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Abstract. The formulation and existence theory is presented for a system mod-
eling diffusion of a slightly compressible fluid through a partially saturated poroe-
lastic medium. Nonlinear effects of density, saturation, porosity and permeability
variations with pressure are included, and the seepage surface is determined by a

variational inequality on the boundary.

1. Introduction. We consider a system modeling diffusion of a slightly compress-
ible fluid through a partially saturated porous elastic medium Ω ⊂ R

3 for which
the deformations vary sufficiently slowly that the inertia effects are negligible. This
is the quasi-static assumption. We denote the fluid density by ρ(x, t) and its pres-
sure by p(x, t) for x ∈ Ω. Assume that the fluid is barotropic, i.e., the density
and pressure are related by the state equation ρ = ρ(p) , where the non-decreasing
constitutive function ρ(·) characterizes the type of fluid. The (small) displacement
from the position x ∈ Ω is denoted by u(x, t). In a homogeneous and isotropic
medium the partially saturated consolidation problem takes the form

−(λ+ µ)∇(∇ · u)− µ∆u +∇(χ(p) p) = F(x, t) , (1a)
∂

∂t
(ϕ(p)S(p)ρ(p) +∇ · u) +∇ · (ρ(p)q) = F (x, t) , (1b)

q = −k(p)(∇p+ ρ(p)g) , (1c)

consisting of the equilibrium equation for momentum conservation, the storage equa-
tion for mass conservation, and Darcy’s law for the filtration velocity, q. The func-
tion ϕ(·) is porosity, S(·) is saturation, and k(·) is the permeability for the laminar
flow in the medium. All of these functions are non-negative and pressure depen-
dent. The (linearized) strain tensor εkl(u) ≡ 1

2 (∂kul + ∂luk) provides a measure
of the local deformation of the body, and the term ∇ · u = εkk(u) represents the
fluid content due to the local volume dilation. The total stress σij is the sum the
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effective stress of the of the purely elastic isotropic structure given by Hooke’s law
and effective pressure stress of the fluid on the structure, hence,

σij = λδijεkk + 2µεij − δijχ(p) p ,

with positive Lamé constant λ and shear modulus µ. The Bishop parameter χ(·)
is a measure of the fraction of pore surface in contact with the fluid. Let the
negative pressure p0 < 0 denote the capillary tension. The saturation function
S(·) is monotone with S(p) = 1 for p ≥ p0, and the Bishop parameter is well
approximated in many situations by χ(p) ≈ S(p).

Corresponding to a pressure p(·, ·) for a solution of the system (1) in the context
of soil mechanics, the medium is fully saturated in the groundwater region, {x ∈
Ω : p(x, t) > p0}, while in the capillary fringe, {x ∈ Ω : p(x, t) < p0}, it is only
partially saturated. The phreatic surface {x ∈ Ω : p(x, t) = p0} is the unknown
interface that separates these regions. The boundary of Ω is given by the disjoint
union of the parts ΓD and Γfl, and Γfl is further written as the disjoint union of
ΓN and ΓU . The part Γfl is the flux boundary. On its complement, ΓD, the value
of pressure is given by the depth below the surface:

p(x, t) = d(x3), x = (x1, x2, x3) ∈ ΓD, (2a)

where d(·) > 0. On ΓN there is no flow, so we have a null normal flux:

ρ(p)q · n = 0, x ∈ ΓN , (2b)

where n is the unit outward normal on the boundary, ∂Ω. On ΓU we have

p ≤ 0, ρ(p)q · n ≥ 0, p ρ(p)q · n = 0, x ∈ ΓU . (2c)

Thus, the fluid pressure on the boundary cannot exceed the outside null pressure
of air, and there can be no flow into Ω. Also, p = 0 on the seepage surface which is
that part of ΓU where q ·n > 0, and there is no flow from the boundary above that,
where p < 0. The boundary conditions on ∂Ω will also involve the displacement or
the tractions σij(x, t)nj on ∂Ω, namely,

ui = 0 on Γ0 , σij(x, t)nj = ti on Γtr , 1 ≤ i ≤ 3, (2d)

where Γ0 and Γtr are given complementary subsets of the boundary. Finally, we
shall require that the initial value of the water content θ0(·) be specified,

ϕ(p(x, 0))S(p(x, 0))ρ(p(x, 0)) +∇ · u(x, 0) = θ0(x) , x ∈ Ω , (3)

where the initial displacement satisfies the constraint

−(λ+ µ)∇(∇ · u(x, 0))− µ∆u(x, 0) +∇(χ(p(x, 0)) p(x, 0)) = F(x, 0)

together with the boundary conditions (2d).
We have taken the model for partially saturated flow in which the saturation S(·)

is given by a continuous monotone function which increases from near zero to unity
in the vicinity of the capillary tension. The limiting case of saturated-unsaturated
flow in which this function is replaced by a step function corresponds to a free
boundary problem which describes large scale behavior in some sense, and this is
known as the dam problem. Mathematical treatment in the case of a rigid medium
began with the fundamental work of Baiocchi (1972) [5] and the extension to the
non-stationary case by Torelli (1975) [25]. More general situations including the
partially saturated case were treated by Gilardi (1979) [15], Visintin (1980) [26],
Hornung (1982) [17], Alt-Luckhaus (1983) [2] and Alt-Luckhaus-Visintin (1984) [3]
by working directly with the pressure. The case of fully saturated flow in an elastic
medium is the Biot problem of consolidation. See Biot (1941) [7] and (1955) [8],
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Rice and Cleary (1976) [20], and Huyakorn-Pinder (1983) [18]. The mathematical
issues of well-posedness for the linear quasi-static case were first studied in the
fundamental work of J.-L Auriault and Sanchez-Palencia (1977) [4]. They derived
a non-isotropic form of the Biot system by homogenization and then obtained a
strong solution. In the later paper of Zenisek (1984) [27] the weak solution is
obtained in the first order Sobolev space H1(Ω), so the equations hold in the dual
space, H−1(Ω) (see below). The existence, uniqueness, and regularity theory for
the Biot system together with extensions to include the possibility of viscous terms
arising from secondary consolidation and the introduction of appropriate boundary
conditions at both closed and drained interfaces were recently given in Showalter
(2000) [23]. In the following we shall extend the method developed there to include
both elastic deformation and partial saturation of the medium. This is the first
mathematical proof of existence to include both aspects. See Zienkiewicz et al.
(1980) [28] and (1999) [29] for additional perspectives in modeling and numerical
simulation.

