the first integral
are non-negative, it is clear that || || peo (o) +lla* | Leo (@) < I1f ¥ Lo () +g7 | Lo ()-

Similarly |la™||e() + la”|zee(@) < If " llzeo() + 197 [z (). These estimates
imply that a € Ay(u) and a € A2(v). The Theorem follows. |

The results in Grange and Mignot [9] and DiBenedetto and Showalter [7] may
be combined to give the following theorem, showing that the differencing scheme

converges weakly in V', giving a distribution solution to the partial differential
equations.

Theorem 4. [Grange-Mignot]. Let V «— W be a dense embedding of reflexive
Banach spaces and let V = LP[0,T; V], W = L?[0,T; W|]. Suppose that
1. ¢: W — Ry, is a proper, convex, lower semi-continuous function, A = 8¢,
2. ¢ : V — Ry is continuous at some point and ¢(0) = 0,
3. A:V — 2W' is bounded, and
4. B: V-2V is bounded, coercive and maximal monotone.

IFNeN,7=%, {fN}N_, C V', then the differencing scheme

N
{“g nN=1 CV, ay =ao € Rg(A), ar]:’+1 + TbnN+1 = qulzv+1 + aﬁ,

a1 € A(“ﬁ-&-l)’ by € B(uY,,), n=0,1,---,(N~-1),

has a solution.
Put fN@) = N1 Xnri(n+1)r)(8) f,1 where x(. is the characteristic function

of the indicated set, and define u™, aV and bV similarly. Let &V be the linear

interpolant of {aN}N_. If limy_oo fN = f in V', there are subsequences (also
n Jn=0

indexed by N ) such that

uN —u inV, WW—-b inV,
aV —a mW, a¥ —a inW
da da . _,
o " n inVv,
and
da

) E+b=‘f inV, a(0) = ay.
If, in addition, fV is the linear interpolant of {fN}N_,, fN — f in EP[0,T; Vv
and B = 01, where ¢y — R, Is proper, convex and lower semi-continuous, then
uV € E®[0,T; V'], oV € L®[0,T;W’] and bY € L®[0,T;V’] are all bounded
independently of N.

Suppose, additionally, that a € A(u). Then b € B(u), so that (u,a,b) constitute
a solution to the problem

da

!
ueY, aeW, 7

eV, beV,
da

&+b=f in V', a(0)=ag, a€ A(u), b€ B(u).
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In particular, if a¥ — a in V' then a € A(u) so the above holds.

Grange and Mignot [9] obtain solutions by assuming that V <~ W. In this
situation, there is a convergent sub-sequence, a¥ — a in V'. Clearly this is not the
case for the problem considered here; however, the following theorem shows that
the strong L' convergence given by the Crandall Liggett Theorem can be used in
place of compactness.

Theorem 5. Let  C R™ be bounded and suppose A;, A2 CRxRandv,k; :R—
R satisfy Assumptions [A], [G] and [K] respectively. If (f,g) € L'[0,T; L'()?] the
problem

dt+7(u—v) fs
da 2.9
dt ’u—’U ;'a_ =g,

a€ Ai(u), a€ Ax(v),

(a,a)(0) = (a0, ao), has a unique generalized solution (a,a) € C[0,T; L*()?) pro-
vided (ag,ap) € D(C) where D(C) is defined in Definition 2.

IfV, W, V and W satisfy Assumption [C], and (f,g) € L'[0,T; L*()?] N V',
then the generalized solution also satisfies

@a) W, LaaeV, wvev,

da
= +y(u—v)=f

. ’
da 8 . v in V,
G~ ~ Dl =9

€ Al(u), a€ AZ('U), (aa a)(O) = (a0aa0)1

provided (ap,a0) € Rg(A1 % Ag).

If, additionally, (f,g) E Lrlo, T; V'], then (u,v) € L®[0,T; V], v(u —v), (o, @) €
L®[0,T; W' and Yy 52 (ki (£2)] € L0, T; V'), and if (£, 9) € L*[0, T; L(Q)?]
and (ag, ag) € L®(2)? then (a, a) € L™[0,T; L°(Q)?).

Proof: The existence of the generalized solution follows immediately from Theo-
rem 3, which demonstrates that the operator C is m-accretive in L!(2)?, and the
Crandall-Liggett Theorem [4].

