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Abstract. In this paper we study a free boundary problem modeling a phase-
change process by using microwave heating. The mathematical model consists

of Maxwell’s equations coupled with nonlinear heat conduction with a phase-
change. The enthalpy form is used to characterize the phase-change process in

the model. It is shown that the problem has a global solution.

1. Introduction. Suppose that a material with solid and liquid phases occupies a
bounded domain Ω ⊂ R3 with C1-boundary ∂Ω. If we supply heat to the material
by using intense microwaves from the boundary ∂Ω, the solid phase of the material
will begin to melt. To describe this physical process, we introduce the electric
and magnetic fields E(x, t) and H(x, t), respectively, in Ω. Hereafter, a bold letter
represents a vector or vector function in three-space dimensions. Then E(x, t) and
H(x, t) satisfy the following well-known Maxwell equations (see [9]):

εEt + σE = ∇×H, (x, t) ∈ QT , (1.1)
µHt +∇×E = 0, (x, t) ∈ QT , (1.2)

where QT = Ω × (0, T ] and J(x, t) = σE is used by Ohm’s law, ε, µ and σ are the
electric permittivity, magnetic permeability and the electric conductivity, respec-
tively.

Let u(x, t) be the temperature in QT . During the heating process, the local
density of heat source generated by microwaves is equal to E · J = σ(x, u)|E|2,
where the electric conductivity σ = σ(x, u) typically depends on u such as (see
[12, 13])

σ(x, u) =
a(x)

b(x) + c(x)u
, orσ(x, u) = a(x)e−b(x)u,

where a(x), b(x) and c(x) are positive functions. It also may have a jump disconti-
nuity for the temperature changing from solid phase to liquid phase:

σ(x, u) =
{

σl(x, u), if u(x, t) < m,
σs(x, u), if u(x, t) > m,

where the subscript l or s represents the function in liquid or solid phase and m is
the melting temperature.
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By using the enthalpy method, we find that the temperature u(x, t) satisfies the
following heat equation in the weak sense (see [4, 5] and also Remark 1.1 below ),

A(u)t −∇ · [k(x, u)∇u] = σ(x, u)|E|2, (x, t) ∈ QT , (1.3)

where

A(u) =





u− 1, if u < m,
[m− 1,m], if u = m,
u, if u > m,

and the coefficient of heat conduction k may be different in solid and liquid phases,

k(x, u) =
{

kl(x, u), if u(x, t) < m,
ks(x, u), if u(x, t) > m,

Because of the heat source in Eq.(1.3), the interface set ΓT = {(x, t) ∈ QT : u(x, t) =
m} may have positive area, i.e. a mushy region may exist. In this case one has
to define the value of heat conductivity k(x, u) and σ(x, u) on ΓT and Eq.(1.2) is
understood as an inclusion ([4]): ([4]:

A(u)t −∇[k(x, u)∇u]− σ(x, u)|E|2 3 0, (x, t) ∈ QT .

Define

σ(x,m) is between the values σl(x,m+) and σs(x,m−) for any x ∈ ΓT ,

k(x,m) is between the values of kl(x,m+) and ks(x,m−) for any x ∈ ΓT ,

where σl(x,m+) = limu→m+ σl(x, u) and other quantities are defined similarly.
If σ(x, u) and k(x, u) are independent of x. Then one can simply define

σ(m) ∈ [σ0, σ1], k(m) ∈ [k0, k1],

where constants k0, k1, σ0 and σ1 are defined as follows:

k0 = min{kl(m), ks(m)}, k1 = max{kl(m), ks(m)},
σ0 = min{σl(m), σs(m)}, σ1 = max{σl(m), σs(m)}.

To complete the problem, we prescribe the following initial and boundary condi-
tions:

N×E(x, t) = N×G(x, t), (x, t) ∈ ST (1.4)
un(x, t) = 0, (x, t) ∈ ST , (1.5)
E(x, 0) = E0(x), H(x, 0) = H0(x), u(x, 0) = u0(x), x ∈ Ω, (1.6)

where G(x, t) is given external vector function on ST = ∂Ω×[0, T ], N is the outward
normal on S = ∂Ω, un(x, t) := ∇u ·N is the normal derivative on S, E0(x),H0(x)
and u0(x) are the prescribed initial electric, magnetic fields and initial temperature.

