Fluid Flow in a Layered Medium

G. W. CLARK AND R. E. SHOWALTER

Department of Mathematics
The University of Texas at Austin
Austin, TX 78712-1082, U.S.A.

Abstract. A layered medium is modeled as a continuous distribution of relatively flat cells
within a spatial region. Local flow within each cell as well as the exchange with the global
flow over the region is modeled by a quasilinear parabolic system of partial differential
equations, and the local geometry of the individual cells is included in the model. We
introduce new terms to account for the secondary flux corresponding to either transverse
flow across the cells or direct cell-to-cell diffusion driven by the global density gradient.
The resulting initial-boundary-value problem is shown to be well-posed and to depend
continuously on the parameter defining the type of interface condition on cell boundaries.
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1. Introduction.

We will begin by presenting a few models of fluid flow through a fractured reservoir.
Barenblatt et al. [5] describe flow through a general heterogeneous medium by modeling it
as two overlapping media. Two fluid pressures are introduced, each representing the fluid

pressure in the corresponding medium. The resulting system of coupled equations takes

the form
(1.1.a) 0110:v — 0120w + a(v —w) = V- (D16v)
(1.1.b) —0210pv + 0220;w — (v — w) = V- (D26w)
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where v represents the fluid density in the first medium and w represents the density
in the second. Here the 0;;’s represent the saturation constants or porosities of the two
media, and D; and Dy give the permeability of the media. This type of model is generally
referred to as a parallel flow model. Several variations of the above can be obtained by
adjusting the coefficients. For example, if one specializes this to a matrix of permeable
blocks separated from each other by a system of fissures and assumes that the blocks are
completely isolated from each other by the fissure system, we set Dy = 0. The resulting
first order kinetic system models fluid flow in which the individual blocks interact only

with the surrounding fissure system.

For a layered medium one needs anisotropic assumptions. In a simple model consisting
of horizontal alternating layers of block and fissure, Boulton and Streltsova-Adams [6]
assume that flow in the fissures is horizontal while fluid flows only vertically in the blocks.
In (1.1) above we might represent such a situation by defining the terms D; and D5 to be
3 x 3 matrices. The flow assumptions could then be modeled by adjusting the coefficients
of the corresponding matrix. Kasap and Lake [9] approach a similar problem involving flow
in a layered medium by calculating an effective permeability of the block-fissure system. In
this approach, a heterogeneous block is replaced by a homogeneous one. The permeability
of the homogeneous block corresponds to the effective permeability of the heterogeneous

one, so that the critical aspects of the fluid flow are preserved.

In the Barenblatt model described above, the exchange terms are assumed to be
proportional to the difference in fluid density between block and fissure. We will present a
model in which the geometry of the blocks plays a role in this flux exchange. To accomplish
this we use the concept of the distributed microstructure model. These models utilize two
scales to describe the medium of blocks and fissures. At each point in the fissure, or macro-
scale, is specified a block, or cell, which exists in the micro-scale. The fissures affect the
cells on their boundaries in the micro-scale while the cell effects are spatially distributed
throughout the fissure system. Such models have been used recently by Arbogast [2],
[3] and Arbogast, Douglas and Hornung [4] in oil reservoir simulation, by Hornung and
Showalter [8], and by Showalter and Walkington [16], [17], and they also appeared in

numerous earlier works.



We will introduce and develop a double porosity microstructure model for a medium
with a layered structure. Our assumptions are similar to those of Boulton and Streltsova-
Adams described above. When dealing with a horizontally layered matrix of blocks and
fissures we will consider only vertical flow within the blocks or cells. In previous models
these cells have been viewed as storage locations only. Fluid passes from the fissure system
into the cells, is stored there for a time, and then exits the cell back into the fissure
system. A significant difference between such models and those introduced here is that, in
addition to this storage effect, the fluid here is forced through the cell system by pressure
differences in the fissure system. This flow in the cells produces an additional component
to the velocity field in the fissure system which we will refer to as the secondary fluz.

In the following section we will describe the physical setting for the microstructure
models. We will compute an expression for the exchange of fluid between the individual
cells and the fissure system which accounts for the secondary effects of both storage and
flux. This will allow us to write a system of partial differential equations, coupled by
this exchange term and by boundary values, which effectively models the flow of fluid
in the medium. We can also write the system as a single functional PDE. The latter
sections of this work contain the mathematical formulation of our microstructure models.
In Section 3 we pose these problems with the new secondary flux effects in a variational
setting on spaces constructed using continuous direct sums of various Banach spaces of
Sobolev type. Finally, in Section 4, we prove a general theorem on the existence and
uniqueness of solutions of the variational equations which represent the models, and we

give a result on the continuous dependence of solutions on the type of boundary condition.