The existence of a solution in V' will follow from Theorem 4. Lemma 1 and
Theorem 1 show that all of the hypotheses for Theorem 4 are in place except
(a,a) € A(u,v). This is demonstrated as follows (see also [1]).

Let (&,a) € A(d, #) where (i1, 7) € D(A) is arbitrary. If (&—a’,a—a"), denotes
the pair formed by truncating each component above and below by +b respectively
(b > 0), then the monotonicity of A implies

T
os/ /(é—aN,&—aN)b-(ﬁ—uN,fz—-vN).
0 Q
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The convergence of (aV,a") to (a,a) in C[0,T; L*(£2)?] and the uniform bound on
(@—al,a—a"), in L[0,T; L=(0)?] implies that (G—aV,d—a"), — (G—a, a—a)
in W'. Passing to the limit in the above equation implies

T
05/ /(&—a,&—a)b-(ﬁ—u,ﬁ—v)
0o Ja
(recall that (u™,vV) — (u,v) in ¥V < W). Letting b — oo in the above implies
0< ((&$ a) - (aa a)a (ﬁ, ’l}) - (ua 'U))W’—W for all (&’ &)t € A('&a 5)

The maximal monotonicity of A then guarantees that (a,a) € A(u,v).
If (f,9) € L'[0,T; L>()?], the estimate in Theorem 3 guarantees

(@ @)™ [l Looto,miz00 (@)2) < Ilexo, @0) | oo ()2 + [I(f DlLijo,riLe ()2

Remarks:

¢ In each of the differencing schemes, a discretization {(f, g)¥ }2_, of the right

hand side (£, g) is required. In all instances (f, g)%, ;=1 75:+1)T(f1v, gn)(&)de

suffices where 7 = T/N and the subscript N indicates the function is to be
truncated at £V to render it bounded.

e In the construction of the solution in V', subsequences of (@, a)" were chosen
to obtain weakly convergent subsequences. However, this is unnecessary since
the whole sequence converged in C[0, T; L1(Q)2], so could not have two weak
limits in W’. This implies that the sequences {(g"V, —g"¥ + ")}, also con-

verged weakly in V', where gV = y(u¥ —v") and bV = — }:;;0 % kj(%‘;j )]

3. Properties of the solutions.
3.1. Non-negativity of the solutions.

Lemma 1. Let (a,a) and (&,a) be two solutions to Problem 1.3 corresponding to
data (ao, ao), (f,9), and (&o,do), (f, ) respectively. If

(£,9) <(f,§) and (ao,a0) < (&o,d0) a-e.

then (a,a) < (&, @) almost everywhere (where comparison of a pair means compo-
nent wise comparison).

Proof: The differencing scheme (1.5) for the approximate solutions yields

1 ~ ~ ~N ~N N EN
;(aﬁ+1 - af_,_l) + [’Y("ﬁ’+1 - ’Urlzv-f-l) - ’Y(Un+1 - Un+1)] = fn+1 = fat1

1 . - . - "
;(ag+1 - a,’2’+1) - [’Y(“g+1 - Uﬁ+1) - ’Y(Uﬁﬂ - 'Ur]zv+1)] + B('UTILVH) - B(”ﬁ,ﬂ)

_ N ~N
= 9n+1 ~ In+1
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where vl,;, 5%, ; € D(B). Multiplying the above equations by

N ~N N ~N
81 = Sgng—[(an+1 - O‘n+1) + (Upy1 — "n+1)]

N ~ LN
€ sgnt(a),, — aﬁ“) Nsgn®(ul — &, 4)

and

~ ~N
82 = sgnd [(af; — Gnyy) + (Vi1 — 4]

N ~N N <N
€ sgnt (ap41 — Gnga) 0 sgnt (vpy1 — Tpgr)

respectively, and integrating over § yield
1 N _ = + L N _ N 4
{=(afy1 — a@n1)™ + =(an41 — Gny1)
o 7 T
+ [y(ulpy — o) — v (@ — 98 ))(s1 = 82) + [Blvnsy) — B(#},1)]s2} <0.

Since the latter two terms in the integral are non-negative, (af,; — aX, )t =0
and (af,; —ad,;)* = 0 almost everywhere, implying (aV,a") < (&N,aN) almost
everywhere. Since each of these pairs converge in L'(Q)? it follows that their limits
preserve this ordering.

