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Let M and I, be (nonlinear) operators in a reflexive Banach space B for which 
Rg(M + L) = B and j(Mx - My) i- ~(Lx - Ly)( > / Mx - My / for all 
01 > 0 and pairs s, y in D(M) n D(L). Then there is a unique solution of the 
Cauchy problem (Mu(t))’ + Lu(t) = 0, Mu(O) = v0 . When M and L are 
realizations of elliptic partial differential operators in space variables, this 
gives existence and uniqueness of generalized solutions of boundary value 
problems for nonlinear partial differential equations of mixed parabolic- 
Sobolev type. 

1. INTRODUCTION 

We shall show that certain initial and boundary value problems on a 
cylinder are well-posed for partial differential equations of the form 

where L[u] is a nonlinear elliptic operator in divergence form. The coefficient 
b(e) is assumed bounded, measurable, and nonnegative, so the equation will 
be parabolic where b(x) = 0 and of Sobolev type where b(x) > 0. Such 
equations arise in various applications where the coefficient b(.) denotes a 
quantity with the dimensions of viscosity. References to these applications 
and related results were given in [9]. 

In Section 2 we use the theory of generation of semigroups of nonlinear 
contractions by (the negatives of) hyper-accretive relations in a Banach space 
to obtain sufficient conditions for an abstract model of the above equation 
to be well-posed. A reduction of our equation to the abstract model is obtained 
in Section 3 as a direct application of the treatment of nonlinear elliptic 
equations by monotone operator methods in Banach space. Since the appli- 
cations lead to equations of the above type for which the exposition is 
particularly easy, we shall restrict our attention to this special class. Gener- 
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alizations to other types of equations are immediate consequences of our 
model in Section 2 so we omit them here. Some of these were given for the 
linear case in [lo]. 

2. Two CAUCHY PROBLEMS 

Let B be a real reflexive Banach space and suppose we have a pair of (not 
necessarily linear) operators M: D(M) -+ B and L: D(L) -+ B with domains 
in B. We define a subset A of B x B by A = {(x, y): for some 
z E D(M) n D(L), M(x) = x and L(x) = y}. Thus A is a “multivalued 
operator” or relation on B, given by the composite relation L 0 M-l, and 
its domain is D(A) = M[D(M) n D(L)]. F uric ions t are identified with their 
graphs and, hence, viewed as relations; the standard notation for relations is 
given in [4]. 

Our interest in the pair (M, L) and the relation A = L 0 M-l arises from 
the correspondence between the following Cauchy problems. (Note that 
since B is reflexive every Lipschitz function from the reals to B is strongly- 
differentiable a.e. [7j.) 

DEFINITION. Let ua E D(L) n D(M). A solution of the Cauchy problem 

(W) (M@)) + L@) = 0, (2.1.a) 

Mu(O) = Mu, , (2.1.b) 

is a function u(.): [0, co) --f D(L) n D(M) for which Mu(*) is Lipschitz, 
(2.1 .a) holds a.e. on [0, cc), and (2.1 .b) is satisfied. 

DEFINITION. Let et, E D(A). A solution of the Cauchy problem 

(44 (7-w + &W 3 09 (2.2.a) 

$0) = fJ0 , (2.2.b) 

is a function v(.) : [0, cc) --+ D(A) which is Lipschitz, satisfies (2.2.a) a.e. on 
[0, co), and takes the initial condition (2.2&b). 

The correspondence between (2.1) and (2.2) is immediate. If u(.) is a 
solution of (2.1), we define v(t) = Mu(t) for t 3 0 to obtain a solution of (2.2) 
with v. = Mu, . Conversely, if v(.) is a solution of (2.2), we can choose for 
each t > 0 a u(t) E D(M) n D(L) with Mu(t) = v(t) to obtain a solution of 
(2. I), where u. is any point in D(M) n D(L) with Mu, = o. . This observation 
gives the following. 