The Stefan-type free boundary problems have been studied extensively by many
researchers (see monographs [6, 11, 18] and many conference proceedings). The
classical enthalpy method is widely used to describe a phase-change process (see
[1, 3, 4, 5, 11, 15, 16] etc. for examples). For microwave heating problems without
phase-change, some research has been carried out (see [7, 8, 12, 13, 19] etc. and
also see recent lecture notes [22] Chapter 6 for the theory). When a phase-change
takes place, Coleman [2] studied the microwave melting in one-space dimension
and obtained some numerical solutions. In [17], Pangrie et al. used time-harmonic
Maxwell’s equations and the enthalpy method to model the microwave melting
process and obtained the numerical solution for a radially symmetric domain by
using finite-difference method. In [20] one of the authors studied a phase-change
problem arising from microwave heating processes in one-space dimension, where a
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kinetic type condition is given on the interface due to the superheating phenomenon.
Global existence and uniqueness are established in [20]. We would also like to
mention a related work on a phase-change problem for the induction heating ([21])
in which displacement current is neglected and magnetic field is assumed to be
time-harmonic. However, none of the previous works deal with the fully coupled
system (1.1)-(1.3) with phase-change. One of the difficulties is that there is not
much known about the regularity of solutions to Maxwell’s equations with variable
coefficients. Another difficulty is the nonlinear term σ(x, u)|E|2 which only belongs
to L1(QT ). Moreover, the electric conductivity may have a jump discontinuity from
solid to liquid phase. In this paper we study the phase-change problem (1.1)-(1.6).
By using methods from [21] it is shown that under certain conditions on coefficients
of the system (1.1)-(1.3) the problem (1.1)-(1.6) has a global weak solution. The
global existence is also established for the case when the electric and magnetic fields
are assumed to be time-harmonic. Moreover, for one-space dimension we prove the
existence of a weak solution for σ(x, t, u) with linear growth in the u-variable. In
this paper the uniqueness is left out as an open question even for space dimension
one.

This paper is organized as follows. In section 2, we prove that the problem (1.1)-
(1.6) has a weak solution in QT for any T > 0. In section 3, we study the problem
for time-harmonic electric and magnetic fields and obtain the global solution for the
problem. In section 4, we study the problem for one-space dimension and prove the
existence of a weak solution for a more general function σ(x, u).

2. Global Existence of Weak Solutions. In this section we first define weak
solution to the problem and then consider an approximate problem by the standard
approximation for A(u) and σ(u). It is shown that the approximated problem has
a unique solution. Moreover, some uniform estimates for the approximate solution
are derived. Finally, we establish the global existence to the problem (1.1)-(1.5) by
using a compactness argument.

We list some basic assumptions for the coefficients and the known data.

H(2.1): (a)Let ε(x) and µ(x) be in L∞(Ω) with a positive lower bound

0 < r0 ≤ ε(x), µ(x) ≤ R0, x ∈ Ω,

where r0 and R0 are positive constants.
(b) σ(x, u) is non-negative and is bounded in Ω× [M,∞) for some large M > 0 and
σ0:

0 ≤ σ(x, u) ≤ σ0, uσ(x, u) ≤ σ0, (x, u) ∈ Ω× [M,∞).

(c) The functions kl(x, u) and ks(x, u) are of class C1+α(Ω×R) and bounded with
a positive lower bound:

0 < r0 ≤ ks(x, u), kl(x, u) ≤ R0, (x, u) ∈ Ω× [0,∞).

H(2.2): (a) Let u0(x) be in ∈ L∞(Ω) and E0(x),H0(x) ∈ L2(Ω)3.
(b) Let G(x, t) ∈ C([0, T ];H

1
2 (S)).

It is easy to see that the conditions on σ(x, u) are satisfied for σ(x, u) = 1
(1+u)p

with p ≥ 1 or σ(x, u) = a(x)e−u. For the reader’s convenience, we recall some
function spaces associated with Maxwell’s equations. Other Sobolev spaces are the
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same as in [10]. Let

H(curl, Ω) = {V ∈ L2(Ω)3 : ∇×V ∈ L2(Ω)3};
H0(curl, Ω) = {V ∈ H(curl, Ω) : N×V = 0 on ∂Ω}.

H(curl, Ω) is a Hilbert space equipped with inner product

(V,K) =
∫

Ω

[V ·K + (∇×V) · (∇×K)]dx.