1.1. The Semi-Linear Case. Assume that there is a constant α > 0 for which

(pχ(p))′ = αρ(p) k(p) , p ∈ R . (4)

This relates the Bishop parameter χ(·) to the density ρ(·) and relative permeability
k(·). Since the product ρ(·) k(·) is positive, this shows that pχ(p) is monotone.
Furthermore, when ρ(·) k(·) is monotone, it follows that pχ(p) is convex, so χ(·) is
monotone. Note that our assumption (4) requires that the pressure stress is given
by

∇(pχ(p)) = αρ(p) k(p)∇p ,

i.e., the pressure component of the Darcy velocity. This relates the flux to the
viscous resistance of the medium to the fluid flow.

The typical form for the permeability is a monotone function k(·) with k(p) = k0

for p > p0 and k(p) = k1 for p < p1, where p1 < p0 < 0 and 0 ≤ k1 < k0 are given.
As a check on the consistency of the assumption (4), let’s take k(·) to be given as
above and ρ = ρ0, a constant. Then choose α−1 = k0ρ0 to get

d

dp
(pχ(p)) =

k(p)
k0

.

We compute directly the following:
Case 1. Let k(p) = k0 for p0 ≤ p, with p0 < 0. Then χ(p) = 1 for p0 ≤ p.

Case 2. If k(p) =
(k0 − k1)
(p0 − p1)

(p− p1) , we get

χ(p) =
(k0 − k1)(p− p1)2

2k0(p0 − p1)p
+
p0

p
{1− 1

2
(1− k1

k0
)(1− p1

p0
)}

for p1 < p < p0.
Case 3. k(p) = k1 for p ≤ p1, with 0 ≤ k1 < k0 and p1 < p0. Then χ(p) =
k1

k0
+
const

p
for p ≤ p1. Note that

k1

k0
< 1.

This example shows that the Bishop parameter χ(·) resulting from the assump-
tion is quite similar to the saturation S(·), as expected, and its form will not be
significantly changed from modest perturbations in k(·) and ρ(·).
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1.2. The Unilateral Poro-Elasticity Problem. Let the function K(·) be de-
fined by K ′(p) = ρ(p) k(p) ,K(0) = 0. We make a change of variable, P = K(p),
and then in the preceding notation we write our system in the form

−(λ+ µ)∇(∇ · u)− µ∆u + α∇P = F(x, t) , x ∈ Ω , (5a)
∂

∂t
(b(P ) +∇ · u)−∇ · (∇P + g(P )) = F (x, t) , (5b)

ui = 0 on Γ0 , σij(x, t)nj = ti on Γtr , 1 ≤ i ≤ 3, (5c)

P (x, t) = d(x3), x = (x1, x2, x3) ∈ ΓD, (5d)
∂P

∂n
+ g(P ) · n = 0, x ∈ ΓN , (5e)

P ≤ 0,
∂P

∂n
+ g(P ) · n ≤ 0, P (

∂P

∂n
+ g(P ) · n) = 0, x ∈ ΓU , (5f)

where g(P ) ≡ ((ρ2 k) ◦ K−1(P ))g and σijnj = (λεkk − αP )ni + 2µεijnj . Note
that we have replaced K(d(·)) by d(·). We shall assume that the nonlinear function
b(·) ≡ (ϕ(·)S(·) ρ(·))◦K−1(·) is monotone and that both g(·) and b(·) are Lipschitz
continuous.

1.3. The Plan. We begin in Section 2 by introducing some notions from abstract
variational calculus and related operators. Then we construct the operators used to
formulate our general partially-saturated poro-elasticity problem in Section 3. This
extended model includes a new boundary condition which reflects the proportion
of sealed or exposed pores on the boundary. This proportion affects the fraction of
pressure stress and the fluid content due to dilation on the boundary. The statement
of this problem and a discussion of these more general boundary conditions are
given in Section 3.4. Our goal is to prove that there exists an appropriately regular
solution of this problem. This is stated as Theorem 4.1. First an abstract result
of DiBenedetto and Showalter (1981) [12] on the existence of solutions of doubly–
nonlinear evolution equations is recalled in Section 4. Then appropriate a priori
estimates are obtained in Section 5 in order to treat the special case with no gravity
as an application. Finally, this is extended to include gravity in the following Section
6.

2. Preliminaries.

2.1. Convex Analysis. We recall maximal monotone operators and related no-
tions. Let V be a Hilbert space with inner product (·, ·). If V ′ denotes the dual of
V , the Riesz representation theorem gives the isomorphism R : V → V ′ defined by

(u, v) = 〈Ru, v〉 ∀ u, v ∈ V ,

where 〈·, ·〉 is the duality pairing between V ′ and V . A subset A ⊂ V ×V ′, is called
monotone if

〈v2 − v1, u2 − u1〉 ≥ 0, [ui, vi] ∈ A, i = 1, 2.
Such an A is a (possibly) multivalued operator from V to V ′ for which v ∈ A(u)
means [u, v] ∈ A. The monotone A is maximal monotone if it has no monotone
proper extension in V ×V ′. This is equivalent to the condition that (R+λA)−1 ≡
Jλ, the resolvent of A, is a contraction defined on all of V ′ for any λ > 0. The
Yosida approximation of A is Aλ ≡ R(I − Jλ ◦ R)/λ : V → V ′; it is Lipschitz
continuous and monotone. If u ∈ V , then Aλ(u) ∈ A(Jλ(u)). If A is maximal
monotone, [un, vn] ∈ A, un ⇀ u (i.e., un converges weakly to u), vn ⇀ v, and
lim inf 〈un, vn〉 ≤ 〈u, v〉, then [u, v] ∈ A. If also lim sup 〈un, vn〉 ≤ 〈u, v〉, then



PARTIALLY SATURATED FLOW IN A POROELASTIC MEDIUM 407

we have lim 〈un, vn〉 = 〈u, v〉. A maximal monotone operator A on V induces a
maximal monotone operator (still denoted by A) defined on L2(0, T ;V ) by v ∈ A(u)
if v(t) ∈ A(u(t)) a.e. on [0, T ]. It is often convenient to interpret maximal monotone
operators as maps from V to 2V via the Riesz isomorphism R−1 : V ′ → V . We
shall use these two notions interchangeably.

A special class of maximal monotone operators is the class of subgradients. If
ψ : V → (−∞,∞] is a lower semicontinuous, proper, convex function, then the
subgradient ∂ψ ⊂ V × V ′ is defined by

∂ψ(u) = {g ∈ V ′ : 〈g, v − u〉 ≤ ψ(v)− ψ(u) ∀ v ∈ V } .

In this case, ∂ψ is maximal monotone. The conjugate of ψ is the convex function
ψ∗ : V ′ → R defined by

ψ∗(g) = sup
u∈V

(〈g, u〉 − ψ(u)) .