2. The Model.

The medium modeled here consists of a matrix of fissures and cells in which the individual
cells interact only with the surrounding fissure system. We are interested in a layered
structure, which is modeled by a continuous distribution of thin cells throughout the
region. The fissure system might occupy little volume relative to the total volume of the
cells, but it has a much higher permeability. Although most of the transport of fluid

occurs in the fissure system, much of the fluid may be located within the cells at any
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given time. Because of the shape of the cells, and the higher permeability of the fissure
material, a pressure difference in the vicinity of a cell tangential to the associated foliation
would permit fluid to pass easily around the cell but induce little or no flow within the
cell. However the same pressure difference in the normal direction induces fluid to flow
through the cell. In the following we will assume that flow within the cell responds to a
fissure pressure gradient perpendicular to the layer in a neighborhood of the cell.

We require some notation in order to proceed, so let Q C R® be a bounded open set
and at each point = € €2, let €2, represent the cell structure within a neighborhood of
that point. Let u(z,t) and U(x,y,t) represent the fluid density in the fissures and cells
respectively for z € Q, y € Q,, t > 0. It should be emphasized that two different scales are
implicitly employed here. In the macro-scale, any x € €2 is a point in the fissure system
and u(z,t) represents the value of the fluid density at that point. In the micro-scale, every
Q, represents an individual cell with the y variable determining the location within the
cell. Thus U(z,y,t) gives the fluid density in the cell Q, at the point y.

Flow in the global fissure system is assumed to be governed by the classical diffusion

equation

%(a(m)u(w,t)) — V- (A(@)Vu(z,t)) + Q(z,t) = f(z,t), z€Q
where f(x,t) is a prescribed distributed source and Q(z,t) represents the density of fluid
flow from the fissure system into the cell 2, across its boundary I',. The effect of the
cells on the fissure system is distributed throughout the region 2 with each cell acting as
a source or sink, while the fissure system affects the cells through their boundaries.

The cells €2, used to model this layered media have dimensions which are much smaller
in one direction than in the other two directions, so that they are nearly flat. Let T, be a

(two-dimensional) plane passing through €2, and perpendicular to the direction given by

the (small) height of £2,. Choose a coordinate system so that for y € Q,,

y = (y1,¥2,y3) = (y1,Y2,0) + y3iiy

where (y1,2,0) € T, N Q, and 7, is a unit vector normal to T,. Note that 7, gives the

direction of the secondary flux. In each cell we assume that the flow is governed by the
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diffusion equation

%(b(m, YU (z,y,t)) — 63, - (B(=, y)ﬁyU(m,y, t)) =0

along with a constraint on the cell boundary I', = 02, of the form
U(z,s,t)=g(z,s,t), sely,

where g represents the influence of the surrounding fissures on the cell. In all of the
previous work involving this type of model, only the effect of the fissure fluid density in
a neighborhood of the cell has been considered, i.e., g(z,s,t) = u(x,t), s € I',. We shall
incorporate into this model both the effect of the local value of the fluid density on the
cell and the effect of the density gradient across the cell. We will ignore the effect of the
gradient of density in the y; and y» directions, because the effective cell permeability is

much lower than that of the fissures. Thus we approximate u(z + E ) for x + E eI, by
In the cell problem above we define the function g representing this influence by
g(z,s,t) = u(z, t) + ssVu(z, t) - iig s = (81, 82, 83) -
The coupled system representing the fissures and cells can now be written

(2.1.a) %(a(w)u(w,t)) — V- (A(z)Vu(z,t) + Q(z,t) = f(z,t) , 2€Q, >0

0 - -
—(b(x,y)U(z,y,t)) =V, - (B(z,y)V, U(z,y,t)) =0, yel,
o1y | o 0ENUE0) =By (B Py U.0)

Uz, s,t) = u(x, t) + ssVu(z,t) -y, s€0Q=T,.

We shall also assume that u satisfies the Dirichlet boundary condition
(2.1.c) u(z,t) =0, x €0,

although everything can be achieved likewise for the other types of boundary conditions.
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To determine Q(z,t) we will consider the normal first-order effects of the cells on

the fissure system. The rate at which fluid flows across I', is given by B(x, s)g—g(ac, s, t),

sel',, zr € Q. We compute its effect as a distribution on test functions of the form

O(z,y) = p(x) +ysVo(x) iy , ¢ €CEQ),

as follows:

oU
/Q/Fw B(z, s)aé(w,s) ds dzx

:// B(x,s)a—Ugo(x) dsda?—l-// B(.’I?,S)a—US:;ﬁ()O(l')'ﬁw dsdx
QJr, 8V QJr, 8V

= B(x,s)aa—g(x,s)ds—ﬁ- B(x,s)s;»,g—g(x,s)dsﬁm o(z) dz .
o \lJr, r

x

Therefore, we define the source term Q by

(2.1.d) Q(z,t) E/r B(z, s)aaU ds —V - (/1“ B(z, 3)33(3—[5 dsﬁx> ,

) v
and this completes the system.