Definition 2.1.A triple of functions (E(x, t),H(x, t), u(x, t)) is said to be a weak
solution to the problem (1.1)-(1.6), if

E(x, t),H(x, t) ∈ C([0, T ];L2(Ω)),

and u(x, t) ∈ L2(0, T ;H1(Ω))
⋂

C([0, T ];L2(Ω)), and they satisfy the following in-
tegral identities:

∫ T

0

∫

Ω

[−εE ·Ψt + σE ·Ψ]dxdt =
∫ T

0

∫

Ω

[H · (∇×Ψ)]dxdt+
∫

Ω

εE0 ·Ψ(x, 0)dx,

∫ T

0

∫

Ω

[−µH ·Φt + E · (∇×Φ)]dxdt =
∫

Ω

[µH0(x) ·Φ(x, 0)]dx,

∫ T

0

∫

Ω

[−A(u)ψt+k(x, u)∇u∇ψ]dxdt =
∫ T

0

∫

Ω

σ(x, u)|E|2ψdxdt+
∫

Ω

A(u0)ψdx

for any test vector functions Ψ,Φ ∈ L2(0, T ;H0(curl, Ω))
⋂

C([0, T ];L2(Ω)3) and
any test function ψ ∈ H1(0, T ;H1(Ω)) with Ψ(x, T ) = Φ(x, T ) = 0 and ψ(x, T ) = 0
on Ω.

Since the weak solution E(x, t) ∈ L2(Ω), we have to specify the boundary condi-
tion (1.4) in the weak sense. Note that

H(x, t) = H0(x)− 1
µ(x)

∫ t

0

∇×E(x, τ)dτ = H0(x)− 1
µ(x)

∇×W(x, t),

where

W(x, t) =
∫ t

0

E(x, τ)dτ.

It follows that H ∈ L2(Ω)3 implied ∇×W ∈ L2(Ω)3 for each a.e. fixed t ∈ [0, T ].
Consequently, the trace N×W(x, t) is well-defined on ∂Ω. We define

N× (E(x, t)−G(x, t)) = 0, (x, t) ∈ ST

if and only if

N× [W(x, t)−
∫ t

0

G(x, τ)dτ ] = 0, (x, t) ∈ ST .

Introduce a new function,

U(x, t) := K(x, u) =
∫ u

m

k(x, s)ds, (x, t) ∈ QT .

Then the assumption H(2.1)(b) implies that the inverse function u(x, t) = K−1(x,U)
exists. Consequently, Eq. (1.3) can be written in the weak sense as follows:

A∗(x,U)t −∆U = σ∗(x,U)|E|2, (x, t) ∈ QT ,
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where

A∗(x,U) =





K−1
s (x,U)− 1, if U < 0,

[−1, 0], if U = 0,
K−1

l (x,U), if U > 0,

and K−1
s (x,U),K−1

l (x,U) are the inverse functions of Ks(x, u),Kl(x, u), respec-
tively. Moreover,

σ∗(x,U) =





σ(x,K−1
s (x,U)), if U < 0,

[σ0, σ1], if U = 0,
σ(x,K−1

l (x,U)), if U > 0.

From now on, instead of using U(x, t), A∗(x,U) and σ∗(x,U), we will continue to
use notation u(x, t), A(x, u) and σ(x, u) for simplicity. By assumption H(2.2), there
exists an extension for G(x, t) such that G(x, t) ∈ C([0, T ];H1(Ω)3). Moreover,
from the assumption H(2.1)(c) there exists a constant a0 > 0 such that A′(x, u) :=
Au(x, u) ≥ a0 for all (x, u) ∈ Ω×R whenever u 6= m.

Let An(x, u) and σn(x, u) be smooth approximations of A(x, u) and σ(x, u),
respectively. Moreover, we require that

An(x, u) = A(x, u), σn(x, u) = σ(x, u), if |u−m| ≥ 1
n ,

A′n(x, u) ≥ r0

2
, An(x, u) → A(x, u), σn(x, u) → σ(x, u)

strongly in L2(Ω × [−M, M ]) for some large M > 0 as n → ∞ . We also make a
smooth approximation of u0(x), denoted by u0n(x), such that ∇u0n(x) = 0 on S
and u0n(x) → u0(x) strongly in L2(QT ).

Consider the following approximate system:

ε(x)Et + σn(x, u)E = ∇×H, (x, t) ∈ QT , (2.1)
µ(x)Ht +∇×H = 0, (x, t) ∈ QT , (2.2)
An(x, u)t −∆u = σn(x, u)|E|2, (x, t) ∈ QT , (2.3)
N×E(x, t) = N×G(x, t), (x, t) ∈ ST , (2.4)
un(x, t) = 0, (x, t) ∈ ST , (2.5)
E(x, 0) = E0(x),H(x, 0) = H0(x), u(x, 0) = u0n(x), x ∈ Ω. (2.6)

From Theorem 2.1 ([19]), the problem (2.1)-(2.6) has a unique weak solution

(En(x, t),Hn(x, t)) ∈ C([0, T ];H0(curl, Ω))× C([0, T ];H(curl, Ω))

and
un(x, t) ∈ C([0, T ];L2(Ω))

⋂
L2(0, T ;H1(Ω)).

Moreover,
En(x, t)−G(x, t) ∈ L∞(0, T ;H0(curl, Ω)).

