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PSEUDOPARABOLIC PARTIAL DIFFERENTIAL EQUATIONS*

R. E. SHOWALTERt AND T. W. TING:

1. Introduction. Various physical phenomena have led to a study of a mixed
boundary value problem for the partial differential equation

(1.1) -diu- rlau kau,

where A denotes the Laplacian differential operator. The initial and boundary
conditions for this equation are the same as those posed for solutions of the
parabolic equation

(1.2) --u kAu

which is obtained from (1.1) by setting r/= 0. The class of equations which are
considered here will be called pseudoparabolic, not only because the problems
which are well-posed for the parabolic equation are also well-posed for these
equations, but because the generalized solution to the parabolic equation (1.2)
satisfying mixed initial and boundary conditions can be obtained as the limit of
a sequence of solutions to the corresponding problem for equation (1.1) corres-
ponding to any null sequence for the coefficient q. That is, a solution ofthe parabolic
equation can be approximated by a solution of (1.1).

More statements on the comparison of these problems will appear in the
following.

A study ofnonsteady flow ofsecond order fluids [36] leads to a mixed boundary
value problem for the one-dimensional case of (1.1) for the velocity of the fluid.
In [36 the role of the material constant r/was examined, for this constant dis-
tinguishes this theory of second order fluids from earlier ones. This principal result
of interest here is that the mixed boundary value problem is mathematically
well-posed.

Equations of the form (1.1) are satisfied by the hydrostatic excess pressure
within a portion of clay during consolidation [35]. In this context the constant r/
is a composite soil property with the dimensions of viscosity. If one assumes that
the resistance to compression is plastic (proportional to the rate of compression),
then equation (1.1) results with r/> 0. However the classical Terzaghi assumption
that any increment in the hydrostatic excess pressure is proportional to an incre-
ment of the ratio of pore volume to solid volume in the clay leads to the parabolic
(1.2).
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As a final example of the physical origin of (1.1) we mention the theory of
seepage of homogeneous fluids through a fissured rock [4]. A fissured rock consists
of blocks of porous and permeable material separated by fissures or "cracks."
The liquid then flows through the blocks and also between the blocks through
the fissures. In this context an analysis of the pressure in the fissures leads to (1.1),
where r/represents a characteristic of the fissured rock. A decrease in q corresponds
to a reduction in block dimensions and an increase in the degree of fissuring, and
(1.1) then tends to coincide with the classical parabolic equation (1.2) of seepage
of a liquid under elastic conditions.

The equation which we shall consider here is an example of the general class
of equations of Sobolev type, sometimes referred to as the Sobolev-Galpern type.
These are characterized by having mixed time and space derivatives appearing in
the highest order terms of the equation. Such an equation was studied by Sobolev
34], and he used a Hilbert space approach to determine that both the Cauchy
problem on the whole space and the mixed boundary value problem on a bounded
domain are well-posed for the equation

(.) I/Xu) + (u) 0.

This equation can be handled by the methods considered here.
The methods of generalized functions 11], 16] have been used on various

classes of Sobolev type equations. In particular Galpern [15] investigated the
Cauchy problem for a system of equations of the form

(.4 M t, + C t, 0,

where is a vector of functions and M and L are quadratic polynomial matrices
depending on t. An analysis by Fourier transforms was used to assert existence
and regularity of a solution to this system. Kostachenko and Eskin [24] discussed
correctness classes of generalized functions for (1.4) with constant coecients.

Zalenyak [41 obtained a class of solution of (1.3) satisfying a homogeneous
initial condition and then [42] exhibited a class of solutions for the more general
equation

i(ail aiu u u
+ + b(, + c(, + (,u o

in which the a are constants.
In the following we shall consider equations of the form

M[+ Lu= f

for which M and L are second order differential operators in the space variable
and M is elliptic. These operators are independent of but contain variable
coefficients.

This class of equations contains (1.1), and the original Sobolev equation (1.3)
can be handled similarly. A generalized mixed boundary value problem for this
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equation will be solved in the Hilbert space H which is the Sobolev space of
functions having square integrable first order derivatives and which vanish on
the boundary in a generalized sense. The Sobolev spaces are introduced in 2
along with other information that will be used in the following development.
The statement of the generalized form of the problem and of the existence and
uniqueness of the solution are the content of 3.

The proofofthe existence-uniqueness theorem comprises 4, and the regularity
of the solution is demonstrated in 5. In particular it is shown that the solution is
just as smooth as the initial function and the coefficients of the equation allow
it to be. These results depend on the well-developed theory ofthe Dirichlet problem
by means of L2 estimates.

The asymptotic behavior of solutions is discussed in 6 where it is shown
that the solution decays exponentially along with all first order space derivatives.
Section 7 extends the existence, uniqueness and regularity results to the non-
homogeneous equation with a time-varying boundary condition.

The results contained in 8 account for the name pseudo-parabolic which
we have given to the equation under consideration. In particular it is shown that
the solution of (1.1) depends continuously on the coefficient r/, and that if r/is
close to zero then the corresponding solution of (1.1) is arbitrarily close to the
solution of (1.2) which satisfies the same initial and boundary data.

Finally in 9, a similar problem is posed and solved in the Schauder space
of functions with uniformly H61der-continuous derivatives. It is shown that the
problem is well-posed in this Banach space, and the same method of constructing
a solution as used in the Hilbert space development is applicable here. This
section is independent of the previous material, but it depends on the solution of
the Dirichlet problem by means of the estimates of Schauder.

2. Preliminary material. In this section we shall recall some standard
definitions and notations for various spaces of functions. In particular we shall,

discuss the domain G associated with the problem we are to consider as well as
the Sobolev spaces of functions defined on G.

R" will denote the n-dimensional real Euclidean space with points specified
by coordinates of the form

x (x, x, ..., x,).

For any open set f in R" we shall denote by C"(f) the set of all functions defined
on f which have continuous derivatives of all orders up through the integer m.
By C"() we shall mean those elements of cm(f) for which all the indicated
derivatives are uniformly continuous and hence have unique continuous extensions
to the boundary of fL and we set

The support of a function on f is the closure of the set of points for which the
function is nonzero. The set consisting of those functions in C(f) with compact
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support contained in f is denoted by C(). Each of the sets defined above is a

linear space under pointwise addition and scalar multiplication of the elements.
The eth derivative of a function q in cm(f) is denoted by

D=q)
ax{’ax cx]"

q)’

where (a l, 2, (n) is an n-tuple of nonnegative integers and the order of
this derivative is denoted by

The domain G associated with the problem is a bounded open point set in R"
whose boundary cG is an (n 1)-dimensional manifold with G all on one side
of G. With regard to the degree of smoothness of the boundary we shall say that
cG is of the class C for a positive integer rn if at each point of cG there is a neigh-
borhood f in which cG has a representation of the form

Xi g(x1, Xi-l,Xi+l, Xn),

where g is in cm(f).
We shall make use of a generalization of the concept of differentiation in

order to obtain a large class of differentiable functions. Let LZ(G) denote the
space of (equivalence classes of) square-summable functions on G.