If the cells €, are symmetric about the plane T,, then it is easy to separate the
effects of storage from those associated with the flux. In order to do this we consider
the cell problem (2.1.b) as two problems, one with symmetric boundary conditions arising
ifrom the value of the fissure density, w(t) = u(z,t), and the other having anti-symmetric

boundary conditions from the first variation of the density, @(t) = Vu(z,t). In this way

(2.1.b) becomes

(2.2.2) %(bUl) —Vy (BV,U1) =0, yeQ,t>0,
Ui(s,t) =w(t), seTl,,

and
0 = -

(2.2.b) &UJU?) = Vy - (BVyUz) =0, ye,, t>0,
Us(s, t) = s3iiy - () , seTl, .



Note that U = Uy + U, satisfies (2.1.b), and that Uy contributes only to storage while Us

is associated with the flux in the 7i, direction, so that, in this case

(2.3) Q(x,t) = /P B(z, s)% ds—V - (/1‘ s;:,B(:v,s)%ﬁw ds) .

This can furthermore be expressed as a convolution functional of the general input to the

cell problem. Using Gauss’ theorem on (2.2.a) yields

0 oU;
- . —_— p— B—
(2.4.a) 6t/ﬂwa1dy /Fm 81/d

and similarly after multiplying (2.2.b) by y3 we get

0 oU,
2.4.b — bUsys d B— dy = B——=s3ds .
(2.4.b) 8t/ 2Y3 y+/ By W= /F 5, 53
Since the input boundary conditions in (2.2) are independent of the spatial variable, one
can use standard Green’s functions representations for their solutions to express the left

side of each of (2.2) as convolution-in-time products, e.g.,

/ b(xz,y)Ur(z,y,t)dy = / ki(z,t — T)w(r)dr = k1(z,-) * w(t) .
Q. 0

With the obvious notation we obtain by substituting these representations of (2.4) into

(2.3) and then into (2.1.a) the functional partial differential equation

(2.5) (a(z)u(z,t) + ki (z, ) * u(z,t))

%klg (2,-) % Vu(z, t) + ko (z,-) * Vu(z, t))

= f(z,t), zeQ,t>0.

SIS

-V (A($)§u(a:, t)+

In the case in which €2, is independent of x, i.e., 2, = Qg for all z € €2, the convolution
kernels ki, k12, ko are likewise independent of x, and then (2.5) is Nunziato’s equation.
This was presented in [12] as a generalization of earlier work of Gurtin and Chen for heat
conduction models in which the heat flux is permitted to depend on the present value as
well as the history of the temperature gradient. No physical or philosophical argument was

presented there for this interesting generalization. See [11] for additional work on (2.5).
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3. The Variational Formulation.

We will now return to a more general setting and give a mathematical formulation of the
microstructure models described above as evolution equations on various Banach spaces.

We will show that the Cauchy-Dirichlet problem is well-posed for the quasi-linear parabolic

system
(3.1.a) %(a(x)u(m, t)) — V- A(z, Vu(z,1)) + /F m B(x,s,V,U(z,5,t)) - 7ds
-V- (/1“ B(a:,s, 6yU(x, s,t)) - US3Tl, ds) = f(z,t) , x €,
(3.1.b) %(b(m,y)U(a:,y,t)) ~Vy, - B(z,y,V,U(z,y,t)) = F(z,y,t), 2€Q,y€Q,,
(3.1.c) B(z,s5,VyU(z,5)) - 7 = p(U(z, s,t) — u(z) — Vu(z) - fzs3) ,

r €N, s=(s1,82,83) €y,

where a € L*° (), b € L*(Q2 x €,), A and B are nonlinear with polynomial growth rates
of orders p — 1 and ¢ — 1, respectively, ¢/ is the unit outward normal on I';, and u > 0.
Let Q be an open, bounded domain in R® and for every = € Q, let €, be a bounded
region contained in R®. Identify the product space [[,.q Q2 = Q as a subset of R®; we
require that Q be a measurable subset of R®, so each of the cells Q, = {y : (z,y) € Q} is
a measurable subset of R3. We will further assume that the boundary of Q,, denoted by
'y, is piecewise C! and that the measures |T';| and |Q,| are uniformly bounded in z. Let

a measurable vector field 7, be defined as in Section 2, and for p,q > 2, define the spaces
Wer(@) . Vy={Uer?(Q13(): V,U e L9, 19(2,)) } .