Furthermore, since u0(x) ∈ L∞(Ω) and σn(x, u)|E|2 ≥ 0, it follows from the max-
imum principle that there exists a constant M0 > 0 independent of n such that
un(x, t) ≥ −M0 on QT .

Now we derive some uniform estimates.

Lemma 2.1.There exists constant C1 such that

sup
0≤t≤T

∫

Ω

[|En|2 + |Hn|2]dx ≤ C1,
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where C1 depends only on the known data.
Proof: For simplicity, we shall drop the subscript n for the solution (En,Hn, un)
whenever without causing confusion. To derive the estimate, we take the inner
product by E(x, t) −G to Eq. (2.1) and by H(x, t) to Eq. (2.2), respectively, to
obtain:

d

dt

1
2

∫

Ω

[ε|E|2]dx +
∫

Ω

σ(x, u)|E|2dx

=
∫

Ω

εE ·Gdx +
∫

Ω

[σE ·G]dx +
∫

Ω

[∇×H · (E−G)]dx,

d

dt

1
2

∫

Ω

[µ|H|2]dx +
∫

Ω

[∇×E ·H]dx = 0.

We add up the above equations and use the fact,
∫

Ω

∇×H · (E−G)dx =
∫

Ω

H · [∇× (E−G)]dx,

to obtain
d

dt

1
2

∫

Ω

[ε|E|2 + µ|H|2]dx +
∫

Ω

σ(x, u)|E|2dx

≤ C

∫

Ω

[|E|2 + |H|2]dx + C

∫

Ω

[|G|2 + |∇ ×G|2]dx,

where C depends only on L∞-bounds of ε(x), µ(x) and σ(x, u), but independent of
n.

Gronwall’s inequality yields the desired estimate. Q.E.D.

Lemma 2.2.There exists a constant C2 such that

sup
0≤t≤T

∫

Ω

|un|2dx +
∫ ∫

QT

|∇un|2dxdt ≤ C2,

where C2 depends only on known data.
Proof: Since A′n(x, u) ≥ r0

2 , the inverse of the function for v(x, t) := An(x, u)
exists, denoted by u = Bn(x, v). Then

∫ t

0

∫

Ω

An(u)tudxdt =
∫ t

0

[
d

dt

∫

Ω

∫ v

0

Bn(x, s)dsdx]dt

=
∫

Ω

∫ v

0

Bn(x, s)dsdx−
∫

Ω

∫ An(u0)

0

Bn(x, s)dsdx

≥ b0

∫

Ω

u2dx− C,

for some b0 > 0 since k0s ≤ Bn(x, s) ≤ k1(s + 1) from the assumption H(2.1)(c).
On the other hand, it is clear that

−
∫ t

0

∫

Ω

(∆u)udxdt =
∫ t

0

∫

Ω

|∇u|2dxdt.

Moreover, by Lemma 2.1 and the assumption H(2.1) we have
∫

Ω

σ(x, u)u|E|2dx ≤ C,

where C depends only on known data.
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We sum up the above estimates to obtain
∫

Ω

u2dx +
∫ t

0

∫

Ω

|∇u|2dxdt ≤ C2,

where C2 depends only on known data. Q. E. D.
To prove the existence of a weak solution for the problem (1.1)-(1.6), we need

the following lemma from [19].

Lemma 2.3.Suppose σn(x, t) → σ(x, t) strongly in L2(QT ). Let (En(x, t),Hn(x, t))
be the solution of the Maxwell equations:

εEt + σn(x, t)E = ∇×H, (x, t) ∈ QT ,

µHt +∇×E = 0, (x, t) ∈ QT ,

N×E = N×G, (x, t) ∈ ∂Ω× (0, T ],
E(x, 0) = E0(x),H(x, 0) = H0(x), x ∈ Ω.

Let (E(x, t),H(x, t)) be the solution of the above Maxwell equations where σn(x, t) is
replaced by σ(x, t). Then (En(x, t),Hn(x, t)) converges to (E(x, t),H(x, t)) strongly
in L2(QT ).

Theorem 2.4.The problem (1.1)-(1.6) possesses at least one weak solution in QT

for any T > 0.
Proof: From Lemma 2.1-2.2 and the weak compactness, we know, after extracting
a subsequence if necessary, that

En(x, t) → E(x, t),Hn(x, t) → H(x, t) in weak-* L∞(0, T ;L2(Ω)3),
un(x, t) → u(x, t)weakly in L2(0, T ;H1(Ω)).

Moreover, by applying the result of Lemma 5.1 from [15] we see that un(x, t) con-
verges to u(x, t) strongly in L2(QT ) and almost everywhere in QT .