Corollary 1. If0 € A;(0) and 0 € A3(0) and (o, a) is a solution to Problem 1.3
with non-negative data (f,g) and (oo, ap), then (@, a) is non-negative.

0. K

The following example shows that the pressures (u,v) need not be non-negative
unless additional hypotheses are specified.

Example: Let « be linear on (—00; —sg) and (sg; 00) where so > 0, and let y(s) = 0
on [—30;80]. Set Ay = Ay to be the Heaviside graph. Then (a,a) = 0, (u,v) =
(—s,0), s € [0; 50, is a solution to Problem 1.3 with data (f,g) = (a0, a0) = 0.

In the above example, both the ‘spatial’ (v and B) and ‘temporal’ (A; and Ay)
operators were degenerate near zero. If either one of them is strictly monotone
at zero the following Lemma demonstrates that the pressures, (u,v), will be non-
negative when the data (f,g) and (o, ao) are non-negative.

Lemma 2. Let 0 € A;(0), 0 € A2(0) and let (f,g) and (ao,a0) be non-negative
data satisfying the assumptions of Theorem 2.5. Then Problem 1.3 has a corre-
sponding solution with non-negative pressures. If either

(1) Ay(—00;0) C (—00;0) and Az(—00;0) C (—00;0), or

(2) The (spatial) operator ¢’ : V — V' defined by

¥ 0) = o= o) —ou =) = 3 (5]
i=1

is strictly monotone at zero,
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then all of the solutions constructed in Theorem 2.5 have non-negative pressures.

Proof: The first statement will follow from (1) of the second, since if (i, @), (&, &)
is a solution to

;ta+7( 7)=f

%a—— Yi@—-0)+B(0) =g

& € A;(), @ € Ay(9) where A; = A; and A; = A, on [0,00) and are perturbed
to be strictly monotone on (—o0;0), then (1) will imply that (&, a) and (i, ) are
non-negative, so constitute a solution to the original problem.

Proof of (1): The non-negativity of the data implies, by Corollary 1, that (e, a)
is non-negative. But a € A;(u) and a € A3(v) almost everywhere and (1) imply
(u,v) are non-negative.

Proof of (2): Consider the approximate equations for (u"V,v") and (a",a") and
write a;':’+1 = Qn41, etc. Multiplying the equations by (u,,;,v, ;) and integrating
yields

1 _ _ — -
A {;(aﬂ+1un+1 + @n1Vppy) + Y (Unt1 = Vn)(Up g — Viyy)

avn+1 avn+1
< 0.
+ Z k5 Oz 6:1: <0

The hypotheses 0 € A;1(0) and 0 € A3(0) imply om41u,,; = @n41v,,; = 0 almost
everywhere. Since
i Ovpi1, 00, i OVpy1. OV
k n+ = k n+ n+1
; i ox; . axj ?:'; 3 Oz ) dz;

and a case by case comparison shows

’Y(“;;+1 - ”;+1)(“;+1 = 11) S Y(tngr — 'Un+1)(“;+1 - ”;+1)7
it follows that

6vn vy
/{7(“n+1 Vpg1) (s — n+1)+zk( ) H}

j=1

The above is equivalent to 9'(u,1,v,,1)(¥nt1,Vne1) < 0 and the strict mono-
tonicity at zero implies (u,,,,v,,1) = 0.

3.2. Bounds on the pressures. Theorem 2.5 gives explicit bounds on the
densities, (@, a) when the data are bounded. If A; and A, are unbounded (above
or below) then a bound on (@,a) will imply a corresponding bound on the pres-
sures (above or below). This is the situation encountered when the fluid under
consideration is a gas. When the fluid under consideration is a liquid A; and A,
will normally be bounded, so no bounds on the pressures are implied. For a purely
incompressible fluid, the next lemma demonstrates that the pressures are bounded
above when the data are bounded. Of course the previous section identifies when
the pressures are bounded below by zero.
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Lemma 3. Let A; and A, be Heaviside graphs and suppose that (@, a), (u,v) is a
solution to Problem 1.3 with data (ao, ao) € L®(Q)? and (f, g) € L*[0,T; L*(Q)]x
L0, T; L ()] where t' > n/p. Then the pressures (u,v) are bounded above.