See [1] for information on Sobolev spaces. To define the norm on V, we will employ the

. 1/q
|U|q:</ / |va(a:,y)|‘Idyd:c) ,
aJa,
1/2
|U||L2(Q) (// my |2dyd.’L‘> ,

following notation:



and ||Ul|lq = |U|q + [|[U||z2(g)- Denote the product of the Banach spaces W, P(Q) and
(Vas | lq) by V = WP(R) x V, with norm

1w, Ulllv = llullwzrqy + U1l -
For purely notational purposes, we will also define the seminorm space
Wq:(Vq |'|q)-

Let v, be the usual trace map of W2((,) into L*(I',), and define B = L?(Q, L*(T';))
and the distributed trace v : Vo — B by yU(x,s) = (v.U(z))(s). Since ¢ > 2, Holder’s
inequality and the uniform bound on || imply that V is contained in L*(Q, WH2(Q,)).
We will require that the trace maps v, be uniformly bounded. ;From the above we see

that v maps V; into B. Define A : W, ?(Q2) — B by:

=

Au(z, s) = u(z)ls + Vu(x) - figss , xr €N, s=(s1,89,83) €y,

where u(z)1, is the constant function on I', with value u(z). Note that Vu € LP(£2) and

since p > 2, we have by Cauchy Schwartz

-~ - 1/2 1/2
/ / Vu(x) - figszdsdr < (/ / \Vu(z) - iig|? ds da:) (/ / |s3| ds d:v)
aJr, QJr, QJr,

< C||6u'ﬁw||L2(Q)

< Cl|Vu - gl Loy -
In the remainder of this work we will employ the notation @ = [u, U].
Define V;, = {& € V : yU = Au in B}. We know that v and A are continuous, so V4, is
a closed subspace of V.
Let a be an element of L>°(2) such that a(z) > ¢ for almost every z € {2 and some
¢ > 0 and let b be an element of L>° (€ x Q) such that b(z,y) > c for almost every y € €,
and z € Q. Define the Hilbert space H = L2(Q) x L?(, L?(€;)) with the inner product

(5 ) = /Q a()u(@)p(z) dz + /Q /Q W)U, ) () dyd
for 4 =1[u,U], p=[p,®] € H.
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This is equivalent to the usual inner product when a = b = 1.

Define Vo = {U € Va : 7U = 0}. We claim that W, ?(Q) x V and V}, are dense
in H. To establish the density in the first case we need only show that Vj is dense in
L2(Q, L*(2)). Let F € L*(Q, L*(Qy)), and define 6, by
1 ifinf{ly—2[:2€0Q,}>1 ze€Q,yec,

On(z,y) = {

0 otherwise

and F,, by
Fn(ﬂi,y) = en(may)F('Tay) .

For each = and n > 0 select mollifier functions p,, € C§°(B1/y,) such that
/N pm(y)dy =1 and pm(y) 20, y € Bim
R
where By, = {y € RV : |y| < 1/m}.
Suppressing the (fixed) z write Fy,(y) for F,,(z,y) and define

Fan@) = [ pmly=2)Fa(2)dz

x

Then me € C(())O (Qz) and ”Fm,n

l22(2.) < [Fullz2(,) for a.e. z € Q, and m > n. Also
Fpn — F, in L?(Q;) as n — oo. Clearly, F,, — F pointwise in  x Q, as n — oo.
Since |F,(z,y) — F(z,y)|* < |F(z,y)|? and |F|?> € L'(Q x ), the Lebesgue dominated
convergence theorem implies that F,, — F in L*(Q, L?(Q,)). For a fixed M > 0, F,,, py —
Fyy in L2(82,); thus Fyy, p— Far — 0in L2(€2, L2(€2;)) by another application of Lebesgue’s
theorem. Since F,, can be made arbitrarily close to F', this proves that V} is dense in
L*(Q, L* ().

To show that V}, is dense in H, let [f, F] € H and choose a sequence ¢, € C3°(Q2)
such that ¢, — f in L?(Q) (e.g., by truncation and convolution as above).

For u € W1?(Q), extend Au to all of Q@ x |J,c Qs by

—

Au(z,y) = u(x)ly + Vu(z) - (y - 7ig)ity

Note that y(Au)(z, s) = Au(z, s). Note also that Ay, is in L?(€2, L%(£2,)), thus for every
n> 0, F—\p, € L%(Q, L?(Q;)). Fix n and choose ¥,,, € V; such that ¥,, — F — \g,, in
L%(Q, L?(Qy)). Define ®,, by ®,,(z,y) = Yo (z,9) + Aon(z,y).
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For n > 0 choose m, > 0 such that [|[¥,,, — (F — Agn)|lz20,02(0.))
< 1/n, then [@n, P, ] — [f,F] in H as n — oo. Also 7@, (z,s) = YV, (z,s) +
Y(Apn)(z, s) = Apn(, s), thus [¢n, P, | € Vi

We shall write the system (3.1) as an evolution equation over the spaces described
above. To obtain the variational form for the system, choose [, ®] € V, multiply (3.1.a)
by ¢ and integrate over Q2. Multiply (3.1.b) by ® and integrate over both €, and Q. Add

these equations and apply Green’s Theorem to obtain

a (a(@)u(z, 1)) p(z) + 9 (b(, 9)U (2, 9, 1))@ (, y) dy b do
/Q{ ot /Qac ot
+ /Q{A(:U,VU(:E,t)) -Vo(z) +/r B(z,s,V,U(z,s,1)) - dp(z) ds