This function is chosen so that ∂ψ−1 = ∂ψ∗; thus g ∈ ∂ψ(u) if and only if u ∈
∂ψ∗(g), and this is equivalent to ψ(u) + ψ∗(g) = 〈u, g〉. We assume throughout
that ψ(0) ≤ 0 so that ψ∗(g) ≥ 0 for all g ∈ V ′. If g(·) ∈ H1(0, T ;V ′) and [u(·), g(·)]
belongs to the L2(0, T ;V ) realization of ∂ψ, then

d

dt
ψ∗(g(t)) =

(
d

dt
g(t), u(t)

)
a.e. on [0, T ] .

If K is a closed, convex, nonempty subset of V , then the indicator function
IK(·) of K, given by IK(v) = 0 if v ∈ K and IK(v) = +∞ otherwise, is convex,
proper, and lower-semi-continuous. Its subgradient is characterized by a variational
inequality : f ∈ ∂IK(w) means

f ∈ V ′, w ∈ K : f(v − w) ≤ 0 for all v ∈ K.

2.2. Sobolev Spaces. We describe the spaces which will be used to develop the
variational formulation of the system. Let Ω be a smoothly bounded region in R3,
and denote its boundary by Γ = ∂Ω. Denote by C∞0 (Ω) the space of infinitely
differentiable functions with support contained in Ω and by L2(Ω) the Lebesgue
space of (equivalence classes of) functions whose modulus squared is integrable on
Ω. For any w(·) ∈ L2(Ω) and j, 1 ≤ j ≤ 3, we denote by ∂jw its distributional
derivative,

〈∂jw, ϕ〉 = −
∫

Ω

w(x)∂jϕ(x) dx , ϕ ∈ C∞0 (Ω) .

Let Hk(Ω) be the Sobolev space consisting of those functions in L2(Ω) having
each of their partial derivatives through order k also in L2(Ω). The trace map
γ : H1(Ω) → L2(Γ) is the restriction to the boundary Γ denoted by γ(w) = w|Γ;
we shall denote the range of this map by Rg(γ) = H

1
2 (Γ). The space H1

0 (Ω) is
the closure in H1(Ω) of C∞0 (Ω), and it is characterized as the subspace of H1(Ω)
consisting of those functions whose trace is zero. The dual of H1

0 (Ω) is the space
H−1(Ω) of distributions on Ω which are first order derivatives of functions in L2(Ω).
Corresponding spaces of (vector) R3-valued functions will be denoted by bold face
symbols. For example, we denote the product space L2(Ω)3 by L2(Ω) and the cor-
responding triple of Sobolev spaces by H1(Ω) ≡ H1(Ω)3. Additional information
on these spaces will be recalled from Adams (1975) [1] or Temam (1979) [24] as
needed.
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3. The Initial-Boundary-Value Problem.

3.1. The Diffusion Operator. We specify the appropriate spaces and operators
to be used to describe the problem (5). Consider first the stationary diffusion
system

−∇ · (∇p(x) + g(p(x)) = F (x), x ∈ Ω, (6a)

p = d on ΓD,
∂p

∂n
+ g(p) · n = g on ΓN , (6b)

p ≤ 0,
∂p

∂n
+ g(p) · n ≤ g, and

p (
∂p

∂n
+ g(p) · n− g) = 0 on ΓU . (6c)

In order to obtain a weak formulation of this mixed unilateral boundary-value
problem, we define the Sobolev spaces and convex sets

V1 =H1(Ω), V0 =
{
p ∈ H1(Ω) : γ(p) = 0 on ΓD

}
,

C ≡{ψ ∈ H 1
2 (Γ) : ψ ≤ 0 on ΓU},

K ≡{p ∈ V1 : γ(p) = d on ΓD and γ(p) ≤ 0 on ΓU}
= {p ∈ d+ V0 : γ(p) ∈ C},

and operators A : V1 −→ V ′1 and G : V1 −→ V ′1 given by

Ap(q) =
∫

Ω

∇p(x) · ∇q(x) dx,

Gp(q) =
∫

Ω

g(p(x)) · ∇q(x) dx, p, q ∈ V1 .

For each p ∈ V1, we define A0p and G0p in H−1(Ω) to be the respective restrictions
of Ap and Gp in V ′1 to C∞0 (Ω). The corresponding distributions are given by the
operators

A0 p = −∇ · (∇p), G0 p = −∇ · (g(p)).

If p ∈ V1 then G0 p ∈ L2(Ω), since g(·) is Lipschitz continuous. If also A0p ∈ L2(Ω),
then the elliptic regularity theory implies that p ∈ H2

loc(Ω), and from the abstract
divergence theorem we obtain

Ap(q) = (A0p, q)L2(Ω) + 〈 ∂p
∂n

, γq〉Γfl
,

Gp(q) = (G0p, q)L2(Ω) + 〈g(p) · n, γq〉Γfl
, q ∈ V0 ,

where ∂p/∂n and g(p) · n are meaningful in the dual H
1
2 (Γfl)′ of H

1
2 (Γfl). These

identities display the decoupling of Ap and G p into their formal part on Ω and
boundary part on Γfl. Moreover, the unilateral boundary-value problem (6) is
equivalent to

p ∈ K : (Ap+ Gp)(q − p) ≥ f(q − p) for all q ∈ K , (7)

with the linear functional f(·) given by

f(q) =
∫

Ω

F (x) q(x) dx+
∫

Γfl

g(s)γ(q)(s) ds for all q ∈ V1 ,
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where F ∈ L2(Ω) and g ∈ L2(Γfl) are specified. To see this, let p be a solution
of (7). Then p ∈ K, and by setting q = p ± ϕ in (7) for ϕ ∈ C∞0 (Ω), we obtain
(A0 + G0)p = F ∈ L2(Ω), so p ∈ H2

loc(Ω) and (7) gives

〈 ∂p
∂n

+ g(p) · n− g, γ(q)− γ(p)〉Γfl
≥ 0 for all q ∈ K .

Since γ(q) is arbitrary on ΓN and can be chosen with γ(q) ≤ γ(p) or with γ(q) = 0
on ΓU , we obtain (6). The converse follows even more directly. Finally, we note
that the variational inequality (7) is equivalent to the subgradient equation

p ∈ d+ V0 : Ap+ G(p) + ∂IK(p) 3 f in V0
′ . (8)

This is the formulation of the unilateral boundary value problem (6) that will be
used below.

3.2. The Elasticity Operator. The Navier system of partial differential equa-
tions describes the small displacements of a purely elastic structure. The effective
stress σ′ij is the symmetric tensor that represents the internal forces on surface
elements. We have assumed this is given by Hooke’s law,

σ′ij = λδijεkk + 2µεij .