We multiply Eq.(2.1) and Eq.(2.2) by test functions Ψ(x, t) and Φ(x, t), respec-
tively,

in H1(0, T ;H0(curl, Ω)) to obtain
∫ T

0

∫

Ω

[−εEn ·Ψt + σn(x, un)En ·Ψ]dxdt

=
∫ T

0

∫

Ω

[Hn · (∇×Ψ)dxdt +
∫

Ω

εE0(x) ·Ψ(x, 0)dx,

∫

Ω

[−µHn ·Φt + En · (∇×Φ)]dxdt =
∫

Ω

[µH0(x) ·Φ(x, 0)]dx.

After taking the limit as n →∞, we see that (E,H) satisfies the integral identities
in Definition 2.1 if we can prove Jn(x, t) := σn(x, un)En converges to J(x, t) =
σ(x, u)E(x, t) weakly in L2(QT ). We omit the proof here since it can be done by
using the same technique as for a more complicated term σn(x, un)|En|2 below (see
detailed proof below). Moreover, since En(x, t) −G(x, t) ∈ L∞(0, T ;H0(curl, Ω))
and Hn(x, t) ∈ L∞([0, T ];L2(Ω)), it follows that ∇×Wn(x, t) ∈ L∞([0, T ], L2(Ω)),
where

Wn(x, t) =
∫ t

0

En(x, τ)dτ.

Thus, the trace N×Wn is well defined on ∂Ω. Since N×Wn = N× ∫ t

0
G(x, τ)dτ

and N × [En −G] = 0 is equivalent to N × [Wn −
∫ t

0
G(x, τ)dτ ] = 0. It follows

that the boundary condition (1.4) holds.
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For any small γ > 0 by Egorof’s theorem there exists a subset Q ⊂ QT with
|QT \Q| < γ such that un(x, t) converges to u(x, t) uniformly on Q. Set Qγ =
{(x, t) ∈ Q : |u(x, t)−m| > γ}. Then, for (x, t) ∈ Qγ , if n is sufficiently large,

|un(x, t)−m| ≥ γ

2
≥ 1

n
.

On the other hand, for any (x, t) ∈ Q\Qγ

|un − u| ≤ |un −m|+ |u−m| ≤ 2γ,

provided that n is large enough.
Let φ be a smooth test vector function.∫ ∫

QT

[σn(x, un)|En|2 − σ(x, u)|E|2]φdxdt

=
∫ ∫

Q

[σn(x, un)|En|2 − σ(x, u)|E|2]φdxdt +
∫ ∫

QT \Q
[σn(x, un)|En|2 − σ(x, u)|E|2]φdxdt

:= I1 + I2.

It is clear that I2 → 0 as γ → 0 since |QT \Q| < γ.

I1 :=
∫ ∫

Qγ

[σ(x, un)|En|2 − σ(x, u)|E|2]φdxdt

+
∫ ∫

Q\Qγ

[σn(x, un)|En|2 − σ(x, u)|E|2]φdxdt := J1 + J2.

|J1| ≤ |
∫ ∫

Qγ

σ(x, un)[|En|2 − |E|2]|φ|dxdt|

+
∫ ∫

Qγ

|σ(x, un)− σ(x, u)|E|2]|φ|dxdt

:= J11 + J12.

It is clear that J11 → 0 since En converges to E strongly in L2(QT ) by Lemma 2.3
and σ(x, un) is bounded. On the other hand,

Qγ = [Qγ

⋂
{(x, t) ∈ Q : u(x, t) ≥ m + γ}]

⋃
[Qγ

⋂
{(x, t) ∈ Q : u(x, t) ≤ m− γ}].

Since un → u(x, t) a.e. on QT and uniformly in Q, it follows that on Qγ

⋂{(x, t) :
u(x, t) ≥ m+γ}, σ(x, un) = σl(x, un) → σl(x, u) a.e. and on Qγ

⋂{(x, t) : u(x, t) ≤
m− γ}, σ(x, un) = σs(x, un) → σs(x, u) a.e. as n →∞, by dominated convergence
theorem we see J12 → 0 as n →∞.

Next we prove J2 → 0 as n →∞. Without loss of generality, we assume

σs(x,m) ≤ σl(x,m), x ∈ Ω.

Then the approximation sequence σn(x, u) can be assumed to be increasing in u-
vaiable in a neighborhood of u = m. On Q\Qγ ,

m− γ ≤ un(x, t) ≤ m + γ,

As σn(x, u) is increasing in a neighborhood of u = m, we see

σn(x,m− γ) ≤ σn(x, un) ≤ σn(x,m + γ).
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If n is sufficiently large,

σn(x,m− γ) = σs(x,m− γ), σn(x,m + γ) = σl(m + γ).