+ [ Bl 9,0 00) - 9,000 dy
— / B(:U, v, ﬁyU(x, v, t)) - Uy, D(x, s) ds} dzx
Ty

+/ </ B(z, s,ﬁyU(ac, $,t))s3fls ds) Vo(z)dz
o \Jr

~ [ f@y@ s+ [ [ P dyds.
Q Q JQ,
Combining the boundary integrals and substituting for B(z, s, ﬁyU(:c, y,t)) - ¥ yields

(3.2) (), U] €V : /Q %a(m)u(m,t)ga(:v) do
+/Q/Q %b(x,y)U(:ﬂ,y,tﬂ’(w,y) dydz
+ /Q A(z, Vu(z,t)) - Vo(z) do
—}—/Q/QwB(a:,y, VyUl(z,y,t)) - Vy®(z,y) dy de
+ /Q /F U 1) e, ,8)) (1907, 3,1) — Apla, 1)) d

- [ r@p@a+ [ [ P y)dyds o9V
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A special case of the above is obtained when (3.1.c) is replaced by
(3.1.c)' yU(z,s,t) = Au(zx, s,1) xe,sel;,t>0.

This is the formal result obtained by setting p = % and allowing § — 0T, so that (3.1.c)’

is forced to hold and corresponds to

(3.2) [u(®),U@)] € Vi : /Q %a(m)u(x,t)cp(m) dx

0
[ e U o,y dydo
+/ Az, §u(x,t)) Vo(z) dz
Q
/e,

- [ r@e@d+ | | Fa )l y)dyde Lo 9] € Vi

Set ps = 3; then (3.1) with 5 in place of p will be called the regularized model, and (3.1)’,
ie., (3.1.a), (3.1.b) and (3.1.c)" will be called the matched model. Conversely, starting from
(3.2) it is not difficult to recover (3.1).

Define the Banach spaces
H = L*0,T;H)
W, = LP(0,T; Wy *(9))
Vo = LY0,T;V,)
V=W, xV,, and

Vi ={@€V:qU(t) = Au(t) in B for almost every t >0} .

Let A:Q x R® — R? satisfy the following:

Az, €) is continuous in £ € R? and measurable in z with

Az, &) < CEP™! + g ()
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where g1 is given in L?' (Q), C and ¢ > 0.

—

(A(z,€) — A(z,77),E—if) >0 for £7€R®, for almost every z € Q .

Az, €) - € > ¢|€|P for almost every z €  and all £ € R3,

Let B : Q x R3 — R3 satisfy:

B(z,y, E ) is continuous in E and measurable in x and y with
[B(z,y,&)| < CEI"" + ha(,y)

where hy € L9 (Q).

—

(B(z,y,€) = Bz,y,7),€=71) 20,  &£7eR,
for almost every x € 2, y € Q.
B(z,y,€)-€>¢|[€|? for almost all z € Q, y € Q,, and all £ € R™ .
Define L : V — V' by
Lu(p) = /QA(a:, ﬁu) . 6(,0dat:-i-/n/Q B(z,y, 6U) . ﬁyq)dydm u,peV,

where A and B are as described.

The conditions above on A and B lead to estimates on the operator L of the types

(3.3) La(ﬁ)zc{/ |%|de+// |6U|Qdydx},
Q QJQ,

and

Li($) < / Az, V)| V| de + / / B(z,y,9,U)| [V, (2, y)| dydz
Q QJQ,
< {ClIVulELlg) + lll o @ HIVPl ooy

+{CIVy Ut pagonyy + 1l e @,z0 @ IV @200, pa0,)

(3-4) La(@) < C(llullbyry + IUNE +K)llellv

0

I~§}
Ay
m
<

I
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so L is bounded from V into V.
Define M : B — B’ by

M([®, ¥)) :/ / dUdsdr, ®,VehB.
QJr,
Denote the action of the pair [A,v]: V — B by [\, v](u,U) =4U — Au. Then
M(a, ) = [AA]" o M o [A,7](a, §)
:// (YU — M) (v® — Ap) ds dz u,oeV,
eJr,

gives a continuous and linear function M : V — V',

Define f € V' by

ﬂ@=lﬁwm+éléﬂwwm, Gev .

We will use the same notation to refer to the corresponding realizations of these operators
on the spaces H, V and V.
Integrating (3.2) from 0 to T we obtain

T B T T 1
(3.5) aev:/ (aa, @) dt+/ La(@) dt+/ SMa(@) dt
0 H 0 0

T
~ [ @i, gev.
0
Similarly from (3.2)" we get
T /5 T T
(3.5)’ i€V / (—a, ¢> dt +/ Li(@) dt = / F@)dt, GeV.
o \0t H 0 0
We shall give conditions under which (3.5) and (3.5)" have unique solutions and show that

the solutions @5 of (3.5) converge to the solution @ of (3.5)" as § — 0. This is our main

result, and we prove it in the following section.