DEFINITION 2.1. For each integer k >= O, Hk(G) is the set of (equivalence
classes of) real-valued measurable functions f on G for which the eth derivative

Df belongs to L2(G) whenever I1 =< k.
The linear space Hk(G) has a norm and scalar product defined on it by

1/2

and

(f, g) f (Dy. Dg),

respectively. From the definition of Hk(G) and the completeness of Lz(G) it follows
easily that Hk(G) is complete with respect to the indicated norm and is hence a
Hilbert space.

We shall want to distinguish those elements of Hk(G) which vanish on cG
in some generalized sense. This is accomplished as follows.

DEFINITION 2.2. For each integer k >= O, Ho(G) is the closure ofC(G) in Hk(G).
Thus H(G) is a closed subspace of Hk(G). It can be shown that if cG is of

the class Ck and if qo belongs to Ck- l(cl(G)), then q0 is in H(G) if and only if q
is in Hk(G) and Dq0 0 on OG whenever ]l =< k 1. Furthermore it can be shown
that an element f in Hk(G) is in H(G) if and only if Df belongs to H(G) for all e

with [l =< k- 1.
It is worthwhile to note that C(G) is not in general a dense subset of Hk(G),

although it is true that H(G)= H(G)= LZ(G) since C(G) is dense in L2(G).
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Also, we note that most rules of the calculus can be extended to generalized
derivatives, [1 ], 12].

The following result is known as Poincare’s inequality and relates the LZ-norm
of a function to that of its derivatives.

PROPOSITION 2.1. There is a constant K >= 1 depending only on G such that
for all p in H(G)

i-1 X/q9
The proof of this proposition [17, pp. 181-182] depends only on integration
by parts.

Another useful result for domains with smooth boundaries is the Sobolev
lemma. Letting [y] denote the greatest integer less than or equal to the real number
y, we have the following uniform bound on functions in H(G) when k is sufficiently
large, [12, pp. 282-284].

PROPOSITION 2.2. Let c3G be of class C and k In/2] + 1. There is a constant

Cs (depending on G) such that for any u in Ha(G) and almost all x in G we have

lu(x)l <= Cl ull.
COrOllARy. U u is in H(G), k In/2] + 1, then u can be identified with a

unormly continuous function u(x) on G for which the above inequality is true.

3. The boundary value problem. In the following we shall let M and L denote
differential operators of second order of the form

i=1 j=l __mij(x) + m(x)

(3.2) L: i ii=1j=l
UAj i+ +

i=1

The (classical) problem under consideration is that of finding a function u(x, t) of
the space and time variables x and which satisfies the partial differential equation

vanishes on the boundary of the domain G for all in R, and at 0 is equal to
a given function uo(x) of the space variable x.

The operators M and L are meaningful for functions in C(G), but we shall
extend the domain ofthese operators in a meaningful way. This will be accomplished
by using the Lax-Milgram theorem on bounded positive-definite bilinear forms
in Hilbert space to obtain the corresponding Friedrichs extensions of these
operators. The domains of the extended operators are dense subsets of H(G),
and it is in this space that the generalized boundary value problem will be form-
ulated. We shall seek a solution u(x, t) belonging to H(G) for each fixed in R,
and this will provide the generalization of the vanishing on the boundary of G
in view ofthe remarks in the previous section on the boundary behavior offunctions
in H(G).
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The following properties of the operators M and L will be assumed.
PROI’ERTY 1. (P1). The coefficients occurring in (3.1) and (3.2) are bounded

and measurable, and re(x) >= 0 for x in G.
PROVERT 2. (P2). M is uniformly strongly elliptic on G. Hence there is a

constant mo > 0 for which

i,j=l i=1

whenever (,..., ,)is in R" and x is in G.
POPERTV 3. (P). For 1 i,j n, lj and mj belong to H2(G).
This last assumption is used to relate the operators M and L to the respective

bilinear forms

BM(, m ’ oi,j
and

+ )o

for , in C(G). It follows from an integration by parts and (P) that

and

Bu((, 0) (Mq, )o

BL(q, ) (Lq,

The generalized problem which we shall eventually formulate will be stated
in terms of the bilinear forms BM and BE. For this reason there is no necessity for
the assumption (P3), and it will be needed only when we wish to consider the
linear operators M and L for which it is necessary to be able to differentiate the
higher order coefficients.

The inequalities we derive now essentially characterize the bilinear forms
BM and BE. Letting q0 and denote arbitrary elements of C(G), we have from
the Cauchy-Schwarz inequalities

IBM(qO, q)l (mijqx‘1, Oxi)O + (mq), )o
i,j=

1/2

i=1

1/2

,i=1

where N maxl=i,‘1=, { mi‘1 m oo}. Hence there is a constant K > 0 such
that

(3.3) IBM(q), O)l <= Km P 0111
for all qg, ff in C(G). A similar argument will verify that for some K > 0 we have

(3.4) IBL(qg, ff)l <= Kl[ qgll 11.
Hence BM and BL are defined by continuity for all qg, ff in H(G).
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From the ellipticity condition (P2) we have for q in C(G)

n(qg, qg) >= mo IIqxi .
i=1

Poincare’s inequality then yields

mo

so we have

Bu(q, q)=> - q, + q .
i=1

Hence there is a constant k > 0 such that

(3.5) Bu(q, (p) k (.p

for all q9 in C(G).
We shall demonstrate that we may assume without loss of generality that L

is elliptic and that

(3.6) BL(qg,) k/llqgll2

for some k > 0 and all q in C(G). In particular, u(x, t) is a solution of the problem
if and only if v(x, t) e-tu(x, t) satisfies the equation

M -- + (aM + L)v=O.

From (3.4) and (3.5) it follows that (3.6) is true for aM + L instead ofL if we choose
a >_ (Kl + kl)/km. That is, (L, qg, P)o > -Kt qg[I , so

((aM + L)qg, q)o >= (akin Kl)llqgll >= k, llqll.

The ellipticity is verified as follows" letting sup {l/ij(x)l "x G, 1 < i,j <= n},
we have

i=1 j=l

i=1

in2 (i)2.
i=1

1/2

Hence

i=lj=l i=1
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so we have

i=lj=l i=1

for all x in G, in R", so aM + L is uniformly strongly elliptic for sufficiently
large. As stated above, we shall hereafter assume L is elliptic and that (3.6) is
satisfied.