Let Γ0 and Γtr be the complementary subsets of the boundary as given above.
The stationary elasticity system is the strongly elliptic system of partial differential
equations given by

−∂jσ
′
ij = −∂j(λδij(∂kuk) + µ(∂iuj + ∂jui)) = Fi in Ω , (9a)

ui = 0 on Γ0 , σ′ijnj = ti on Γtr , (9b)

for each 1 ≤ i ≤ 3. Thus the boundary condition on Γ0 is a constraint on displace-
ment, and on Γtr it involves the surface density of forces or traction σ′(n) with i-th
component given by σ′ijnj and value determined by the unit outward normal vector
n = (n1, n2, n3) on Γtr.

In order to obtain the weak formulation of this boundary-value problem, we
define the Sobolev space

V =
{
v ∈ H1(Ω) : v = 0 on Γ0

}
of admissible displacements. We shall assume that measure (Γ0) > 0. The varia-
tional form of the elasticity system (9) is given by

u ∈ V : E(u)(v) = f(v) for all v ∈ V, (10)

where the elasticity operator E : V −→ V
′
and the linear functional f(·) in V′ are

defined by

E(u)(v) =
∫

Ω

(λ(∂kuk) (∂ivi) + 2µεij(u)εij(v)) dx

and f(v) =
∫

Ω

Fivi dx +
∫

Γtr

tivi ds.

The variational formulation (10) is equivalent to E(u) = f . It follows from the
Korn’s inequality and Poincare’s theorem that E(·)(·) is a V–coercive form, and
hence that E(·) is an isomorphism. (See Duvaut-Lions (1976) [13] or Ciarlet (1988)
[10].)

For u ∈ V we denote the restriction of E(u) ∈ V
′
to C∞

0 (Ω) by E0(u). This is
given by the distributions E0(u) ≡ −(λ+ µ)∇(∇ ·u)− µ∆u. Then we can recover
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the boundary-value problem (9) from E as follows. If the boundary is sufficiently
smooth, then the regularity theory for strongly elliptic systems shows that whenever
E0(u) ∈ L2(Ω) we have u ∈ H2

loc(Ω); see Ciarlet (1988) [10] or Fichera (1972) [14].
Then from the abstract divergence theorem there follows

E(u)(v) = (E0(u),v)L2(Ω) + 〈σ′ijnj , vi〉Γtr , v ∈ V, (11)

as before. This shows how E(·) decouples into the sum of its formal part E0(·) on
Ω and its boundary part σ′(n) on Γtr.

3.3. Pressure-Dilation Operators. Let the function β(·) ∈ L∞(Γtr) be given;
we shall assume that 0 ≤ β(s) ≤ 1, s ∈ Γtr. Then define the corresponding gradient
operator, ~∇ : L2(Ω)⊕ L2(Γtr) → V′, by

〈~∇[f, g], v〉 = −(f, ∂jvj)L2(Ω) + (g, (1− β)v · n)L2(Γtr) , v ∈ V , (12)

and the divergence operator, ~∇· : L2(Ω)⊕ L2(Γtr) → V ′1 , by

〈~∇ · [f , g], p〉 = −
∫

Ω

fj ∂jp dx+
∫

Γtr

β gjnjp ds , p ∈ V1.

The trace map gives a natural identification v 7→ [v, γ(v)|Γtr
] of V ⊂ L2(Ω) ⊕

L2(Γtr) , and this identification will be employed throughout the following. It also
gives the identification p 7→ [p, γ(p)|Γtr ] of V1 ⊂ L2(Ω) ⊕ L2(Γtr) . Recall that
V1 ≡ H1(Ω). We note that both of these identifications have dense range, and so
the corresponding duals can be identified. That is, we have

L2(Ω)⊕ L2(Γtr) ⊂ V′, L2(Ω)⊕ L2(Γtr) ⊂ V ′1 .

For smoother functions v ∈ V ⊂ L2(Ω)⊕ L2(Γtr) we obtain from Stokes’ Formula

〈~∇ · v, p〉 = −
∫

Ω

vj ∂jp dx+
∫

Γtr

β vjnj p ds

=
∫

Ω

∂jvj p dx−
∫

Γtr

(1− β)v · n p ds , p ∈ V1.

This shows that the restriction maps

~∇· : V → L2(Ω)⊕ L2(Γtr) (13)

and that the divergence has a formal part in Ω as well as a boundary part on Γtr.
We denote the part in L2(Ω) by ∇·, that is, ∇ ·v = ∂jvj , and the identity above is
indicated by

~∇ · v = [∇ · v, −(1− β)v · n] ∈ L2(Ω)⊕ L2(Γtr), v ∈ V. (14)

Moreover, this shows the dual of the restricted divergence (13) is the negative of the
gradient (12). Similarly, we find that the restriction of the gradient to V1 satisfies

〈~∇p, v〉 ≡
∫

Ω

∂jp vj dx−
∫

Γtr

β pnj vj ds , p ∈ V1, v ∈ V .

This consists of the formal part ∇p in Ω and the boundary part −β pn on Γtr, and
we denote this representation by

~∇p = [∇p, −β pn] ∈ L2(Ω)⊕ L2(Γtr), p ∈ V1. (15)
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The preceding constructions are summarized in the following diagram.

L2(Ω)⊕ L2(Γtr)
~∇·=−~∇

′

−→ V
′

1⋃ ⋃
V

~∇·−→ L2(Ω)⊕ L2(Γtr)
~∇=−(~∇·)

′

−→ V
′⋃ ⋃

V1

~∇−→ L2(Ω)⊕ L2(Γtr)

3.4. The Evolution system. Let IK(·) be the indicator function of the closed
convex set K. With the preceding notation, we can write our system in the form

u(t) ∈ V : E(u(t)) + α~∇(p(t)) = f(t) in V′ , (16a)
d

dt
(b(p(t)) + ~∇ · u(t)) +Ap(t) + G(p(t))+∂IK(p(t)) 3 f(t) in V ′0 , (16b)

with the linear functionals f(·) and f(·) given by

f(t)(v) =
∫

Ω

F(x, t) · v(x) dx+∫
Γtr

t(s, t) · γ(v)(s) ds for all v ∈ V ,

f(t)(q) =
∫

Ω

F (x, t) q(x) dx+
∫

Γfl

g(s, t)γ(q)(s) ds for all q ∈ V0 ,

where F(t) ∈ L2(Ω), t(t) ∈ L2(Γfl), F (t) ∈ L2(Ω), and g(t) ∈ L2(Γfl) are specified
for each t > 0. Of course, it is implicit in (16b) that p(t) ∈ K.