Theorem. Given the spaces and operators as above, suppose that @y = [ug, Up] € H and
f= [f,F] € V'. Then for every § > 0 there is a unique s € V which satisfies (3.5) and
@5(0) = 1p. Also, there is a unique @ € Vy which satisfies (3.5)" and where @(0) = .

Furthermore 15 converges weakly to @ inV as d — 0.

4. The Proofs.

We will need the following standard result.
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Lemma. If is an element of V such that (3.5) or (3.5)" holds, then |u(-)|% is absolutely

continuous on [0,T] and
d ~ 2 ~1/ ~
%|u(t)|H = 2(d/(t),u(t)) for almost every t € [0,T] .

This follows since H is the pivot space between V and V' and between V,, and Vj,.

Definition. Let V be a reflexive Banach space and A : V — V'. Then A is said to be

type-M if
(i) up, — u weakly in V|

(ii) Au, — f weakly in V', and

(iii) lim sup Auy, (u,) < f(u)

n—o0
imply that Au = f.

Some combinations of properties will imply that a function A is type-M. For example,
any monotone and continuous function A: V — V' is type-M (see [10]).

Integrating (3.4) from 0 to T and applying Holder’s inequality once more shows that L
is bounded from V into V'. (We will use the same notation for both situations; L : V — V'
and L : V — V') The Caratheodory-type conditions prescribed above on A and B
guarantee that L is both continuous and monotone. Since M is also continuous and
monotone, both L and L + %M are type-M ;from V to V' as are their realizations from
Y to V.

To establish the existence of a solution to (3.5) or (3.5) we will require some ellipticity
estimate on the operator L. (Our preceding estimate, (3.3), is not sufficient.) In order
to provide such an estimate, we will make a change of variable. This will yield equations
equivalent to (3.5) and (3.5)" for which we can establish an ellipticity estimate.

Suppose that we are given a % € V such that

(4.1) (gr0) +1ito)+ jMie) = 0).  pev.

Let v = e~t4. Substituting for @ we obtain:

((% " f"ft)’@)H +L(Ep+ M) = F§), eV
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Multiplying by e~ yields

(5:7:2) + @@+ L) 06 + FME@) = (@) PV

Define £:V — V' by

0 1
Fev: (—w) L) + M) = §(8) , peV
%), 5

where v = e™"u.
For convenience we will write £ as the sum of three operators. Define £, : WP (Q) —

WP (Q), L2 : L2(Q) — L*(Q) and L3: V, — V! by
Liu(p) = e_2t/QA(:U, e'Vu) - Vel dz
Lot(p) = (4, P)m
L3U(®) = e /Q/Q B(z,y, etﬁyU) Ve dy da

Then Li(@) = Liu(p) + Lot(@) + L3(U)(P). We will follow the convention established
above and use the same notation for the corresponding operators on the spaces W, and
V-

Note that from the lower-estimate on B that
Lyu(u) > c/ VulP dz
Q
and since u € WO1 P(Q) this is equivalent to

Lru(u) 2 ellully, ueWyP(Q) .

Q)

Also,
L3(U)(U) > k/ / V,U|?dydz =k|U|2, Ue€V,
ala,
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and

52’&(’&) Z Oé”UH%Q(Q) ;

where o > 0 depends on b. Also for 0 < ¢ < T, an estimate similar to (3.4) holds. We have

La(p) < C(IIUII’V’;&Z(Q) +UIE + U2 + #) 12llv

for 4, p € V. Thus £ is bounded from V into V’. L also shares the other properties of L;
it, and £ + %M are continuous and monotone, and thus type-M from V into V' and V
into V.

We shall next establish existence and uniqueness of functions us € ¥V and u € V;, such

that
T d T 1 T
(4.2) [;@ﬁ&@Hﬁ+K;MM@ﬁ+EA.M%@Mt
t ~
= [ f@a,  pev
and
T d T T B
(4.3) /0 (aa,gé)Hdt-l—/o .ca(@)dt:/o F@dt, ¢ew

where %(0) = 45(0) = @y € H and f €V are given. By applying a change of variable as
above, the existence of unique solutions of (3.5) and (3.5)" is then established. The plan is
to use a Galerken-type method: we will first solve the problem on subspaces of V' and then
show that the solutions obtained on successive subspaces converge to the desired solution.

Let {w;} be a basis for V and let V},, denote the linear span of {wq,ws, ..., wn}. Since
L and L + %M from V to V' are continuous, their restrictions to the finite dimensional
space V,,, are continuous.