Proof: This is proved by showing that the approximating sequences from the finite
differencing scheme (1.5) are bounded above. The superscript N will be omitted
(ie.y (W1, 9m01) = (Un+1, Vna), etc.).

Let E C Q be a measurable set and ||f||zs=(q) < k. Subtract k from both sides
of the first finite difference equation and multiply by xg(un+1 — k)* (XE is the
characteristic function for E) to get

/E {%(O‘nﬂ —an) + [Y(Uns1 — Vnt1) — k] }(uns1 — k)Y <0.

(atn+1 — n)(Uns1 — k)T is non-negative, since it is clearly zero when un41 < k, and
when u,1 is positive, ay+1 = 1 while 0 < a, < 1. This implies

/E [’Y(Un+1 = Un41) — k] (Unt1 — k)T <0

for every measurable E C , so the integrand must be non-positive almost every-
where, in particular u,4; > k implies Y(un41 — Vnt1) < k.

Let I > k and multiply the second finite difference equation by w = (va+1— D*e
WoP() to get

1 8vn+1 ow .,
/Q{,r(anﬂ an)w — Y(Unt1 Un+1)w+2k 9, xj}"‘/ngn+1w-

The argument of the previous paragraph shows that the first term in the integral
is non-negative, and a case by case check, using the result of the above paragraph,
shows that when [ > k

=Y(tUnt1 — Vnt1)w > —kw.

This yields the estimate

8'Un.+1
/Z 6525 < [ g+ b

Since Vw = XE, VUn+1, where Ej = {x € Q|vaq1 > 1}, it follows that

Bw ow
— <
/ E, 6:1:, / gw,

j=1

where § = gn41 + k.

The remainder of the proof is a standard application of the Di Gorgi technique
for bounding solutions to elliptic equations, which also satisfy an estimate similar
to the one obtained above. Since the results are standard, only a terse outline will
be presented.
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Assumption [K] implies
kollVolls g, < 13l gy llwllLee,) + nkotd| By

Using the Sobolev and Young inequalities to eliminate w from the right hand side
yields

E S !
IVelZs gy < {CIBIF 7 |llpe gy} + 2nER| B,

where p* = np/(n~p) if p< n and if p = n any p* > tp suffices. The estimate

(h— l)plEhlp/p. < ||w|f§p* (E1) < C”Vwﬂip- (BN h>1

yields
~np'/p p* |El|ﬁ
IEhl < C(”g”Lt'(Q) + 1) (h — I)P'

provided h > and [ is chosen larger than k. The constant # is given by

P 11 ,y_n
- min | ,p(t p*)] when >p

This estimate yields |E| = 0 for some large L depending only upon the data, C,
g and B, (see Kinderlehrer and Stampacchia (10]), implying v,41 < L. The bound
on u follows from Y(un41 — vp41) < k if Unty > k.

3.3. Existence of free surfaces. Non-linear diffusion equations often have
solutions which exhibit free surfaces. In the current context a free surface indicates
an interface where the pressure goes to zero. Such surfaces are observed physically;
however, linear equations fail to predict this phenomenon. For the gas and liquid
models discussed in Section 1, a free surface corresponds to the fact that the domain,
, fills with fluid slowly. In this section it is demonstrated that free surfaces may
exist for the solutions developed in Section 2.

The proof of the existence of a free surface for an incompressible fluid is partic-
ularly simple, so is presented first. It is interesting to note that the more involved
proof required for compressible fluids fails in this case.

Lemma 4. Let (u,v), (a,a) be a solution to Problem 1.3 with
Ax(x, 8) = rl(x)H(3)7 Ax(x, 8) = Tz(x)H(S), x€ef, seR

where H is the Heaviside graph, rq, ro € L>®(Q) and r1, vy > ro > 0 almost
everywhere. If

1 1
Ellaouu(n) <|9| and ;;”aollu(n) <9,
then there exists to > 0 such that the measure of the sets

Ey(t) = {x € Q|u(x,t) >0} and Ey(t) = {x € Q]u(x,t) > 0}
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is strictly less than || for t € [0;10).
Proof: Theorem (2.5) guarantees that (e, a) € C[0,T; L' (2)?]. Then

Ex(t)] < — /E RCE 1 /Q o) < ~a®lln @

To To

The continuity of [|a(t)]|z:(e) implies that if the right hand side of the above ex-
pression is smaller than || at some point in time, then it will remain so for small
neighboring times.