PARABOLIC-SOBOLEV EQUATIONS 185 

PROPOSITION 1. Let M and L be operators on a real rejlexive Banach space 
B and define the relation A = L 0 M? on B. Then, there is a natural cor- 
respondence, v(t) t) Mu(t), between solutions of the Cauchy problems (2.1) 
and (2.2). 

COROLLARY (Uniqueness). Let v,, = Mu, . If there is at most one solution of 
(2.1), then there is at most one solution of (2.2). If there is at most one solution 
of (2.2) and if ur( .) and us(*) are solutions of (2.1), then Mu,(t) = Mu2(t) 
for all t >, 0. 

COROLLARY (Existence). Let v,, = Mu, . There exists a solution of (2.1) 
if and only if there exists a solution of (2.2). 

A sufficient condition for uniqueness in (2.2) is that the operator A be 
accretive. 

DEFINITION. The relation A on the space B is accretive if for every 

a> 0 and (xl , rd, (x2 , y2) E A 

ll(x1 + ar1> - (x2 + ~Y2)ll 3 II Xl - x2 Il. 

If A is accretive and if vl(.) and v2(.) are solutions of (2.2), then 

IIs - v2Wll G II do) - v2m~ t 2 0, 

so the solution depends continuously on the initial data. A sufficient condition 
for (2.2) to have a solution for every v,, E D(A) is that A be hyper-accretive. 

DEFINITION. The relation A on the space B is hyper-accretive if it is 
accretive and the range Rg(l + A) is all of B. 

The above results are given in [4]. Also, see [l , 61. 
The properties on M and L that reflect hyper-accretiveness of A are 

immediate. 

PROPOSITION 2. Assume the hypotheses of Proposition 1. Then 
Rg(I + A) = Rg(M + L), and A is accretive if and only ;f 

l/P% -- MG) + 4% --~,)I1 > II Mz, - Mz,/I, 

a > 0, zl, z2 E D(M) n D(L). (2.3) 

The preceding discussion gives the following sufficient conditions for 
the problem (2.1) to be well-posed. 

THEOREM 1. Let M: D(M) --t B and L: D(L) -+ B be operators in the real 
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reflexive Banach space B; assume Rg(M + L) = B and (2.3). Then for every 
u. E D(M) n D(L) there is a solution of (2.1). If ul( .) and uz(.) are solutions 
of(2.l.a), then 

II MU) - MW>ll < II MQ4 - MGN, t 3 0. 

Hence, if ul( .) and ug( *) are solutions of the Cauchyproblem (2. l), then Me(t) = 
Mu,(t), t > 0. 

Remarks. 

(1) Accretiveness of A can be expressed in terms of the duality map, J, 
of B into the dual, B*: (x,f) E J if f(x) = 1) x J/s = Ilfl12. The condition 
(2.3) is equivalent to requiring that for every z, , a, E D(L) n D(M) we have 
f(Lz, - Lz,) 3 0 for somefE J(Mz, - Mz,) [Sj. In a Hilbert space H with 
inner product (., .),, this becomes 

(Mz, - Mz, , Lz, - Lz2)H 3 0, z, , z2 E D(M) n D(L). (2.4) 

For linear operators this is the right-angle condition [8, lo]. 

(2) We can allow L to be multivalued with minor modifications in the 
above discussion. 

(3) If M is injective on D(M) n D(L), there is at most one solution of 
(2.1) in the situation of Theorem 1. 

3. DEGENERATE PARABOLIC-S• BOLEV EQUATIONS 

Let G be a bounded open subset of Euclidean space lRn whose points are 
given by x = (x1 ,..., x,J. The space of (equivalence classes of) functions 
on G which are measurable (with Lebesgue measure dx on G) and have 
summable pth powers is denoted by Lp(G), 1 <p < co. Let Dj be the 
partial derivative a/ax, , 1 <j < n, and D, be the identity. wl*~ is the 
Sobolev space of those 4 E Lp(G) with the (distribution) derivatives 
D& ELP(G), 1 < j < n, and with the norm 

Then WlJ is a reflexive and separable Banach space containing the family 
C&a(G) of infinitely differentiable functions with compact support in G. For 
4 E u”*p, we shall denote by DC = {D& 0 <j < n} the indicated point in 
the product LffG)n+l. Thus, with appropriate hypotheses on a function 
F : G x iRn+l- R, we can define a first-order nonlinear partial differential 
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operator on G by 4 tiF(., D+(e)). See [3] f or information and references on 
Sobolev spaces. 