Fix § > 0. Then for each m > 1, by the Cauchy-Peano Theorem in V., there is a

solution (depending on 9):
. . . L,
(4.4) U, € Vi = (T, (2), 'wj)H + Ly, (t)(w;) + gMum(t)(wj)
=flw;), 1<j<m,0<t<T,<T

17



with @, (0) = ud, € V., where 42, — uo in H as m — oo. We may replace w; by any

element of V,,,. Thus u,, satisfies

1 t 1 [t
(4.5) i € Vi + i (8) 3 + / Lt (@) ds + 5 / M, (i) ds
0 0

t
< 1
:/ Fiim ds + 5 [ (0) 3 -
0

We showed previously that for some «; € R

L1 U (U > al/ |V P dz | Um € Wy P(9) .

Q

This is equivalent to

L1(ttm) () 2 illuimly gy tm € WoH(9)

for some a7 € R since u,, vanishes on the boundary of ). We also showed that for some
az € R, L3Up,(Up) > aQ\Um\g for Uy, € V. These two inequalities, the monotonicity of
M and (4.5) combine to yield:

1 t t t
(4.6) §|um(t)|%[+oz1/0 ||um||€Vg,p(Q)d3+a2/0 |Um|gds+/0 ||Um||iQ(Q)d8

t
~ 1
< [ Ryt ds+ jlably  0<t<T,.
0

Since the right hand side of (4.6) is bounded for 0 < ¢ < T, the solution u,, is bounded in
H for 0 <t < T, thus we may assume that T;,, =T for m > 1.

We may write
t t t t
/ f’&mdb’:/ fumds+/ FlUmds+/ FyU,,ds, 0<t<T
0 0 0 0
where Fy € L9 (0,T; V), F» € L?(0,T; L*(Q)) and Fy + F> = F. Thus we obtain:
t t t
Fimds < [ 1)l go oyl ()l ooy ds + [ 13 (5)lw U (5) g s
0 0 0 0 0

t
4 / 128220 [Unm ()l 22y ds , 0 << T
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Applying Young’s inequality to each of the three terms on the right hand side of the above
yields

(4.7) t/‘fum

-1 P
lp(Q),d s+ /” m” lp(Q)

IE ,ds+—/ U | ds

€7
+37 ||F2||L2(Q) ds + = / U, ||L2(Q) ds, 0<t<T

for any €1, €2,e3 > 0. Choose €1 = (a1p/2)Y/?, e5 = (a2q/2)Y/? and €3 = 1, then (4.6) and
(4.7) give

(18) i@+ 5 [ Ty s 2 [ O

2
+§Anwmm@@so, o<t<T.

where C' depends only on f and uY . The above inequality shows that ,, is bounded in

both V and L*°(0,T; H). There is a subsequence, which will be denoted simply by ,,,

such that @, — @ weakly in V, Ly, + 3 My, — £ weakly in V', and @y, (T) — G in H.
For each j > 1,8 > 0 and ¢ € C'[0,T] we obtain from (4.4)

T T
iy € Vit — /0 (i (2), & (B)05) ,; it + /0 Lt () (0 (t)w; ) dt
+ /0 %Mﬂm(t)(w(t)wj)dt

/.f (Byw; dt + (4%, w7)(0) — (1 (T), w;) 2(T)

Letting m — oo gives:

—/OT(“() t)w;) dt+/ () (t)w; dt

= (o, w;)p(0) — (a7, w;)e(T / f (t)w; dt .
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Applying Green’s Theorem in the ¢ variance yields
T T T
| @) de+ [ cpudir [ @0.o0u,),,

t ~
= | ey i+ (@~ a0), w,)(0) + (3(T) ~ . ;) (T)
Since {w;} is dense in V' it follows that

(4.9) GeV:i+&=f in V',

@(0) =19 and 4(T)=4dr in H.

We will now show that £ = L& + 3 Mi. jFrom (4.4) we obtain

T Ty T 1, o i ,
| i) dt+ [ M) dt = [ i di 5 (180 — i (D)

Taking the limsup of the above as m — oo, the weak lower semicontinuity of the H-norm
yields
T T
. . 1. z Locogz Lo o
(4.10)  limsup {Eum(um) + —Mum(um)} dt < | fadt+ =@ — > ||ar|
m—oo JQ 0 0 2 2

and from (4.9), we have

1. 1, T T
(4.11) {Slarl 5l ) +/O ciidt :/0 Fadt .
Substituting for fOT fadt in (8.7) we finally obtain

T 1 T
lim sup / {Lam(am)+gMam(am)}dtg / Fadt .
0

m— 00 0

Since £ + %M is type-M this shows that L4 + %Mﬂ =&.
Thus far, we have established the existence of a solution of (4.2) for every ¢ > 0.
Suppose that two such solutions u; and us existed. Writing (4.2) twice, once with u; and

again with us and subtracting yields

T4 T T o )
/O(£(U1—U2),<P>H+/O (EU1—EU2)<Pd35/O Mty — uz)pds =0, peV.
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Replacing ¢(s) with

(t1p — t2) 10,4 (s) = {111(3) —ag(s) 0<s<t

we obtain:
1 t
i ® — Ol + [ (0 — L)y — z) ds
0
1 t
+5/M(&1—ﬂ2)(ﬂ1—1}2)d$:0, OStST
0

Since £ and §M are monotone this shows that ||a1(t) — @2 (t)[|3 = 0, thus u; = us.

