POROELASTIC FILTRATION COUPLED TO STOKES FLOW
R.E. SHOWALTER

ABSTRACT. We report on some recent progress in the mathematical theory of fluid
transport and poro-mechanics, specifically, the exchange of fluid between the Biot model
of an elastic porous structure saturated with a slightly compressible viscous fluid coupled
to the Stokes flow in an adjacent open channel. The coupled system is resolved by
semigroup methods by developing appropriate variational formulations. These lead to
either a standard weak formulation or a mixed formulation for the resolvent equation.

1. INTRODUCTION

Consider the flow of a single phase slightly compressible viscous fluid
through a system composed of two regions, the first being an elastic and
porous structure and the second being an adjacent open channel, possibly
a macropore, an isolated cavity, or a connected fracture system. Both
regions are saturated with the fluid, and we need to prescribe the stress
and flow couplings on the interface between the Biot filtration flow through
the deforming porous medium and the Stokes flow in the open channel.
Our objective is to formulate a model of this composite hydro-mechanical
system which accurately characterizes the depletion history and transient
response of the fluid exchange and stress balance between the saturated
elastic porous medium and the contiguous fluid-filled chamber, and to
show that this model leads to a mathematically well-posed problem which
is amenable to analysis and computation.

Suppose that the disjoint pair of regions €; and Qs in IR? share the
common interface, I'io = 0€21 N 0€2. The first region €2 is the fully-
saturated elastic porous matriz structure, and the second region 25 is the
fluid-filled macro-void system which is adjacent to {2;. Here we denote by
n the unit normal vector on the boundaries, directed out of 27 and into {2s.
The derivative with respect to time will be denoted by a superscript dot,
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so vl(z,t) = ul(z,t) denotes the velocity corresponding to a displacement
ul(z,t) of the porous structure at * € ;. Also, we let v%(z,t) be the
velocity of the fluid at x € €29. The pressure of the fluid in the pores of €2;
is given by p!(z,t) and the pressure of the fluid in the adjacent channel
system Qy by p*(z,t).

1.1. The Conservation Equations. The laminar flow of a slightly com-

pressible viscous fluid through the deformable porous medium €2; is de-
scribed by the Biot system [11, 12, 13]

(1.1&) Clpl — az-kij(?jpl +cyV - ul = hi (ZB, t) ,
(1.1b) priat — (A + 1) V(V -ul) — pAut + g Vp! = fi(z, 1),

consisting of the diffusion equation for conservation of fluid mass, and the
momentum equation for the balance of forces, respectively. The porosity
of the matrix and the compressibility of the fluid or the solid material
on the meso-scale are incorporated in c;. The conductivity k;; combines
the permeability of the structure and the viscosity of the fluid to provide
a measure of the filtration velocity or fluid flur q = (q1, q2,q3), given by
Darcy’s law, q; = —kijé’jpl. The density of the saturated porous matrix is
denoted by p;, and the positive Lamé constants A\; and p; represent the
dilation and shear moduli of elasticity, respectively. The first accounts for
compression and the second for distortion of the medium [23, 19]. The
dilation ¢oV - ul(t) provides the additional pore fluid content due to the
local volume change, and the term coVp!(t) is the pressure stress of the
pore fluid on the structure. The Biot- Willis constant ¢y is the pressure-
storage coupling coefficient [14]. See [9, 20, 28, 21, 62, 22, 18, 55, 56, 57]
for background and recent results. We shall include here the situation
of consolidation problems in which the inertial effects of the matrix are
negligible, hence, p; = 0.

The slow flow of a slightly compressible viscous fluid in the adjacent
open channel s is described by the compressible Stokes system [59, 53]

(1.2a) co(z)p? + V - v2 + o) pa(z)g(z) - v =0,
(1.2b) p2(2)V? — (A2 + p2) V(V - v?) — ueAv? + Vp?
= c(z)pa(2)g(2) p*.