We are ready to obtain the extensions of M and L by means of the Lax-
Milgram theorem [25, p. 171]. This asserts that there exists a linear transformation
Mo with domain D(Mo) dense in H(G) for which BM(q, ) (Moqg, )o whenever
q9 is in D(Mo) and in H(G). The range of Mo is all of H(G), and Mo has an
inverse which is a bounded mapping of H(G) into H(G). From (P3) it follows that
(mqg, )o (moqg, )o for all qg, in C(G), so mo is a (weak) extension of M,
also known as the minimal operator associated with M, or the Friedrichs extension.
See [25, p. 173], [31, pp. 329-335] and [21]. The discussion above can be duplicated
to obtain the Friedrichs extension Lo of L with domain D(Lo).

The generalized initial boundary value problem may now be formulated in
H(G) as follows" Find a strongly differentiable [18, p. 59] mapping u(t) of R
into H(G) such that

(3.7) Bt(u’(t), qg) + B(u(t), qg) 0

for each in R and q9 in C(G) with u(0) Uo, where Uo is a given "initial" function
in H(G).

The proof of the following existence-uniqueness theorem is the context of
the next section.

TnEORE 3.1. Assume (Px) and (P2). There is a unique bounded linear operator B
on H(G) which extends m Lo. If Uo is an element of H(G), then there is a
unique strongly differentiable mapping u(t) of R into H(G) such that

(3.8) u’(t) u(t)

for all in R and u(O) Uo.
COROt.ARY 3.1. The vector-valued function u(t) satisfies (3.7).
COrOLlARY 3.2. If U(t) belongs to D(Lo) then if(t) is in D(mo) and

(3.9) mou’(t) + Lou(t) 0

for all in R.

4. Existence and uniqueness. The operators Mo and Lo are bijections onto
H(G) from D(Mo) and D(Lo) respectively. We shall show that the bijection
M 1Lo from D(Lo) onto D(Mo) can be uniquely extended as a bounded linear
operator from H(G) onto itself and that the appropriate exponential of this
bounded operator provides the unique solution of the problem in H(G) as stated
in3.

We shall verify that the bijection M-1Lo is bounded with respect to the
norm I1" II1. If cp is in C(G) it follows from (3.4) and (3.5) that

km Mff Loq9 I =< (Loq, Mff ’Loqg)o _<_ Kllqgl, [IM ’Loqgl[,
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so we have

(4.1) IIM Loqoll, (Kl/km)llq)ll.

The constant Kl/k depends only on L, M and the domain G, so (4.1_) is true for
all q9 in C(G). Since this set is dense in H(G) it follows that M 1Lo is bounded
and has a unique extension to a bounded linear operator on H(G). We shall let
B denote the extension of -Mff 1Lo and remark that Lo is defined only on D(Lo)
while B -M- 1Lo has been defined on all H(G) by continuity.

By an elementary argument we can verify that the range of B is all of H(G)
and that its inverse is bounded. Letting q belong to C(G) we have from (3.6)
and (3.3)

k L 1Moq) (Mop, L 1Moq))o

so we have

Kmllq9 Ix IILff Moq9 ,

IL 1Moq9 I1 (Km/kl)llqglll

for all q9 in C;(G); hence B-1 -LIMo is bounded from D(Mo) to D(Lo).
Since D(mo) is dense in H(G), B is onto H(G). In particular if g is in H(G) there
is a sequence {g.} from D(Mo) which converges to g in the topology of H(G).
The boundedness of B-1 on D(Mo) implies that the sequence f, B-lg, is
Cauchy in D(L), hence converges to some element f in H(G). From the continuity
of B we conclude

B(T) lim {B(f.): n } g.

The construction of B is indicated by Fig. 1.

H(G)
B

H(G)
isomorphism

-MLoO(Lo) O(Mo)

Lo -Mo
L "C(G) ,H(G) C(G)

InJection injection

FIG.

From the boundedness of B we are able to construct the exponential of the
operator tB for each real number t. This will yield a one-parameter group {E(t)’t
in R} of bounded operators on H(G), and these will be used to construct the
solution of the generalized problem. For each real number t, define E(t) by means
of the power series

exp (tB) (tB)k/k !.
k=0
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Then E(t) is the limit in the uniform operator topology of(Ho(G)) of the sequence

(tBl/k!.
k=O

The convergence of this sequence follows from the completeness of the space
(H(G)) of bounded linear operators on H(G), and this is a consequence of
the completeness of H(G). By means of the classical arguments on the con-
vergence of power series with absolute values replaced by the norm [l" [11, we can
show that the indicated power series in tB is convergent for all in R and that
the convergence is uniform on compact subsets of R. In this manner we obtain
for each real the bounded linear operator E(t) on H(G) whose norm satisfies

IIe(t)ll exp (Itl IIBII ,).

For the purpose of reference we collect the properties of this group of
operators on H(G)"

(a) {E(t):tinR} isanAbelian group, and E(tl + t2) E(tl)E(t2),E(O) I.
(b) Each E(t) is a bounded linear operator on H(G) and the dependence

on is continuous in the uniform operator topology.(4.2) (c) E(t) is differentiable in the uniform operator topology, and

E’(t) B. E(t).

The group of bounded operators E(t) can now be used to construct our weak
solution. Let Uo be the given "initial" function in H(G) and define

(4.3) u(t) E(t)Uo

for each in R. From (4.2 c) it follows that

(4.4) u’(t) S. u(t)

in the strong topology of H(G). Furthermore we see from (4.2 a) that u(0) Uo
and from (4.2 b) that u(t) is a continuous function of in the strong topology
of H(G).

We shall verify that the solution given by (4.3) is the only such solution to
the generalized problem. Letting u(t) denote any such solution, we consider the
real-valued function

a(t) (u(t), u(t))

By the Cauchy-Schwarz inequality and (4.4) we have

la’(t)] 21(Su(t), u(t))ll <= 211Sllla(t)

for all real t. This yields the estimate a(t) =< exp (211BII llt])a(0) from which we have

(4.5) Ilu(t)[I =< [lu(0)[[1 exp (llSll lltl).

An immediate consequence of (4.5) is the uniqueness of the solution, for the differ-
ence of any two solutions is a solution which is initially zero, hence zero for all
tinR.
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Finally we must verify (3.7). Since u(t) belongs to H(G), there is a sequence
{q,} in C(G) converging to u(t). The boundedness of B on H(G) implies that
{Bq,} converges to u’(t). But Mo(Bq,) + Lo(q,) 0 for all n, so we see

BM(u’(t), q) + BL(u(t), q) lim Bt(Bq., q) + lim B.(q., q)

lim [(Mo(Bq.), q)o + (Loq., q)o] 0.