We have shown that for every 6 > 0 there is a unique solution to (4.2). Existence and
uniqueness of a solution to (4.3) is shown in the same way. The variational statements are
the same but since M vanishes on the subspace V},, those terms do not appear. The same
procedure performed in V}, and V}, yields a solution of (4.3) and since £ is monotone, that
solution is unique.

Finally we establish the convergence of the sequence of solutions of (4.2) to that of
(4.3) as 6 — 0+. In the proof of existence above we showed that the sequence @, is
bounded in V uniformly in m. Thus the limit @ is bounded, and from (4.8) we can see that
the bound is independent of §. We will write s to represent the solution of (4.2) and % to
represent the solution of (4.3). The set of solutions {us} for § > 0 is bounded in V and in
L*>(0,T;H), and Lus is bounded in V'; thus there is a subsequence, also denoted by s,

so that
s — u* weakly in V

Lis— g weaklyin V' as § - 0.
and 45(T) =4y in H .
Also, we have
S (i, i) + OLis (s) + Miis(tis) = 0 (its) -

Since Lus is bounded in V', is is bounded in V and from (4.8), @} is bounded in V', we
may let 6 — 0 and observe that Mds(is) — 0. Since M is linear and continuous, it is

lower semi-continuous; thus Ma*(4*) < liminfs_,q+ M1s(ds) = 0 and

T
/ // INU* — Mu*|*dsdzdt =0 where 4* = [u*,U*] €V .
o JaJr,
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In fact, the above shows that u* € V. We will show that u* = u; that is, the weak limit

of {ts} is the unique solution of (4.3).
Choose ¢ € C*[0,T] andv € V},. ;From (4.2) we obtain

T T T
| ovmae+ [ cisonde= [ fe) a
0 0 0
(since ()0 € Vp, the M term vanishes). Thus
T T T
—/ (s, ' 0) dt+/ Liis(¢0) dt =/ F(0) dt + (o, ) (0) — (s(T), ) zo(T) -
0 0 0
Letting § — 0" in the above gives
T T T
~ [+ [ gend= [ 50 di+ o, d)pl0) — (5 DT
0 0 0

thus
T T T
/O (@ o) dt + / 9(9) dt = / Flov)dt + (@ (T) — iy, 0)(T) .

Since this holds for all ¥ € V), and ¢ € C[0, T], we have

~ ~ ! .
and a5 — @* weakly in V;.

In (4.2) let ¢ = @5 — 4*. Then

T T T
/ Lﬂg(ﬂg—ﬂ*)ds:/ f(ﬁ(;—ﬂ*)ds—/ (it} g — %) g ds
0 0 0
1
+5(Mﬂ* —Mﬂ5)(ﬂ5 —ﬂ*) .

M is monotone, so by taking lim sup as § — 0T we obtain

T T T
lim sup/ Lis (s — u*) ds < lim sup/ (s, u*) g ds — lim inf/ (wy, Us) g ds
0 0 0

-0 3—0 6—0+
T 1 1
= | ) ds = imint Sis (D) + 5 ol
L., 2 N . 2
= 1@ (D)l ~ limint (D]
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Since the H-norm is weakly lower semi-continuous, and us(T) — u*(T) in H,
1 ~ % 2 O L. 2
i () < min ()%

Thus
T T
lim sup/ Lis(as) ds < / g(a*)ds .
0 0

—0

Since L is type-M in V, 15 — u* and Lus — g, this shows that
Lu*=g in V;,
so 4* is a solution of (4.3) and @* = 4 by uniqueness.

5. Remarks.

We have shown that (3.5) and (3.5)" have unique solutions and that the two models which
they represent are related. We remarked previously that allowing 6 — 0% formally trans-
formed the regularized model into the matched model. We have substantiated that obser-
vation by showing that the solutions us converge to the solution of the matched model.

Note also that the variational form (in (3.2)’ for example) leads directly back to (3.1)’.
This is confirmation that our choice of (), the exchange term in the physical model, is the
correct one.

Finally note that the models and results here could be generalized or extended in
several ways. For example the assumption of a layered structure could be dropped and
the secondary flux computed in all three coordinate directions. This provides a model
for partially fissured media in which the cells are not isolated from each other and the
secondary flux results from direct cell-to-cell diffusion driven by the pressure gradient in
the fissure system. In (3.1.c) we might choose p to be something other than a constant. If,
for example, p is assumed to be a monotone graph which is also a subgradient operator, an
approach similar to that in [17] might be used to show existence of a solution. As stated
earlier, Dirichlet boundary conditions on 02 are not necessary, so some generalization is
also possible in that respect. Finally, if additional assumptions about the differentiability
of A and B and the smoothness of I';, and 02 were made, then it might be possible to say

more about the regularity of v and U.
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