We shall display the system (16) explicitly in its parts as an initial-boundary-
value problem for the system of partial differential equations and boundary condi-
tions. This follows by splitting each of the operators in this system into its respective
formal part on Ω and boundary part on ∂Ω. The calculation is accomplished as
above, and the equivalent system (16) takes the form

−(λ+ µ)∇(∇ · u(t))− µ∆u(t) + α∇p(t) = F(t) and (17a)
∂

∂t
(b(p(t)) +∇ · u(t))−∇ · (∇p(t) + g(p(t))) = F (t) in Ω , (17b)

u(t) = 0 on Γ0, σ′(n)− αβp(t)n = t(t) on Γtr , (17c)

p(t) = d on ΓD, −(1− β)u̇(t) · n +
∂p(t)
∂n

+ g(p)·n = g(t) on ΓN , (17d)

−(1− β)u̇(t) · n +
∂p(t)
∂n

+ g(p) · n + ∂IC(p(t)) 3 g(t) on ΓU , (17e)

for each t > 0. The given functions F(·) and t(·) are the distributed forces in
L2(Ω) and L2(Γtr), and F (·) and g(·) are distributed fluid sources in L2(Ω) and
L2(Γfl), respectively. Note that equation (16a) is equivalent to the pair (17a) and
(17c), because p(t) belongs to V1. Furthermore, for the strong solution, we have
sufficient additional regularity to guarantee that A0(p(t)) ∈ L2(Ω), and then (16b)
is equivalent to (17b), (17d), and (17e). The system (17) contains the original
problem (5) as a special case with β = 1 and g(·) = 0.

Let’s consider the meaning of the boundary conditions in the context of this
poroelasticity model. The equations (17c) consist of the complementary pair re-
quiring null displacement on the clamped boundary, Γ0, and a balance of forces
on the traction boundary, Γtr. The boundary conditions (17d) require a specified
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pressure on ΓD and a balance of fluid mass flux on ΓN . Finally, the subgradient
inclusion (17e) is equivalent to the variational inequality

p(t) ≤ 0, −(1− β)u̇(t) · n +
∂p(t)
∂n

+ g(p(t)) · n ≤ g(t), and

p(t) (−(1− β)u̇(t) · n+
∂p(t)
∂n

+ g(p(t)) · n− g(t)) = 0 on ΓU ,

and this determines the seepage surface as described in the Introduction. The
function β(·) is defined on the traction boundary Γtr, and it specifies the surface
fraction of the pores which are sealed. For these the effective pressure contributes to
the traction along Γtr. The remaining portion 1−β(·) of the pores are exposed along
Γtr, and these contribute to the flux. On any portion of Γtr which is completely
exposed, that is, where β = 0, only the effective or elastic component of stress is
specified, since there the fluid pressures do not contribute to the support of the
matrix. On the flux boundary Γfl there is a transverse flow that is given by the
input g(·) and the relative normal velocity of the structure. This input could be
specified in the form g(t) = −(1−β)v(t) ·n, where v(t) is the given velocity of fluid
on Γfl. In this case (17d) shows that the flux q · n = −∂p(t)/∂n − g(p(t)) · n is
proportional to the exposed fraction of pores, 1−β, so a completely sealed portion
of ΓN is impermeable.

4. The Cauchy Problem. In order to resolve the system (16), we invert E and
substitute

u(t) = −E−1(α~∇p− f(t)) ,
to obtain the equivalent single equation

d

dt
(b(p(t))− ~∇ ·E−1(α~∇p(t)− f(t)))

+A(p(t)) + G(p(t)) + ∂IK(p(t)) 3 f(t) in V ′0 . (18)

We can simplify the form of this equation. Recall that the convex set is given by
K = {q ∈ d+ V0 : γ(q) ∈ C}. By introducing the translate of this set, namely,

K0 ≡ {q ∈ V0 : γ(q + d) ∈ C} ,
and by making the corresponding change of variable, i.e., by replacing the solution
p(·) in the above by its translate, p(·) + d, one obtains the equivalent equation

d

dt
(b(p(t) + d)− ~∇ ·E−1(α~∇(p(t) + d)− f(t)))

+A(p(t) + d) + G(p(t) + d) + ∂IK0(p(t)) 3 f(t) in V ′0 .

By adjusting the term f(·) appropriately, it is clear that we may assume without
loss of generality that f ′(·) = 0 and eliminate the term A(d) in the above. This
gives the abstract evolution equation

d

dt
(B(p(t))) +A(p(t)) + G(p(t) + d) 3 f(t) in V ′0 (19)

in which the operators B(·) ≡ b(· + d) − ~∇ · E−1 α~∇(·) on L2(Ω) ⊕ L2(Γtr) and
A(·) ≡ A(·) + ∂IK0(·) from V0 to its dual V ′0 are monotone.

In the remaining sections we shall prove the following existence result for the
system (16).
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Theorem 4.1. Assume that the data in the system (16) satisfies the following:
(B) The function b(·) : R→ R is non-decreasing and Lipschitz continuous. (Hence,

the operator B is monotone and Lipschitz continuous on L2(Ω)⊕ L2(Γtr).)
(G) The gravitation term g(·) : R→ R

3 is Lipschitz continuous.
(F) The forcing term satisfies f(·) ∈ H1(0, T ;V ′0), and the boundary pressure is

determined by a d ∈ H2(Ω) which satisfies γ(d) ∈ C. (The first of these
requires that F (·) ∈ H1(0, T ;V ′0), γ∗g(·) = g(·) ◦ γ ∈ H1(0, T ;V ′0), and
E−1(f(·)) ∈ H2(0, T ;L2(Ω)
⊕ L2(Γtr)). The second means that the boundary data can be extended to
a pressure function on Ω which satisfies the unilateral constraint on ΓU .)

(I) There is a p0 ∈ K satisfying B(p0) = θ0.
Then the Cauchy problem for (19) has a solution p(·), w(·) which satisfies

p(·) ∈ L∞(0, T ;V0) , B(p(·)) ∈ H1(0, T ;L2(Ω)⊕ L2(Γtr)))

w(·) ∈ L2(0, T ;V ′0) , w(·) ∈ ∂IK0(p(·)) a.e. on [0, T ] ,
d

dt
B(p(t)) +A(p(t)) + G(p(t) + d) + w(t) = f(t) a.e. on [0, T ] , and

B(p(0)) = θ0 .

Furthermore, p(·) ∈ H1(0, T ;L2(Ω)), so A0(p(·)) ∈ L2(0, T ;L2(Ω)) and the solution
is strong. That is, the translate p(·)−d is a solution of the evolution equation (18),
and this is equivalent to the system (17).