Having obtained the weak solution to the generalized problem under con-
sideration, we shall relate the extended operators Lo and Mo on their respective
domains to the operators L1 and M1 which are just the extensions of L and M
respectively to the domain HZ(G) in the sense of generalized derivatives. Hereafter
we shall always assume (P3). An integration by parts shows that for all f in
H(G) f3 HZ(G) and g in H(G) we have

(Mf, g)o BM(f, g),

and from the characterization ofD(Mo) in the Lax-Milgram theorem it follows that

H(G) HZ(G) c D(Mo)

and that Mo(f) M(f) when f belongs to H(G) H2(G). Likewise we have

H(G) f’l H2(G)c D(Lo)

and Lo L1 on H(G) H2(G).

5. Regularity of the weak solution. The group of operators {E(t):t in R} has
enabled us to construct a solution by (4.3) of the generalized problem in the weak
sense of (3.7). We shall in this section show that each of the subspaces H(G)
f3 HP(G) remains invariant under the family {E(t)}, where the integer p depends on
the differentiability of the coefficients in L and M as well as the boundary of G.
These results are based on the regularity problem for the Dirichlet problem.
The invariance of these subspaces implies that the solution u(t) given by (4.3) is
just as smooth in the L2 sense as is the initial function Uo. In fact the special case
L M possesses the solution u(x, t)= e-tuo(x), and this example shows that
we may not in general expect the solution to be more smooth in the space variable
than is the initial function. Thus the invariance of the subspaces is the strongest
possible result. Finally we shall show that under certain smoothness conditions
on the coefficients, boundary and initial function Uo, the solution is an analytic
function of the time variable and is uniformly continuous (or differentiable) in
the space variable.

In order to show that B leaves invariant the spaces H(G) (’1 HP(G) we shall
make use of the results on the Dirichlet problem as presented in 12, pp. 270-307].
The following criterion will be used to specify the assumptions of smoothness on
the generalized problem.

DEFINITION 5.1. The generalized initial boundary value problem (3.7) is
p-smooth for the integer p _> 2, if
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(i) the coefficients in (3.1) and (3.2) satisfy for 1 < i;j <= n; lij,
Cp- l(cl(G)); m, l, li e Cp- 2(cl(G)), with m(x) >= 0 for x in cl(G);

(ii) M and L are uniformly strongly elliptic in G;and
(iii) the boundary ?G is of class Cp.
From [12] there is then for any f in Hp-2(G) a unique pair u, v in H(G)

0 H(G) for which Lou f and Mov f.
Assume that the generalized problem is p-smooth and let v belong to

H(G) N HP(G). Lo(v) is in Hp- 2(G), so there is a unique u in H(G) N HP(G) for
which Mou -Lo(v). Thus u -M 1Lov is in H(G) N HP(G), so we see that
B maps H(G) N HP(G) into itself. Furthermore B is onto H(G) n HP(G) from
itself, since we need only solve the Dirichlet problem

Lov Mou, v in H(G)

for a given u in H(G)n HP(G) to obtain the v in H(G)n HP(G) for which
u -M ILov. We conclude that B maps each of these subspaces Ho(G) n nq(G)
onto itself for p >= q _>_ 2.

Remark. We shall hereafter assume that the problem is at least 2-smooth.
It follows that iff is in H(G) there is a unique v in H(G) N H2(G) with Mov f;
hence the domain D(Mo) is contained in H(G) N H2(G), and by a previous remark
thus equal to H(G) n H2(G). Similarly, D(Lo) H(G) n HZ(G). We collect these
results in the following statement.

PROPOSITION 5.1. Let the generalized problem be p-smooth for some integer
p >= 2. Then the domains D(Lo) and D(Mo) of the respective Friedrich’s extensions
coincide with H(G) n H2(G) and the bounded extension B of -M XLo on H(G)
leaves invariant each of the subspaces H(G) n Hq(G), where 2 q <= p.

We shall make use of the closed graph theorem [18, p. 47] to show that

B’H(G) H(G)- H(G) n HP(G)

is bounded with respect to the norm p. The linear operator B is said to be closed
if whenever Xn XO and Bxn --, x it is necessarily true that x Bxo. The closed
graph theorem asserts that any such closed linear operator is necessarily bounded;
its proof depends on the completeness of the space. We remark that since
H(G) n HP(G) is a linear subset of the Hilbert space HP(G) and since IIx -<_
on this space, H(G) n HP(G) is a (complete) Hilbert space with the norm I1.

We shall have need of similar results as this on the boundedness of a linear
operator with respect to stronger topologies on subspaces, so we prove a funda-
mental lemma which with the above discussion implies that B is bounded on
H(G) n H’(G).

FUNDAMENTAL LEMMA. Let Xi (i 1,2) be Banach spaces with respective
norms l. li. Let Yi be a subset of Xi which is a Banach space with norm II" IIg and
assume lyl _-< Ilyllg when y belongs to Yi. Let T be a bounded linear transformation
from X to X2 such that T maps Yx into Y2. Then T is bounded from YI to Y2.

Pro@ We need only show that T is closed as a transformation of Y into Y2.
Hence let {y,:n >= 2} be a sequence in Y for which IIY.-Yo[l---,0 and
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Zy. Y 2 0 as n m, where Yo e Y1 and Y e Y2. Since

lY TyoI2 <= lYa TynI2 + IT(y. Yo)12

<= lYl TY,]2 + ITIly, Yoll

=< IlYt ZYllz / ITI IlY- Yollx,

we have yl Tyo, so T is closed, hence bounded.
The significance of the boundedness of B on H(G) f’l HP(G) is that the group

of operators {E(t)’t in R} is bounded on H(G) f’l HP(G). We state this as the main
result of this section.

THEOREM 5.1. If the generalized problem is p-smooth, then the group of operators
{E(t)’t in R} leaves invariant the subspace H(G) f) H(G). For each in R, E(t) is a
bijection of H(G) f] HP(G) onto itself and is bounded with respect to the norm [. IIp.

In fact we could duplicate the discussion on the construction of the E(t) but
replace the norm I1" II1 by [[. p since B is bounded with respect to II" lip and thus
obtain the corresponding results with H(G) replaced by H(G) f) HP(G).

Since we always assume p _>_ 2 it follows that H(G) f) H2(G) is invariant
under {E(t)’t in R}. Hence ifuo is in H(G) f’) H2(G) the solution u(t) ofthe equation
(4.4) as given by (4.3) belongs to H(G) tq H2(G) for each in R. Furthermore it
follows from (4.4) and the invariance ofH(G) f’) H2(G) under B that u’(t) belongs to
H(G) f’) HE(G). But this is the domain of the extended operators Mo, so we may
apply M0 to both sides of (4.4) to obtain the equation

(5.1) Mou’(t) / Lou(t) O.