By the weak convergence and the definition of σ(x,m), when γ → 0, n → ∞ we
have

σs(x,m−) ≤ σ(x,m) ≤ σ(x,m+), a.e.x ∈ Ω.

It follows that

|J2| ≤
∣∣∣∣∣
∫ ∫

Q\Qγ

[σn(x, un)(|En|2 − |E|2)|φ|dxdt

∣∣∣∣∣

+

∣∣∣∣∣
∫ ∫

Q\Qγ

(σn(x, un)− σ(x, u)|E|2]φ)dxdt

∣∣∣∣∣ → 0

as n →∞, γ → 0.
Next we consider the convergence for An(x, un). The weak compactness implies

that there exists a function β(x, t) ∈ L2(QT ) such that An(un) → β(x, t) weakly in
L2(QT ). We need to prove that the graph of β(x, t) ∈ A(u) a.e. on QT . From the
construction of An and convergence of un we see

β(x, t) = A(u) a.e. on Qγ .

On QT \Qγ ,

m− 2
n
≤ un ≤ m +

2
n

.

The monotonicity of A(u) implies

An(m− 2
n

) ≤ An(un) ≤ An(m +
2
n

),

which is the same as

A(m− 2
n

) ≤ An(un) ≤ A(m +
2
n

).

The weak convergence yields that for a.e. (x, t) ∈ QT \Qγ

m− 1 ≤ β(x, t) ≤ m.

Now we multiply Eq. (2.3) by any test function ψ ∈ H1(0, T ;H1(Ω)) with
ψ(x, T ) = 0 and then integrate over QT to obtain

∫ T

0

∫

Ω

[−An(x, un)ψt +∇un∇ψ]dx

=
∫ T

0

∫

Ω

σ(x, un)|En|2ψdxdt +
∫

Ω

A(x, u0n(x))ψ(x, 0)dx.

Finally, we take limit as n → ∞ to see that (E(x, t),H(x, t), u(x, t)) is indeed a
weak solution of the problem (1.1)-(1.6). Q.E.D.

3. Global Existence in Time-Harmonic Fields. For some industrial applica-
tions (see [12, 13]), the time scale for electromagnetic field and the heat conduction
is quite different. It is often to assume that the electric and magnetic fields are
time-harmonic. This leads to the following problem:

iµωH +∇×E = 0, x ∈ Ω, (3.1)
(iεω + σ)E = ∇×H, x ∈ Ω, (3.2)

where i represents the complex unit and ω is the frequency.
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For many applied problems, it is often convenient to use a unified approach by
assuming that (see [12]):

ε(x) = ε1(x) + iε2(x), µ(x) = µ1(x)− iµ2(x),

where ε1(x), ε2(x), µ1(x) and µ2(x) are positive functions.
It is clear that the system (3.1)-(3.2) is equivalent to the following one:

∇× [γ(x)∇×E] + r(x, u)E = 0, x ∈ Ω, (3.3)

where

γ(x) :=
1

µ(x)
=

µ1√
|µ1|2 + |µ2|2

+ i
µ2√

|µ1|2 + |µ2|2
,

r(x, u) := iω(iε(x)ω + σ(x, u)).

Consider the phase-change problem:

∇× [γ(x)∇×E] + r(x, u)E = 0, x ∈ Ω, (3.4)
A(x, u)t −∆u = σ(x, u)|E|2, (x, t) ∈ QT , (3.5)
N×E(x) = N×G(x), x ∈ ∂Ω, (3.6)
un(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ], (3.7)
u(x, 0) = u0(x), x ∈ Ω. (3.8)

Note that the coefficient σ(x, u) depends on t since u(x, t) is a function of t.
The solution E is also a function of t. However, this time variable for the heat
conduction is different from the time-variable in electromagnetic field.

A weak solution to (3.4)-(3.8) can be defined as follows.

Definition 3.1.A pair functions (E(x, t), u(x, t)) is called a weak solution of (3.4)-
(3.8) if E(x, t) ∈ H(curl, Ω), u(x, t) ∈ L2(0, T ;H1(Ω)) with N×(E−G) ∈ H0(curl, Ω)
and the following integral identities hold:

∫

Ω

[γ(∇×E) · (∇×Ψ) + r(x, u)E ·Ψ]dx = 0,

∫ ∫

QT

[−A(x, u)ψt+∇u∇ψ]dxdt =
∫ ∫

ΩT

σ(x, u)|E|2ψdxdt+
∫

Ω

A(x, u0)ψ(x, 0)dx

for any test functions Ψ,∈ H0(curl, Ω) and ψ ∈ H1(0, T ;H1(Ω)) with ψ(x, T ) = 0
on Ω.