The proof that |Ea(t)] < || for small times is identical. §

This result can be extended to cover compressible fluids using the ideas of Diaz
and Veron [6]. We omit the proof of the following result since it is identical in spirit
to [6], and rather long.

Theorem 1. Let (a,a), (u,v) be a solution to Problem 1.3 with data (co,a0) € W’
and (f,g) € V' N L0, T; L*()?). Assume

[A'] A; and A, satisfy Assumption [A] and in addition 0 € A1(0), 0 € A2(0)
and for some r € (1,p), a € Aa(v) = ¢3(a) > clv|” where ¢, is the convex
function defined in Definition 2.1 (A2 = 8¢2).

[K'] The functions k; satisfy Assumption [K] and the strengthened estimate

kolé[P~* < |k;(€)l < kalélP™, £€R.

If there is a 0 < t; < T such that for t € [0,1;)

B,, (o) C © — {supp[f(¢)] Usupp[g(t)] Usupp(co) U supp(ao)} ,

then there exists to > 0 such that v = 0 on the cylinder By, 2(x0) % [0,20). If either
~ is strictly monotone at zero or ¢j(a) = 0=>u =0 when o € A;(u), thenu =10
on this cylinder.

Since the behavior of ¢* is not readily observable from its inverse sub-gradient,
A, some monotone graphs are listed with their convex conjugates below.

A(5) (), t€ D() " 0 A(s), s € D(4) |¢* 0 A(s) > cfsl”

H(s) 0 0 never
1—e P, s2>0 T zle?* —1] any r > 1

sm 1 Lt L any r > 1

3.4. Support of solutions. The solutions obtained for Problem 1.3 are suf-
ficiently smooth to guarantee that the derivative l—%a is a function, so all of the
terms in the first equation of Problem 1.3 are (real valued) functions. The following
lemma indicates that elementary calculus may be used to determine the properties
of solutions to this equation.
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Lemma 5. If « € WL9'[0, T} e (€2)], then there exists A € L‘l’[(O, T) x Q) such
that

1) a(t) = A(t,-) almost everywhere,
2) A(-,x) is absolutely continuous on [0,T) almost everywhere X, and
3) 2 A(t,) = o/(t) almost everywhere.

This is proved in Showalter [11]. DiBenedetto and Showalter [8] proved the
following lemma when v and B are linear.

Lemma 6. Let (a,a), (u,v) be a solution to Problem 1.3 with data (f, g), (@0, ao)
and assume ag, f > 0 and (u,v) > 0. If (A;)o(s) > ey(s)7, 7 > 1, s € [0, [l zoo ()],
where (A;)q is the minimal section, then ag(x) > 0 implies a(x,t) > 0 for t > 0
and it is bounded below by

a(x,t) > { [ao(x)' " +e(r—1)t]7~  r>1

e~ ¢ag(x) r=1
Proof: a € A;(u) implies @ > ¢y(u)*. The equation for @ may be written as

da
= T 1W =F+w) —v(u-v)
where the right hand side is non-negative since v > 0 and - is monotone. It follows

that d
a o
— =) >0. ae. .
dt+(c) >0. ae x€N

The lemma now follows from an elementary calculus exercise with the above equa-
tion.

Remark: The Heaviside graph satisfies the hypothesis Ho(s) > (;';)1/ T for any
r>1and 0 < s < s, so this lemma is applicable to purely incompressible fluids

provided the pressures are bounded. Bounds on the pressures were found in Lemma
4.

Corollary 2. If, in addition to the hypothesis for Lemma 6, A;(0) C (—o0;0], then
{x € Q] u(t) > 0} is non-decreasing.
If, in addition, v(—o0;0) C (—00;0) (i.e., v is strictly monotone at 0~ ), then

{x € Q|u(t) >0} C {x € Q|u(t) >0}

Proof: The first statement follows immediately from the fact & € A;(u). To prove
the second statement suppose x € 2—{x € Q|u(t) > 0}. It follows that u(x,7) =0
and a(x,7) = 0 for 0 < 7 < t. Then % + y(u—v) = f implies ¥(0 —v) = f > 0 at
(x,7), 0 £ 7 < ¢, and the assumption on v yields v(x,7) = 0.
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