That is, Mou’(t) and LoU(t) are both in H(G), so (5.1) is equivalent to (3.7).
Since the group ofoperators constructed above leaves invariant the subspaces

Ho(G) f’) H(G) for p __> q __> 2 under the assumption of p-smoothness, it follows
that this group also leaves invariant each of their (point-set) complements. That is,
if Uo is in H(G) f’) H- I(G) but not in HP(G) then the same is true of u(t) for each
in R. Thus our transformation group preserves smoothness but does not improve
it.

We can use the Sobolev lemma to obtain a sufficient condition for the solution
u(t) to be a continuous function of the space variable and infinitely differentiable
in the time variable.

PROPOSITION 5.2. Let the generalized problem be p-smooth and Uo belong to
H(G) f) HP(G), with p >= In/2] + 1. Thenfor each in R, u(t) can be identified (a.e.)
with a uniformly continuous function of x, denoted by u(x, t), and the mapping- u(x, t) is infinitely differentiable. The function u(x, t) vanishes identically on the
boundary c3G.

Proof. From Theorem 5.1 it follows that u(t) belongs to H(G) f] HP(G) for
every in R, hence by Sobolev’s lemma it can be identified with a uniformly
continuous function u(x, t) on G. Also from Sobolev’s inequality it follows that if
6#0

13- l(u(x, + 6) u(x, t)) B u(x, t)l

1(6-1(E(6)- I)- B)u(x, t)]

<- Csll(6-1(E(6)- I)- B)u(t)llp,
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where the constant C depends only on n and cG. Since the group {E(t):t in R} is
infinitely differentiable in the uniform operator topology induced by [1" p and its
kth derivative is Bk. E(t), the last term in the above inequality converges to zero as
6 0. This establishes the differentiability of u(x, t) and the equality

--u(x, t) B. u(x, t)t

for each x in G. A repetition of this argument will show that u(x, t) is infinitely
differentiable with respect to and that its derivatives agree with the corresponding
derivatives of u(t) in H(G) N HP(G).

In fact we see that u(x, t) is analytic in t, for the remainder term

(n+
R,(x, t) ct, + u(x, T)t"+ X/(n + 1)!

(where [TI < [t[) of the Taylor formula converges to zero as n increases. That is,

JR,(x, t)[ [((tB)"+ 1/(n + 1)!)U(X, T)[

<= Cl (tB)"+ 1/(n + 1)!111 Uo Ipexp(]ltB

by Sobolev’s lemma, and the convergence of the power series for exp(tB) in
(H(G) (3 HP(G)) implies that its (n + 1)st term converges to zero in L#(H(G)
N HP(G)).

Finally we note that the uniform continuity of u(x, t) in the space variable and
its belonging to H(G) imply that it vanishes on the boundary.

COROLLARY. The solution u(t) of the generalized problem can be identified with
a function u(x, t) in C"(cl(G)) for each in R, where m p In/2] 1. Hence a
classical solution of the problem exists if p >= In/2] + 3.

6. Asymptotic behavior. We shall investigate the asymptotic behavior of the
solution of the problem under consideration. The additional assumptions of
symmetry ofthe operators or ofconstant coefficients are reasonable from the stand-
point of physical motivation. We shall show in this section that under the appro-
priate conditions the solution u(t) of our problem decays exponentially along with
its derivatives up through a specified order. Furthermore we shall obtain more
regularity type results which will imply that if the initial function has a given
number of derivatives vanishing on the boundary then the solution has this same
property.

Assume throughout the remainder ofthis section that M is symmetric and that
the statements (P1.) and (P2) of 3 are valid. By letting Uo in H(G) be arbitrary,
it follows from the strong differentiability of u(t) and the symmetry of the bilinear
form BM on H(G) that the real-valued function

7(t) BM(u(t), u(t))

is continuously differentiable and that

1/27’(t) Bt(u’(t), u(t)).
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From (3.7), (3.6) and (3.3), respectively, we see that

1/2’(t) (u(), u(t))

<= kllu(t)lli <= kl/K.#(t).

Hence for all > 0 we have

7(t) 7(0) exp (- 2k/Kmt).

Using (3.5) and (3.3) we then obtain the estimate

(6.1) Ilu(t) I1 <-_ (Km/km) 1/2 Uo exp(-k/Kmt)

for > 0. This estimate (6.1) implying the exponential decay of the solution and its
first derivatives in the sense of their LZ-norms is true in particular whenever M has
constant coefficients, for then it can be written in a symmetric form.

Because of the boundedness of the operator B on H(G) it’has made no differ-
ence whether we consider (5.1) or the equation

mou’(t) + Lou(t) O.

However it is apparent in the previous paragraph that the sign ofM is fundamental
in obtaining the estimate (6.1) describing the asymptotic behavior in the norm
for the solution. Without this sign consideration we would only obtain an estimate
of the form (4.5) which allows the solution to grow exponentially with the time
variable. The estimate (6.1) is valid only for >__ 0, but this is the case of physical
interest. The previously used estimate also implies that for <_ 0

(t) >__ (0) exp (-kl/Kmt)

and by (3.3) and (3.5) would follow

(6.2) u(t) (k,,/Km)’/2]lUoll exp

whenever _<_ 0. The inequalities (4.5), (6.1) and (6.2) describe the behavior of u(t)
in the large" the solution grows exponentially as --, oe and decays exponentially
as oe whenever M is symmetric.

We should note that in order for the above results to be significant we must
assume that (3.6) is true for the "original" operator L. That is, by replacing L by
aM + L we actually obtain the solution etu(t)which is bounded by (Km/km) 1/2 [[Uol
exp ((e- kl/Km)t). But our sufficient choice for given in 3 implies that

k/Km Kl/k,, + kl/k,, k/K,,, and this quantity will in general be positive.
In this event we would not be able to show that the solution decayed exponentially
for --, oe. An example ofthis is the case M dZ/dx2, L I and Uo(X) {sinh (x),
0<_x=<1/2; sinh(1-x), 1/2=<x__< 1}. The solution u(x,t)=Uo(x)e in H(G)
grows exponentially.

We will obtain some bounds on the higher order derivatives ofthe solution. To
do so let us assume that the generalized problem is (k + 1)-smooth, k being an
integer >_ 1, and that M and L have constant coefficients.

Our first task is to show that the spaceH+ k(G) is invariant under the group of
operators {E(t)}. Since B has already been shown to be bounded with respect to the
(k + 1)-norm, it will suffice to show that B maps H+k(G) into itself. Hence let be
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an element of C(G). The regularity results previously obtained imply that
belongs to Hl/k(G). If I1 =< k then since DO belongs to C(G) we have BDW/
belongs to H(G) f’l H2(G) and hence

Mo(BD/) + Lo(D) O.

But Mo and Lo have constant coefficients, so we see

Mo(BDW/) Lo(D) D(Lo/)

D(MoB)= Mo(DB/).