H(3.1): (a) Let ε1(x), ε2(x), µ1(x) and µ2(x) be nonnegative and of class L∞(Ω)
with ε1 ≥ r0, ε2 ≥ 0. Let

0 ≤ σ(x, u) ≤ σ0, uσ(x, u) ≤ σ1, u ∈ [M,∞).

Moreover, there exists a constant σ1 such that

σ(x, u)− |ε2|L∞(Ω) ≥ σ1 > 0.

(b) Let G(x) ∈ H(curl, Ω).
H(3.2): Let A(x, u) be defined as in section 2 and satisfy the same condition as in
H(2.1)(c). Moreover, u0(x) ∈ L2(Ω) and nonnegative.

Theorem 3.1.Under the assumptions H(3.1)-(3.3), the problem (3.4)-(3.8) has a
global weak solution.
Proof: As the proof is quite similar to that of Theorem 2.4, we only give an outline.
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Step 1: Approximating the problem. By constructing smooth approximation for σ
and A(x, u), we consider the approximation problem:

∇× [γ(x)∇×E] + rn(x, u)E = 0, x ∈ Ω, (3.9)
An(x, u)t −∆u = σn(x, u)|E|2, (x, t) ∈ QT , (3.10)
N×E = N×G, x ∈ ∂Ω, (3.11)
un(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ], (3.12)
u(x, 0) = u0(x), x ∈ Ω. (3.13)

This problem has at least one weak solution (En(x, t), un(x, t)) ([21]).
Step 2: Deriving uniform estimates.
There exist constants C1 and C2 independent of n such that

∫

Ω

|∇ ×En|2dx +
∫

Ω

|En|2dx ≤ C1,

sup
0≤t≤T

∫

Ω

u2
ndx +

∫ ∫

QT

|∇un|2dxdt ≤ C2.

To prove the first estimate, we take the inner product by (E −G)∗, the complex
conjugate of E−G, to Eq.(3.9) to obtain

∫

Ω

γ(∇×E) · [∇× (E−G)∗] + rn(x, u)E · (E−G)∗]dx = 0. (3.14)

We first take the imaginary part of the above equation to obtain
∫

Ω

µ2√
µ2

1 + µ2
2

|∇ ×E|2dx +
∫

Ω

(σ − ε2)|E|2dx ≤ C,

where the constant C depends only on known data. By H(3.1), we obtain
∫

Ω

|E|2dx ≤ C

σ1
.

Now we take the real part of Eq. (3.15) and use the assumption H(3.1) again to
obtain ∫

Ω

|∇ ×E|2dx ≤ C,

where C depends only on known data.
The second estimate is the same as Lemma 2.3.

Step 3: Taking the limit. This step is almost identical to that of Theorem 2.4, we
omit it here. Q.E.D.

Remark 3.1: The assumption H(3.1) is only one type of sufficient condition to
ensure the global existence of a unique weak solution to time-harmonic Maxwell’s
equations. Other types of sufficient conditions can be found in [14, 22].

4. One-dimensional Problem. In this section we study the problem (1.1)-(1.5)
in one space dimension and prove that the weak solution exists globally for σ(x, t, u)
with linear growth.
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Let QT = {(x, t) : 0 < x < 1, 0 < t < T}. For one-space dimension, we
assume E(x, t) = {0, e(x, t), 0},H(x, t) = {0, 0, h(x, t)}. Then the system (1.1)-
(1.3) becomes the following form:

ε(x)et + σ(x, t, u)e = −hx, (x, t) ∈ QT , (4.1)
µ(x)ht + ex = 0, (x, t) ∈ QT , (4.2)
A(x, u)t − uxx = σ(x, t, u)|e(x, t)|2, (x, t) ∈ QT , (4.3)

where A(x, u) is the same as in Section 2.
By solving h(x, t) from Eq.(4.2), we see

h(x, t) = h0(x)− 1
µ(x)

wx(x, t), (x, t) ∈ QT ,

where

w(x, t) =
∫ t

0

e(x, τ)dτ.

For simplicity, we assume h0(x) = 0 on QT . It follows that Eq.(4.1)-(4.3) is
equivalent to the following system:

ε(x)wtt − (γ(x)wx)x + σ(x, t, u)wt = 0, (4.4)
A(x, u)t − uxx = σ(x, t, u)|wt(x, t)|2, (x, t) ∈ QT . (4.5)

The initial and boundary conditions are as follows:

w(0, t) = f1(t), w(1, t) = f2(t), ux(0, t) = ux(1, t) = 0, t ∈ [0, T ], (4.6)
w(x, 0) = 0, wt(x, 0) = e0(x), u(x, 0) = u0(x), 0 < x < 1. (4.7)

H(4.1): (a) Let ε(x), γ(x) satisfies H(2.1)(a). Let σ(x, t, u) satisfies

0 ≤ σ(x, t, u) ≤ σ0(1 + u), (x, t, u) ∈ QT × [0,∞).