4.1. Implicit Evolution Equations. We first recall some existence results from
[12] which will be extended in order to apply to the gravity-free case of (19). (Also
see [16].) Let W and V be Hilbert spaces for which the embedding ι : V ↪→ W is
compact. Denote the dual restriction operator by ι′ : W ′ → V ′. Let ϕ : W → R

be a proper, convex, and lower semicontinuous function, and suppose B is given
by B ≡ ι′ ◦ ∂ϕ ◦ ι. We also assume that ∂ϕ ◦ ι : V → W ′ is bounded. Let
A : V → V ′ be maximal monotone and bounded. Denote by R the Riesz map
V → V ′. Fix f ∈ L2(0, T ;V ′) and [u0, v0] ∈ B. Then for each λ > 0, there is a pair
uλ ∈ H1(0, T ;V ), vλ ∈ H1(0, T ;V ′) such that

vλ(t) ∈ B(u(t)) for all t ∈ [0, T ] ,
d

dt
(Ruλ(t) + vλ(t)) +Aλ(uλ(t)) = f(t),

Ruλ(0) + vλ(0) = Ru0 + v0 .

By standard techniques, one obtains a priori estimates that show the norms

‖uλ‖L∞(0,T ;V ) , ‖vλ‖L∞(0,T ;V ′) , ‖Jλ(Ruλ)‖L∞(0,T ;V ) ,

‖Aλ(uλ)‖L∞(0,T ;V ′) , ‖u̇λ‖L2(0,T ;V ) , ‖Ru̇λ‖L2(0,T ;V ′)

are bounded independent of λ > 0. Choose a subsequence (still denoted by subscript
λ) for which

uλ ⇀ u, u̇λ ⇀ u̇ in L2(0, T ;V ) ,

vλ ⇀ v, v̇λ ⇀ v̇ in L2(0, T ;V ′) , and

Aλ(uλ) ⇀ w in L2(0, T ;V ′) .

Note that, since {vλ} and {uλ} are uniformly equicontinuous functions, it follows
that

uλ(t) → u(t) and vλ(t) → v(t) for all t ∈ [0, T ] .
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These limits are shown to be a solution of the following regularized problem.

Theorem 4.2. The triple [u, v, w] satisfies

u ∈ H1(0, T ;V ) , v ∈ H1(0, T ;V ′) , w ∈ L2(0, T ;V ′) ,

v ∈ B(u) , w ∈ A(u) a.e. on [0, T ] ,
d

dt
(Ru(t) + v(t)) + w(t) = f(t) a.e. on [0, T ] , and

R(u(0)) + v(0) = R(u0) + v0 .

The second existence result of [12] concerns the corresponding (possibly) de-
generate Cauchy problem. With the additional hypotheses that the realizations
B : L2(0, T ;V ) → L2(0, T ;V ′) and A : L2(0, T ;V ) → L2(0, T ;V ′) are bounded,
and that the solutions to the λ-regularizations

vλ ∈ B(uλ), wλ ∈ A(uλ) a.e. on [0, T ] ,
d

dt

(
λRuλ(t) + vλ(t)

)
+ wλ(t) = f(t) a.e. on [0, T ], and

λR(uλ(0)) + vλ(0) = λR(u0) + v0 ,

satisfy ‖uλ‖L2(0,T ;V ) ≤M for some M independent of λ, additional a priori bounds
are derived, from which it follows that some subsequence (still denoted by subscript
λ) satisfies

uλ ⇀ u in L2(0, T ;V )

vλ ⇀ v and v̇λ ⇀ v̇ in L2(0, T ;V ′)

wλ ⇀ w in L2(0, T ;V ′) .

Again these limits are shown to be a solution of the following problem.

Theorem 4.3. The triple [u, v, w] is a solution to

u ∈ L2(0, T ;V ) , v ∈ H1(0, T ;V ′) , w ∈ L2(0, T ;V ′) ,

v ∈ B(u) , w ∈ A(u) a.e. on [0, T ] ,
d

dt
v(t) + w(t) = f(t) a.e. on [0, T ] , and

v(0) = v0 .

4.2. A-priori estimates. We would like to apply Theorem 4.3 to the monotone
case of our system (19), that is, the special case of G(·) = 0. For this we set
W ≡ L2(Ω) ⊕ L2(Γtr) and V ≡ V0. But this fails to meet the hypotheses of
Theorem 4.3 because the operator A(·) is not bounded. However, we shall obtain
directly in Section 5 an a priori bound on A(pλ(·)) for any solution pλ(·) of the
λ-regularization of (19). Thereby, we obtain a weak solution for our problem with
G(·) = 0 from the existence result of Theorem 4.3. Moreover, we also get an estimate
on ‖ d

dtB(p)‖L2(0,T ;W ) , and this shows that the solution is strong. Then in Section
6 we shall extend this to the full equation (19) with gravity.

5. The Monotone Case. We consider first the case of G ≡ 0. The initial-value
problem is given by {

d

dt
B(p(t)) +A(p(t)) 3 f(t) in V ′,

B(p(0)) = θ,
(20)
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where

〈B(p), q〉 = (b(p+ d), q)L2(Ω) + α〈E−1(~∇p), ~∇q〉, p, q ∈W,
〈A(p), q〉 = (∇p,∇q)L2(Ω) + (∂IK0(p), q)L2(ΓU ), p, q ∈ V,

f(t) = (F (t), g(t)) ∈W .

5.1. Preliminaries. Let ϕB : W → R be the convex functional

ϕB(q) =
∫

Ω

[b∗(q + d)− b∗(d)]dx− α

2
〈~∇ ·E−1~∇q, q〉, q ∈W,

where b∗(z) =
∫ z

0
b(s)ds. Then we have ∂ϕB = B. Let ϕ∗B : W → R be the convex

conjugate of ϕB . Then ϕ∗B(q) ≥ 0 for all q ∈W , since ϕB(0) = 0.
Define the convex functional ϕA : V → [0,∞] by

ϕA(q) =
1
2
(∇q,∇q)L2(Ω) + IK0(q), q ∈ V.

Then ∂ϕA = A : V → V ′ is monotone but unbounded.
The following properties of A and B will be used below.