That is, we have

(6.3) D(B) B(D)

belongs to H(G) whenever Ia] =< k, so in particular BO must be in H +k(G). Since
B maps C(G) into H+k(G) and is bounded with respect to the (k + 1)-norm, it
follows that B maps all ofH +(G) into itself. Also it is easy to show that (6.3) is true
for all in H+; the argument is similar to that used below to verify (6.4).

We have shown that each E(t) mapsH/(G) onto itself and we shall verify that
when I1 <= k

(6.4) DE(t)/= E(t)D

for each k in H+(G). Let E.(t) denote the nth partial sum of the series which
defined E(t). Since D" commutes with B it also commutes with each E.(t). Thus for
any q9 in C(G) we have

(E(t)D’O, O)o lim (E.(t)DW/, (P)o lim (DE.(t)/, q)o

lim (E,(t), (- 1)llDqg)o (E(t), (- 1)llDqg)o

(De(t), qg)o.

The desired estimates on the derivatives of a solution to the generalized
problem are now easily obtained. Let Uo be given in H+k(G). Then u(t) E(t)Uo
belongs to H+(G) and from (6.4) it follows that Du(t) is the unique solution in
H(G) of the generalized problem with initial condition D’u(O) D’uo Hence we
have the estimate

(6.5) IIO=u(t) (Km/km)’/Z]lOuoll exp -mm
for all e with Il <= k.

From the inequality (6.5) one can proceed by means of the Sobolev lemma to
obtain pointwise bounds on the solution and various derivatives. The smoothness
ofthe problem now depends only on the differentiability ofthe boundary cG, so the
largest number k for which the solution belongs to H/(G) and (6.5) is true when
I1 -< k depends on the boundary c3G and the initial function Uo.
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7. The nonhomogeneous problem. The objective in this section is to extend the
previous results to the nonhomogeneous equation

(7.1) Mxu’(t) + L,u(t) f(t)

with a solution in H2(G) satisfying a nonhomogeneous time-varying boundary
condition. Note that for any v in H2(G) the expression Mv denotes the element of
H(G) defined as a linear combination of v and its first and second order strong
derivatives as specified by (3.1). It follows that the linear mapping v- Mv is
bounded from H2(G) to H(G), and we have shown that Mo is the restriction ofM
to the subspace H(G) H2(G). The corresponding statements hold for the
operator L.

We shall first prove the following result.
LEMMA 7. l. Assume that the (associated homogeneous) problem is 2-smooth and

f(t) is strongly continuous in H(G). There is a unique mapping - w(t) of R into
H(G) f"l H2(G) with a strongly continuous derivative which satisfies (7.1) and the
initial condition w(O) O.

Proof. The operator M is continuous from H(G) into H(G), so it
follows from the Fundamental Lemma of 5 that it not only maps H(G) onto
H(G) H2(G) but is continuous with respect to the stronger norm 2 on
H(G) H2(G). The strong continuity of f(t) implies that M af(t) is strongly
continuous with respect to ]]. 2. Also the continuity of the mapping - E() in
the uniform operator topology of C(H(G) H2(G)) implies that for each in R
the function

W- E( T)M f T)

from R into H(G) H2(G) is strongly continuous.
By means of the calculus of vector-valued functions [18, pp. 56-58] we have

given for each real number an element of H(G) 1 H2(G) denoted by

w(t) E(t T)M’f(T)dT.

The integral is taken as a limit of Riemann sums with respect to the norm []. []2.
From the differentiability of E(t) it follows that w(t) is differentiable with respect to
]]" ]]2 and that

w’(t) E’(t T)M if(T)dT + E(O)M f(t)

B. E(t T)M if(T)dT + M if(t).

The continuity and linearity of B then implies that

w’(t) Sw(t) + Mf(t).

Each term of this last equation belongs to H(G) H2(G) so we have

Mow’(t) + Low(t)= f(t),

where w(t) has a strongly continuous derivative in H(G) H2(G) and w(0) 0.
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The uniqueness of w(t) follows from the corresponding result for the homo-
geneous equation by linearity.

We shall proceed by means ofthis lemma to the case oftime-varying boundary
conditions. The boundary condition is given by a function fl(t) from R to H2(G)
with a strongly continuous derivative in the I1" 112-norm. The initial function Uo
belongs to H2(G), and these functions satisfy a compatibility condition

(7.2) Uo fl(0)e H(G).
Define a function in H(G) by

f(t) f(t)- Mlfl’(t)- L,fl(t)

for each in R. The continuity of fl and fl’ in H2(G) implies that F(t) is continuous in
H(G). From the preceding lemma we know that the function

v(t) E(t T)M 1F(T) dT

in H(G) HZ(G) satisfies the equation

mov’(t) + Lov(t)= F(t)

and the initial condition v(0) 0. Now we define the function

(7.3) u(t) fl(t) + E(t)(Uo fl(0))+ v(t)

which has a strongly continuous derivative in H2(G). Furthermore we may verify
directly that u(t) satisfies the requirements in the following theorem which is the
main result of this section.

THEOREM 7.1. Let the (associated homogeneous) problem be 2-smooth, f(t) be
strongly continuous in H(G), fl(t) have a strongly continuous derivative in H2(G), and
Uo be a function in H2(G) for which (7.2) is satisfied. There is a unique strongly
differentiable function u(t) in H2(G) given by (7.3) which satisfies (7.1) and for which
u(t) fl(t) is in H(G) for all tin R, and u(O) Uo.

Remark. In verifying (7.1) it is essential to note that MIM I on H(G) and
hence MIB -Lo on H(G) H2(G).

In the same manner we can verify the following result.
COROLLARY. Let the problem be p-smooth (p _> 2),f(t) be strongly continuous in

Hp- 2(G), fl(t) have a strongly continuous derivative in HP(G), Uo belong to HP(G) and
satisfy (7.2). Then there is a strongly differentiable mapping u(t) of R into HP(G)
satisfying (7.1) with u(t) fl(t) belonging to H(G) for all real and u(O) Uo.

8. Remarks on parabolic equations. In this section we shall briefly discuss an
interesting relationship between the solution uz(t) of the pseudoparabolic
equation

(8.1) (2Lo + I)u’(t) + Lou(t)= 0

and the solution u(t) of the parabolic equation

(8.2) u’(t) + Lou(t) O,

both of which satisfy the same initial condition and a homogeneous boundary
condition. From the very form of these equations one might expect that for 2
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sufficiently small the solution ux(t) is "close" to u(t) in some generalized sense. We
shall show that this is exactly the situation. This result is normally assumed in the
formulation of these boundary value problems from a physical model, since one
often takes u(t) as an approximation for ux(t) by assuming that the viscosity coeffici-
ent 2 is zero.