We shall define a nonlinear elliptic problem from a given family of functions 
A. . G x ilP+l + If8 for which we assume the following: z . 

Each &(x, E) is measurable in x for fixed 5 and continuous in .$ for a.e. X. 
There is a real p, 1 <p < 00, a g EL*(G) where q = p/Q - l), and c > 0 
such that 

x E G, [ E W+-l, 0 < i < n. (3.1) 
j=O 

For x in G and each pair l, q E UP+‘, 

i (4(x, 5) - 4% 7)) (Si - %) 2 0. (3.2) 
i-0 

There is a co > 0 such that 

I 5i IP, XEG, 5 E iwfl. (3.3) 

From (3.1) it follows [2; 3, pp. 73-751 that for 4 E IV,“, each tZi(., DC(.)) E 
U(G), and we can define a Dirichlet form 

Let V be a closed subspace of u”*P which contains Corn(G); denote the dual 
by V* and the duality by (., .). Then a (nonlinear) operator T: V+ V* is 
determined by 

For each 4 E V, the restriction of T+ to Corn(G) is the distribution on G 
given by 

T+ = - f Z-b&(-, &(*>> + A,(., WC*)). 
i=l 

Assume p > 2. Then by identifying L2(G) with its dual L2(G)* we have 
V c--+L2(G) = L2(G)* c-+ V*, where the indicated injections are continuous 
and have dense ranges, and (4, I/J> = (4, #)La(c) for 4 ELM, (I, E V. Let 
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b(.) ELM b e g iven with b(x) > 0 a.e., and define a pair of operators on the 
Hilbert space H = L2(G) by 

D(L) = (4 E V : T+ E H}, L# = T$, 

D(M) = (4 E V : b(e) T$ E H}, M+ = + + b(.) T$. 

Since b(e) is bounded we have D(L) C D(M). For a pair q5, # E D(L) we have 

(Ld - 44 M# - M@H = CT4 - V, d - $> + S,b(x) (T$ - Td2 dx. 

From (3.2) it follows that the first term is non-negative; the second term 
is also nonnegative, so (2.4) is satisfied. 

We wish to show Rg(M + L) = H. The linear and continuous map 
4 -+ (1 + b( *))-l$ : V -+ V* has range in H and satisfies 

((1 + b(-))-% $> = ((1 + 6.))~$4 4)~ 3 0, 4 E V- 

Letting Tl$ = (1 + b( .))-r$ + T+, we have an operator Tl : V -+ V* which 
is monotone, by (3.2), 

CT14 - Td> + - 4) 3 0, 4, * E K 

demicontinuous [3, pp. 76-771, and coercive by (3.3), 

where h(r) = r~--l satisfies lim,,, h(r) = co. Hence Tl maps V onto V* 
[2,3]. Let w ELM. Then (1 + &*))-I w eL2(G) C V* so there is a q5 E V 
with T& = (1 + b(.))-%u. Thus T$ = (1 + b(s))-l (w - 4) E L2(G) and we 
have 4 E D(L) n D(M) with M$ + L+ = w. 

THEOREM 2. Let V/be a closed subspace of w1J’, 2 <p < co,and b(*)sLa(G) 
with b(x) > 0, a.e. x E G. Assume (3.1), (3.2), and (3.3); let T: V+ V* 
be given by (3.4) and (3.5). Finally, assume u,, E V is given with Tu, ELM. 
Then there is a unique function u: [0, a~) -+ V for which Tu(t) eL2(G) for 
every t > 0, u and b(.) Tu : [0, CO) *L*(G) are Lipschitx, hence strongly 
differentiable at a.e. t E [0, a), 

(W)@(t) + b(x) T@)) + W) = 0, (3.6) 

inL2(G) for a.e. t E [0, co), and u(O) = ?c, . 