Lemma 1. Assume γ(d) ∈ C. Then we have (cf. [12], [22])

ϕ∗B(B(p)) = 〈B(p), p〉 − ϕB(p), p ∈W ; (21a)

〈w, p〉 ≥ ϕA(p) ≥ c‖p‖2V , w ∈ A(p), p ∈ V ; (21b)

〈 d
dt
B(p), p〉 =

d

dt
ϕ∗B(B(p)) if B(p) ∈ H1(0, T ;W ); (21c)

〈w, dp
dt
〉 =

d

dt
ϕA(p) if w ∈ A(p), p ∈ H1(0, T ;V ); (21d)

‖p‖2L2(Ω) ≤ Cϕ∗B(B(p)), p ∈W ; (21e)

‖p1 − p2‖L2(Ω) ≤ C‖B(p1)− B(p2)‖W , p1, p2 ∈W. (21f)

Proof. We let c > 0 denote a generic constant. First of all, we claim that

−〈~∇ ·E−1(~∇p), p〉 ≥ c‖p‖2L2(Ω), p ∈W. (22)

In fact, we have

−〈~∇ ·E−1(~∇p), p〉 = 〈E−1(~∇p), ~∇p〉 ≥ c‖~∇p‖2V ′ ≥ c‖p‖2L2(Ω),

since E : V → V′ is isomorphism. Next, according to (21a) and (22),

ϕ∗B(B(p)) = (b(p+ d), p)L2(Ω) −
∫

Ω

[b∗(p+ d)− b∗(d)]dx

− α

2
〈~∇ ·E−1(~∇p), p〉

≥ −α
2
〈~∇ ·E−1(~∇p), p〉 ≥ c‖p‖2L2(Ω),

since b(·) = b∗′(·) is non-decreasing. Also, from the monotonicity of b(·) and (22),
we obtain

〈B(p1)− B(p2), p1 − p2〉

≥ −〈~∇ ·E−1~∇(p1 − p2), p1 − p2〉
≥ c‖p1 − p2‖2L2(Ω), p1, p2 ∈W,

which yields the estimate

‖p1 − p2‖L2(Ω) ≤ C‖B(p1)− B(p2)‖W ,



416 R.E. SHOWALTER AND NING SU

and then (21f). The remaining identities are standard from convex analysis.

5.2. Uniform Estimates. Let p(·) be a regular solution of (20). Then for some
w(t) ∈ A(p(t)) we have

d

dt
B(p(t)) + w(t) = f(t) in V ′, t ∈ (0, T ]. (23)

Applying (23) to p(t) ∈ V and integrating over [0, τ ], τ ∈ (0, T ], lead to∫ τ

0

(〈 d
dt
B(p(t)), p(t)〉+ 〈w(t), p(t)〉)dt =

∫ τ

0

〈f(t), p(t)〉dt

≤ ε

∫ τ

0

‖p(t)‖2V dt+ C(ε)
∫ τ

0

‖f(t)‖2V ′dt, (24)

and then from (21b) and (21c) we obtain

ϕ∗B(B(p(τ))) +
∫ τ

0

‖p(t)‖2V dt ≤ C

(
ϕ∗B(B(p0)) +

∫ τ

0

‖f(t)‖2V ′dt

)
.

By (21e) in Lemma 1 this implies

‖p(τ)‖2L2(Ω) +
∫ τ

0

‖p(t)‖2V dt ≤ C

(
ϕ∗B(B(p0)) +

∫ τ

0

‖f(t)‖2V ′dt

)
. (25)

For the next estimates we begin with the equality∫ τ

0

(
〈 d
dt
B(p),

dp

dt
〉+ 〈w, dp

dt
〉
)
dt =

∫ τ

0

〈f, dp
dt
〉dt. (26)

Since B : W →W is monotone and Lipschitz continuous, we have∫ τ

0

〈 d
dt
B(p),

dp

dt
〉dt ≥ c

∫ τ

0

‖ d
dt
B(p)‖2W dt,

with c > 0. By (21d),∫ τ

0

〈w, dp
dt
〉dt = ϕA(p(τ))− ϕA(p0) ≥ c‖p(τ)‖2V − ϕA(p0).

Also we have ∫ τ

0

〈f, dp
dt
〉dt = 〈f(τ), p(τ)〉 − 〈f(0), p0〉 −

∫ τ

0

〈df
dt
, p〉dt

≤ C(ε1)
(
‖p0‖2V + ‖f(0)‖2V ′ + ‖f(τ)‖2V ′

)
+ ε1‖p(τ)‖2V + |

∫ τ

0

〈df
dt
, p〉dt|,

so it follows that∫ τ

0

‖ d
dt
B(p)‖2W dt+ ‖p(τ)‖2V (27)

≤ C

(
‖p0‖2V + ϕ(p0) + ‖f(0)‖2V ′ + ‖f(τ)‖2V ′ + |

∫ τ

0

〈df
dt
, p〉dt|

)
.
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Thus, if f ∈ H1(0, T ;V ′), then in view of (25) we obtain from (27),∫ τ

0

‖ d
dt
B(p)‖2W dt+ ‖p(τ)‖2V (28)

≤C
(
‖p0‖2V + ϕ(p0) + ‖f(0)‖2V ′ + ‖f(τ)‖2V ′

)
+ ε

∫ τ

0

‖df
dt
‖2V ′dt+ C(ε)

(
ϕ∗B(B(p0)) +

∫ τ

0

‖f‖2V ′dt
)
.

These estimates hold likewise for the corresponding regularized equations, so we
see that it is unnecessary to assume separately that the operator A(·) is bounded.

6. Gravity-driven Flow. Consider the Cauchy problem

d

dt
B(p(t)) +A(p(t)) + G(p(t)) 3 f(t) in V ′, (29a)

B(p(0)) = B(p0) in V ′. (29b)

To deal with the gravity term, we view it as a perturbation to the gravity-free equa-
tion and then use a “delay” approximation to establish the existence of solutions.
More precisely, we shall construct a sequence of approximate solutions inductively
as follows:

Let N be a positive integer, and h = T/N . Consider the following problem with
h-delay:

d

dt
B(p(t)) +A(p(t)) 3 f(t)− G(p(t− h)), t ∈ (0, T ], (30a)

B(p(t)) = B(p0), t ∈ (−h, 0]. (30b)

It can be solved inductively for t ∈ [(k− 1)h, kh], k = 1, 2, · · · , N . Denote by ph(·)
the solution, and set ph(t) = p0 for t ∈ (−h, 0]. Supposing ph(t), t ∈ ((k− 2)h, (k−
1)h], to be given, we shall find a pair ph(t), wh(t), satisfying wh(t) ∈ A(ph(t)) and

d

dt
B(ph(t)) + wh(t) = f(t)− G(ph(t− h)) a.e. t ∈ ((k − 1)h, kh], (31a)

lim
t→(k−1)h+0

B(ph(t)) = B(ph((k − 1)h)), (31b)

for k = 1, 2, · · · , N . Then we shall show that the sequence {ph} has a convergent
subsequence and obtain a solution to (29).

To achieve this, we shall show successively that
(a) there exists such a sequence ph(·) ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;V );
(b) {ph(·)} is bounded in H1(0, T ;L2(Ω)) and L∞(0, T ;V ); and
(c) there exists a limit function p(·) which is a solution of (29).