The generalized solution of the parabolic equation (8.2) can be constructed
by means of the semigroup theory of Hille and Yosida. This method is used in 25].
The extended operator Lo is such that its resolvent set contains all of the positive
real axis and furthermore

(2Lo + I)-l o _-< (21o + 1)-1
for all positive numbers 2 and a constant lo depending only on Lo and the domain G.
These are precisely the conditions for which the Hille-Yosida theorem can be used
to construct a strongly continuous semigroup of bounded linear operators
{S(t):t >__ 0} with the property that if u0 belongs to D(Lo)then the function

(8.3) u(t) S(t)Uo

is strongly continuous in LZ(G), belongs to D(Lo) and satisfies u(O) Uo, u’(t)
-Lou(t for > 0.

The semigroup {S(t)"t _>_ 0} is constructed as follows. Define for each number
2 > 0 an operator

L (1 + 2Lo)- 1Lo
and show that it is a bounded operator on LZ(G). Also for any v in D(Lo) we have

lim IlL;v Lovllo O.

Since Lx is bounded we can define for each number the bounded operator

E(t) exp (- tL).

It can then be shown that, for those => 0, E(t) converges to an operator S(t)
in the strong sense as 2 converges to zero, and that {S(t)’t >= 0} is the desired semi-
group.

The relation between the solution of the parabolic problem given by (8.3) and
the solution to the equation (8.1) is now clear. The operator L above can be
expressed as L M-1Lo for the special case Mo 2Lo + I which we are
considering, hence E(t) is for each 2 > 0 the group of bounded operators con-
structed in 4 for the equation (8.1). The solution to (8.1) is then given by

u(t) e(t)Uo.

In order for the parabolic problem to be meaningful we require that Uo belong to
D(Lo). The statement above that E(t) converges in the strong sense to S(t) is
exactly the result we seek. That is, for > 0 and Uo in D(Lo) we have

(8.4) lim u(t)- u(t)llo O,

and this is the precise form of the statement that u(t) is "close" to u(t) when 2 is
small.
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This result can be generalized to the equation

(2Mo + I)u’z(t) + Louz(t) O,

for which we have the following.
THEOREM. Assume that the generalized problem (8.5) is 3-smooth and Uo belongs

to H(G) f’) HE(G). Then for all >__ 0 the solution u(x, t) of the parabolic equation
(8.2) given by (8.3) is the I1" IIo-limit of the solutions u(x, t) of the pseudoparabolic
equation (8.5). (See [37].)

The proof ofthis result is modeled after the proofofthe Hille-Yosida Theorem
[39], but the details are considerably more involved since there are two different
operators to consider.

9. The Schauder estimates. We shall begin an independent but parallel study
of the problem considered previously, and this investigation is based on the solu-
tion of the Dirichlet problem by the method of Schauder. In this context the
operators M and L are studied on the Banach space of functions with uniformly
H61der continuous second order derivatives, and we shall see that the product
operator M- 1L is bounded on this space. This will enable the construction of the
solution by exponentiating this bounded operator. In proving the boundedness of
M- L, we shall make use of the Schauder estimates (up to the boundary) and the
closed graph theorem, so the completeness of the function spaces used is essential.

The existence, uniqueness and regularity results are essentially the same as
those obtained previously. That is, the solution is obtained directly as the exponen-
tial of a bounded operator, and this operator leaves certain subspaces invariant.
There will be no need of an analogue of Sobolev’s lemma since convergence in the
function space will imply pointwise convergence, hence this method always yields
a pointwise solution.

A function v(x) is said to belong to the class cm+(cl(G)), where m is a non-
negative number and 0 < < 1, if v belongs to C"(cl(G)) and all of its mth order
derivatives are uniformly H61der continuous of exponent . By this last statement
we mean

HT(v) sup. "x, y e G, tJl- m

is finite. We define on cm+a(cl(G)) a norm

where
IVlm+- IVI + H’(v),

Ivl,. sup {IDJv(x)l "x G, 1 i}.
i=0

Furthermore one can show that cm+(cl(G)) is complete with respect to the norm
I" I,.+, so it is a Banach space.

The boundary t3G is in the class Cm+ whenever there is at each point of t3G a
neighborhood S in which t3G has a parametric representation of the form

xi g(x xi-1, xi + x,,)

where g belongs to cm+(cl(S)).
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The operators M and L will be assumed to have the forms

M
i,j=l mij(x)?xicxj + i=1

mi(x) m(x),

L
i,j=l lij(X)xitxj + i=1

li(x) l(x).

The following assumptions will always be made:
(A,): Each of the coefficients which appears above belongs to C(cl(G)) and the
coefficients re(x), l(x) are nonnegative.
(A2): M and L are uniformly elliptic, hence there are positive constants mo and lo
for which

i,j=l i=1

lij(X)iCj lo
i,j= i=

whenever belongs to R" and x belongs to G.
The technique which we shall use here is totally dependent on the existing

results on the solution of the Dirichlet problem. That is, given a function f in
C(cl(G)), find a function u for which

Lu f
in G and u(x) 0 when x is on c3G. In proving the existence of a solution of such a
problem by the method of continuity, the following a priori estimate is essential
[2], [12], [29].

THEOREM 9.1. Assume (A ), (A2), that f belongs to C(cl(G)) and that cG is of
class C2 +. Ifu is afunction in C2 +(cl(G))for which Lu f in G and u 0 on c3G,
then

(9.1) lul2 + =< Klfl,
where K depends only on L and G.

This is a very strong result and is used to prove the following existence theorem
for the Dirichlet problem.

THEOREM 9.2. Assume (A ), (A2), that f belongs to C(cl(G)) and that cG is of
class C2 +. Then there exists a uniquefunction u in C2 +(cl(G)) for which L(u) f in
G and u 0 on cG.

Concerning the differentiability of solutions of the Dirichlet problem we have
the following result.

THEORFM 9.3. Let p be a nonnegative integerfor whichfand all the coefficients
which appear in L belong to CP+(cl(G)) and for which t3G is of class Cp+ 2 +. Then
any function u in C2 +’(cl(G))for which Lu f in G and u 0 on c3G belongs to
Cv+ + (cl(G)).

Corresponding results are of course valid for the operator M.
We are now ready to study the behavior of L and M on the appropriate func-

tion space. Define C +’(cl(G)) as the set of functions in C"+(cl(G)) that vanish on



22 R. E. SHOWALTER AND T. W. TING

c3G. With the norm I" I,,+, C+(cl(G)) is a Banach subspace of cm+(cl(G)),
because convergence with respect to I" I,,+, implies uniform convergence of the
function and hence preserves the zero condition on the boundary. From the results
stated above for the Dirichlet problem it is immediate that L maps Cg / (cl(G)) onto
C’(cl(G)) in a one-to-one manner. From (9.1) it follows that L- is bounded, so from
the closed graph theorem it is immediate that L is a linear homeomorphism of
Cg / (cl(G)) onto C’(cl(G)). The same is true ofM, so we may conclude that M- 1L is
a bounded linear operator on Cg +(cl(G)).