Proof. From the preceding discussion and Theorem 1 we obtain all the 
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statements except the Lipschitz continuity and the initial value. These 
follow from the fact that T is monotone, and hence 

so the Cauchy-Schwartz inequality gives 

This last inequality shows that 111 is injective, giving the initial condition, 
and that u(.), and hence bZ’u(.), are Lipschitz. 

The equation (3.6) represents a weak form of a partial differential equation 
on the cylinder G x (0, co). The solution U: [0, co) -+ V leads in the usual 
way [2, 3, 8,9, 111 to an (equivalence class of) functions 71: G x (0, co) ---f R 
related by z)(., t) = u(t) in L2(G), and this function v is a weak solution of 
the equation 

- $ WW, Wx, t)) + 4(x, Dw(x, t)) = 0. 

Let r be a measurable subset of the boundary, aG, and let V be the closure 
in W1*n of those infinitely differentiable functions on G with support disjoint 
from r. Then u(t) E V, t 3 0, gives a boundary condition 

0(x, t) = 0, x E r, t > 0. 

The condition that u(t) E: D(L), t > 0, gives us from (3.5) the identity 

VW, $1~ = a@(t), #>, SL E K t 2 0, 

and this gives (formally) a “natural” or “variational” boundary condition 
from the divergence theorem, 

f A&, Dv(x, t)) IQ(X) = 0, x E aG N r, t 2 0, 
i=l 

where V(X) = (Ye,..., YJx)) is the unit outward normal on aG. 

Remark. Suppose the viscosity coefficient is constant, say b(x) = b > 0 
for x E G, and let L be a hyper-accretive operator. Then A = I.(1 + bL)-l 
is the Yosida approximation for E and, letting w&t) denote the solution of 
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(2.2) (with M = identity) and u(t) the solution of (2.1), we have 
[l, Theorem 2.21 

and the limit is uniform on bounded intervals. In our application above, 
this shows that a particular Sobolev equation can be used to approximate 
parabolic equations [8]. This approximation has been a means of constructing 
the solution of (2.2) [6, 7, 111. 

REFERENCES 

1, H. BREZIS AND A. PAZY, Accretive sets and differential equations in Banach spaces, 
Israel J. Math. 8 (1970), 367-383. 

2. F. E. BROWDER, Existence and uniqueness theorems for solutions of nonlinear 
boundary value problems, in “Proc. Symp. Appl. Math.,” Vol. 17, Amer. Math. 
Sot., Providence, RI, 1965, pp. 24-49. 

3. R. W. CARROLL, “Abstract Methods in Partial Differential Equations,” Harper 
and Row, New York, 1969. 

4. M. G. CRANDALL AND T. M. LIGGETT, Generation of semigroups of nonlinear 
transformations on general Banach spaces, Amer. j. Math. 93 (1971), 265-298. 

5. T. KATO, Nonlinear semi-groups and evolution equations, J. Math. Sot. Japan 19 
(1967), 508-520. 

6. T. KATO, Accretive operators and nonlinear evolution equations in Banach spaces, 
in “Proc. Symp. Pure Math.,” Vol. 18, Part I, Amer. Math. Sot., Providence, 
RI, 1970, pp. 138-161. 

7. Y. KOMURA, Nonlinear semigroups in Hilbert space, J. Math. Sot. Japan 19 
(1967), 493-507. 

8. J. LAGNESE, Existence, uniqueness and limiting behavior of solutions of a class of 
differential equations in Banach space, Pacific J. Math., to appear. 

9. R. E. SHOWALTER, Existence and representation theorems for a semilinear Sobolev 
equation in Banach space, SIAM J. Math. Ad. 3 (1972), 527-543. 

10. R. E. SHOWALTER, Equations with operators forming a right angle, Pucijic J. Math. 
45 (1973) 357-362. 

11. K. YOSIDA, “Functional Analysis, ” Academic Press, New York, 196.5. 