6.1. Existence for the delay equation. As g(·) is Lipschitz continuous, we note
that G : L2(Ω) → V ′ is Lipschitz continuous, and for any a, b ∈ R satisfying a < b,
G : H1(a, b;L2(Ω)) → H1(a, b;V ′) is bounded. In fact, we have, for any q ∈ V ,

|〈G(p), q〉| = |(g(p+ d),∇q)L2(Ω)| ≤ ‖g(p+ d)‖L2(Ω)‖q‖V

≤ C
(
1 + ‖p‖L2(Ω)

)
‖q‖V ,

|〈G(p1)− G(p2), q〉| = |(g(p1 + d)− g(p2 + d),∇q)L2(Ω)|
≤ C‖p1 − p2‖L2(Ω)‖q‖V ,
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which gives

‖G(p)‖V ′ ≤ C(1 + ‖p‖L2(Ω)), (32)
‖G(p1)− G(p2)‖V ′ ≤ C‖p1 − p2‖L2(Ω), (33)

‖ d
dt
G(p)‖L2(a,b;V ′) ≤ C‖dp

dt
‖L2(a,b;L2(Ω)). (34)

In particular, if ph ∈ H1((k− 2)h, (k− 1)h;L2(Ω)), then G(ph) ∈ H1((k− 2)h, (k−
1)h;V ′), and hence, by the preceding result the problem (31a)–(31b) indeed has at
least one solution pair

ph ∈ H1(0, T ;L2(Ω)) ∩ L∞((k − 1)h, kh;V ),
wh ∈ L2((k − 1)h, kh;V ′).

Accordingly, the problem (31) has a solution ph ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;V ).
Furthermore, from the strong monotonicity estimate (21f) for B|L2(Ω) : L2(Ω) →
L2(Ω) there follows

‖ d
dt
G(p)‖L2(a,b;V ′) ≤ C‖ d

dt
B(p)‖L2(a,b;W ). (35)

This will be used in the boundedness estimates of {ph(·)}.

6.2. Estimates on {ph}. We recall the estimates (25) and (28) in the case when
G(p) = 0, that is, for any τ ∈ (0, T ],

‖p(τ)‖2L2(Ω) +
∫ τ

0

‖p‖2V dt ≤ C

(
1 +

∫ τ

0

‖f‖2V ′dt

)
, (36)

∫ τ

0

‖ d
dt
B(p)‖2W dt+ ‖p(τ)‖2V ≤ ε

∫ τ

0

‖df
dt
‖2V ′dt (37)

+ C(ε)
(

1 + ‖f(τ)‖2V ′ +
∫ τ

0

‖f‖2V ′dt

)
.

Now replacing f(t) by f(t)−G(ph(t−h)) in (36) and (37), and using (32) and (35),
we obtain

‖ph(τ)‖2L2(Ω) +
∫ τ

0

‖ph‖2V dt ≤ C

(
1 +

∫ τ

0

‖ph(t− h)‖2L2(Ω)dt

)
, (38)

∫ τ

0

‖ d
dt
B(ph)‖2W dt+ ‖ph(τ)‖2V ≤ ε

∫ τ

0

‖ d
dt
B(ph(t− h))‖2W dt (39)

+C(ε)
(

1 + ‖ph(τ − h)‖2L2(Ω) +
∫ τ

0

‖ph(t− h)‖2L2(Ω)dt

)
.

Note that ph(t) = p0 for t ∈ (−h, 0], so∫ τ

0

‖ph(t− h)‖2L2(Ω)dt = h‖p0‖2L2(Ω) +
∫ τ−h

0

‖ph(t)‖2L2(Ω)dt

≤ C

(
1 +

∫ τ

0

‖ph(t)‖2L2(Ω)dt

)
.

Thus, applying Gronwall’s lemma to (38) yields

‖ph(τ)‖2L2(Ω) ≤ C, τ ∈ (0, T ]. (40)
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Again the fact that ph(t) = p0 for t ∈ (−h, 0] leads to∫ τ

0

‖ d
dt
B(ph(t− h))‖2W dt ≤

∫ τ

0

‖ d
dt
B(ph(t))‖2W dt.

Substituting into (39), and taking (40) into account, we obtain∫ τ

0

‖ d
dt
B(ph)‖2W dt+ ‖ph(τ)‖2V ≤ C. (41)

That is, {B(ph)} and {ph} are bounded, respectively inH1(0, T ;W ) and L∞(0, T ;V ).
Furthermore, {G(ph)} is bounded in L2(0, T ;V ′), and hence, in terms of the equa-
tion (31a), {wh)} is also bounded in L2(0, T ;V ′). In addition, {ph} is bounded in
H1(0, T ;L2(Ω)), since B|L2(Ω) : L2(Ω) → L2(Ω) is strongly monotone.

6.3. The Limit. Now we may select subsequences of {ph}, {B(ph)}, and {wh},
denoted by {ph}, {B(ph)}, and {wh} again, such that for some p(·) ∈ L∞(0, T ;V )∩
H1(0, T ;L2(Ω)), v(·) ∈ H1(0, T ;W ), and w(·) ∈ L2(0, T ;V ′),

ph −→ p weakly∗ in L∞(0, T ;V ),

ph −→ p strongly in C([0, T ];L2(Ω)),

B(ph) −→ v weakly in H1(0, T ;W ),

wh −→ w weakly in L2(0, T ;V ′).

Furthermore, since G : L2(Ω) → V ′ is continuous, we have strong convergence
G(ph) −→ G(p) in L2(0, T ;V ′). From (30a) we get∫ T

0

(〈 d
dt
B(ph(t)), q〉+ 〈wh(t), q〉)dt

=
∫ T

0

(〈f(t), q〉 − 〈G(ph(t− h)), q〉)dt, q ∈ V.

Letting h→ 0 gives∫ T

0

(〈 d
dt
v(t), q〉+ 〈w(t), q〉)dt =

∫ T

0

(〈f(t), q〉 − 〈G(p(t)), q〉)dt.

Namely,
d

dt
v(t) + w(t) + G(p(t)) = f(t) in V ′, a.e. t ∈ [0, T ].

Now exactly as before we verify v(t) = B(p(t)), w(t) ∈ A(p(t)) for almost all
t ∈ [0, T ], and therefore, p(·) is a solution of the Cauchy problem (29).

REFERENCES

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, (1975).

[2] H.W. Alt and S. Luckhaus, ‘Quasilinear elliptic-parabolic differential equations’, Math. Z.,
183, 311-341 (1983).

[3] H.W. Alt, S. Luckhaus and A. Visintin, ‘On nonstationary flow through porous media’, Ann.
Mat. Pura Appl. (4), 136, 303–316 (1984).

[4] J.- L. Auriault and E. Sanchez-Palencia, ‘Étude du comportement macroscopique d’un milieu
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