For each real number we construct the exponential of the bounded operator
-tM-L by means of the power series

E(t) exp (- tM L) (- tM- L)/k
k=0

This power series converges with respect to the uniform operator topology
induced on (C+(cl(G))) by the norm I" 12 + on C+(cl(G)). It is not difficult to
verify that the family {E(t):t in R is an infinitely differentiable group of bounded
linear operators and that

(9.2) E’(t) -M L E(t)

for all in R. This group of linear operators provides the existence portion of the
following result.

THEOREM 9.4. Assume that (A 1) and (A2) are true, c3G is of class C2+ and that
Uo is a given function in Cg + (cl(G)). There is a unique strongly differentiable mapping

of R into Cg +(cl(G)) for which

t-- u(t)

(9.3) Mu’(t) + Lu(t) 0

in C(cl(G))for all real and u(O) uo. This mapping is infinitely differentiable.
Proof. Define u(t)= E(t)Uo. It is immediate that u(0)= u0 and that u(t) is

infinitely differentiable. Furthermore since M and L are both bijections of
Cg +’(cl(G)) onto C(cl(G)) it follows from (9.2) that (9.3) is true.

We shall verify the uniqueness of the solution. The solution must necessarily
satisfy the integral equation

u(t) u(O) M- 1L u(T) dT

because of the boundedness and linearity of M- 1L on Cg + (cl(G)). The integral is
taken as usual as the limit in the C +’(cl(G)) topology of Riemann sums. From this
equation we have

(9.4) lu(t)12+= lu(0)12+ + IM- XLl2 += lu(T)12+= dT

for all in R.
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LEMMA 9.1 (Gronewall). If q9 is continuous and nonnegative on R + {r R’r
=> 0} and if

for all >= 0 then

q() <__ c + m q(T) dT

qg() =< c exp (m).

Proof. From the hypotheses we have

SO

Hence

1 d{1nm dt
c + m q)(T)dT <1

In c + m q(T) dT

c + rn q(T) dT =< c exp (mt)

and the result is immediate from this inequality.
This lemma together with (9.4) shows that any solution of the problem satisfies

(9.5) lu(t)12 + lu(O)12+ exp (IM- 1LI Itl).

In particular the difference between any two solutions satisfies (9.5) with u(0) 0,
hence the solutions are identical.

The solution thus obtained can easily be seen to be a solution in the pointwise
sense. For each real number t, u(t) belongs to Cg +’(cl(G)) and is therefore a real-
valued function of the space variable whose value at the point x of G is denoted by
u(x, t). Furthermore for any real 6 4:0 we have

16-l(u(x, + 6) u(x, t)) + M- ’L[u(x, t)]l

1(6-1(E(6) I) + M-’L)[u(x, t)]l

=< ](b-’(E(3) I) + M- XL)u(t)[2 +
-< Ib- t(E(b) I) + M- 1LI2 +lu(t)12 +

so the mapping u(x, t), x in G, is differentiable, in fact infinitely differentiable,
since the group {E(t):t in R} is infinitely differentiable. Consequently Theorem 9.4
implies that the equation (9.3) possesses a pointwise solution u(x, t) which belongs
to C2+(cl(G)) for each in R, vanishes on the boundary cG and is infinitely
differentiable with respect to the time variable t.

The results on the regularity of the solution are completely analogous to those
obtained previously, and the same methods may be used as before. In particular we
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use the results stated above on the regularity of the solution to the Dirichlet
problem to prove the following.

PROPOSITION 9.1. Let p be a nonnegative integer and assume cG is of class
Cp+2+. Let the operator L satisfy (A1) and (A2) and assume that its coefficients
belong to CP+(cl(G)). Then L is a linear homeomorphism of C+2+(cl(G)) onto
Cp+ (cl(G)).

Proof. The results above for the Dirichlet problem show that L is a hijection
as stated, so the boundedness ofL and L- is the only question. But this is settled by
the Fundamental Lemma of 5.

COROLLARY. Let p be a nonnegative integer such that t?G is of class Cp++ 2 and
the operators M and L satisfy (A1) and (A2) and their coefficients belong to
CP+(cl(G)). Then M- L is a linear homeomorphism ofC++ 2(cl(G)) onto itself

From the boundedness of M-L with respect to the norm [-]p+,+2 on
C++2(cl(G)) it follows as before that the group of operators {E(t):t in R} is
bounded on and leaves invariant the space C++ 2(cl(G)). This yields the following
result on the regularity of solutions.

THEOREM 9.5. Under the assumptions of the corollary above, the solution u(t) of
the problem (9.3), (9.4) belongs to C++2(cl(G)) for each in R if and only if Uo
belongs to C)++ 2(cl(G)).

The nonhomogeneous problem can be handled in much the same way as was
done previously. The main result in this direction is the following.

THEOREM 9.6. Assume that (A 1) and (A2) are true and the t?G is of class C2 +. Let
f(t) be a (strongly) continuous function of R into C(cl(G)) and fl(t) a continuously
differentiablefunction ofR into C2 +(cl(G)). Let Uo belong to C2 +(cl(G)) and satisfy
the "compatibility condition" Uo fl(O) on t?G. (That is, Uo fl(O) is in C+(cl(G)).)
Then there exists a unique continuously differentiable function u(t) of R into
C2 + (cl(G)) such that

(i) Mu’(t) + Lu(t) f(t),
(ii) u(O) Uo, and
(iii) u(t) fl(t) on the boundary cG.

Proof. Define F(t) from R into C’(cl(G)) by F(t) -mfl’(t) Lfl(t) + f(t).
Since M and L are bounded (but not invertible) from C2+(cl(G)) into C(cl(G)),
we see that F(t) is continuous. Since M- is bounded from C(cl(G)) onto

C+(cl(G)), we have that M- 1F(t) is continuous in C+’(cl(G)), so we can define

v(t) E(t T)M-1F(T) dT

in Cg+(cl(G)). It follows that the continuously differentiable mapping t-- v(t)
satisfies the equation

Mv’(t) + Lv(t)= F(t)

and initial condition v(0) 0.
Remark. Since M is not invertible (not injective on C2 +(cl(G))), we do not

have M- 1M identity. This is of consequence if one wishes to expand M- F(t)
into its three terms.
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Now define the continuously differentiable function

u(t) v(t) + I(t) + e(t)[Uo -/(0)].

This satisfies (i)-(iii) above. The uniqueness follows from Theorem 9.4 by looking
at the difference between two such solutions.
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