(b) Let A(x, u) be defined as in section 2 and satisfy the same condition as in
H(2.1)(c).
(c) Let f1(t), f2(t) ∈ H1(0, T ) with f1(0) = f2(0) = 0 and e0(x), u0(x) ∈ L2(0, 1).

Theorem 4.1.Under the assumption H(4.1), the problem (4.4)-(4.7) has a weak
solution globally.
Proof: As for n−dimensional case, we make a smooth approximation for σ(x, t, u)
and A(x, u) and then consider the following approximate problem:

ε(x)wtt − (γ(x)wx)x + σn(x, t, u)wt = 0, (x, t) ∈ QT , (4.8)
An(x, u)t − uxx = σn(x, t, u)|wt(x, t)|2, (x, t) ∈ QT , (4.9)
w(0, t) = f1(t), w(1, t) = f2(t), ux(0, t) = ux(1, t) = 0, t ∈ [0, T ], (4.10)
w(x, 0) = 0, wt(x, 0) = e0(x), u(x, 0) = u0(x), 0 < x < 1. (4.11)

This problem has a unique weak solution ([19])

(wn(x, t), un(x, t)) ∈ H1(0, T ;H1(0, 1))× L2(0, T ;H1(0, 1)).

Again we will omit the subscript n. Now we derive some uniform estimates. First
of all, set

g(x, t) = (1− x)f1(t) + xf2(t), (x, t) ∈ QT .
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We multiply Eq.(4.8) by wt−gt(x, t) and then integrate over QT . Using the assump-
tion H(4.1) and the growth condition for σ(x, t, u), we obtain, after some routine
calculations, that

sup
0≤t≤T

∫ 1

0

[w2
t + w2

x]dx +
∫ T

0

∫ 1

0

σ(x, t, u)w2
t dxdt ≤ C1 + C2

∫ T

0

∫ 1

0

|u|dxdt,

where the constants C1 and C2 depend only on known data, but not on n.
On the other hand, we use an estimate from the paper [3] to obtain

∫ 1

0

|u|dx ≤ C2 + C4

∫ T

0

∫ 1

0

σ(x, t, u)|wt|2dxdt,

where the constants C3 and C4 depend only on known data.
It follows that∫ 1

0

|u|dx ≤ C3 + C4[C1 + C2

∫ T

0

∫ 1

0

|u|dxdt].

The above estimate holds if we replace T by any T ′ ∈ [0, T ], we can apply Gronwall’s
inequality to obtain

∫ 1

0

|u|dx ≤ C5,

where C5 depends only on known data.
Next, we multiply Eq. (4.9) by u and then integrate over QT ′ with T ′ ∈ (0, T ].

Using the same technique as in Section 2, we see∫ ∫

QT ′
An(x, u)tudxdt ≥ b0

∫

Ω

u2dx− C6,

∫ ∫

QT ′
uxxudxdt = −

∫ ∫

QT ′
u2

xdxdt

where b0 > 0 and C6 depend only on known data.
It follows that

∫ 1

0

u2(x, T ′)dx +
∫ T ′

0

∫ 1

0

u2
xdxdt ≤ C +

∫ T

0

∫ 1

0

|u|σ(x, t, u)w2
t dxdt

≤ C + C

∫ T

0

||u||2L∞(0,1)dt.

Now, by Sobolev’s embedding ([10]),

||u||2L∞(0,1) ≤ C||u||W 1,2(0,1)||u||L2(0,1) ≤ δ

∫ 1

0

[u2 + u2
x]dx + C(δ)

∫ 1

0

u2dx.

We combine the above estimates and choose δ sufficiently small to obtain
∫ 1

0

u2dx +
∫ T ′

0

∫ 1

0

u2
xdxdt ≤ C + C

∫ T ′

0

∫ 1

0

u2dxdt.

Again Gronwall’s inequality yields
∫ 1

0

u2dx +
∫ T ′

0

∫ 1

0

u2
xdxdt ≤ C8,

where the constant C8 depends only on known data.
With those uniform estimates, as for Theorem 2.4 we can extract a subsequence

from
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(wn(x, t), un(x, t)) and then take the limit to obtain a weak solution to the prob-
lem (4.4)-(4.7). We shall not repeat these steps here. Q.E.D.

Remark 4.1: It would be interesting to show that the temperature is continuous
over QT (see [1, 4]).

Remark 4.2: The uniqueness is an open question, even for one-space dimension.
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