The constants Ay and uo represent dilation and shear viscosity of the fluid,
respectively. We also include the limiting case of an incompressible fluid



BIOT-STOKES SYSTEM 3

(see p. 147 of [59], p. 269 of [52]) for which ¢; = 0 and the flow in the
channel is the classical Stokes flow,

V- -v?=0, pa(2)V? — i Av: + Vp? = 0.

The system is obtained by linearization about a steady situation in which
p2 is the density of the fluid at the reference pressure. The coefficient cy(-)
arises from the compressibility of the fluid, and the terms with g(-) are
the gravitational contribution to momentum and to convection.

1.2. Interface Conditions. The objectives below are to identify a phys-
ically consistent set of interface conditions which couple these systems to-
gether and to formulate a variational statement of the resulting problem
that leads to a mathematically well-posed initial-boundary-value problem.
The interface coupling conditions must recognize the conservation of mass
and total momentum. Thus, they will include the continuity of the normal
fluid flux and of stress. The two additional constitutive relations concern
the dependence of the Darcy flux at the interface on the pressure incre-
ment and the effect of the tangential component of stress on the velocity
increment at the interface. The former is the classical Robin boundary
condition, and the latter is the slip condition of Beavers-Joseph-Saffman.

2. THE BIOT-STOKES SYSTEM

We assume the mechanical behavior of the porous solid is determined
by classical small-strain elasticity. In order to describe this, we denote
hereafter by Y the space of symmetric second-order tensors. Boldface
letters will be used to indicate vectors in IR® and Greek letters to indicate
second-order tensors in 3. We denote by § = {d;;} the identity consisting
of ones on the diagonal and zeros elsewhere. We adopt the convention
that repeated indices are summed. In particular, the scalar product of two
vectors is v-w = v;w;, and that of two second-order tensorsis o : 7 = 0;;7;;.

Standard function spaces will be used [1, 59]. Let Q be a smoothly
bounded region in IR?, and denote its boundary by I' = 0Q. Let H(Q)
be the Sobolev space consisting of those functions in L?(2) having each of
their partial derivatives also in L%(Q2). The trace map or restriction to the
boundary is the linear map v : H'(Q) — L?(T") defined by v(w) = w|r.
Corresponding spaces of vector-valued functions will be denoted by bold-
face symbols. For example, we denote the product space L?(2)? by L%(Q)
and the corresponding triple of Sobolev spaces by H!(Q2) = H(Q)3. We
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shall also use the space L3 (Q) of vector functions L?(2) whose diver-
gence belongs to L?(£2). Recall that for the functions r € L3 () there
is a mormal trace on the interface, and this is denoted by r - n, since it
takes this value on the smooth functions r in L2 (). Finally, we denote
by L*(Q;Y) the indicated space of 3-valued functions on €.

Let n = {n;} be the unit normal vector on a surface. For a vector w, we
denote the normal projection w, = w - n and the tangential component
wr = w — w,n. Likewise for the tensor 7 in X, we have its value at n,
7(n) = {;;n;} € R?, and its normal and tangential parts 7(n)(n) = 7, =
TijNiNj, TT = T(n) — Tp1.

2.1. The System. We shall write the constitutive equations together
with the partial differential equations for mass and momentum balance
as a system of first-order partial differential equations in each of the two
regions. Recall that v} = u' denotes the velocity corresponding to a
displacement u' of the porous structure in Q, and v? is the velocity of
the fluid in Qy. The symmetric derivative of a vector function u(z) is
the tensor ;;(u) = 3(0iu; + dju;) € . The constitutive laws take the
forms o' (u');; = Mdije(ul)pr + 2me(ul);; in Qy for the elastic stress cor-
responding to the strain e(u') in the homogeneous and isotropic structure
and o%(v?);; = Aabi;e(V¥)kk + 2p2e(v?);; in Qg for the viscous stress cor-
responding to the strain rate €(v?) of the Newtonian fluid. Note that
ol(ul) —cy p' § is the total stress due to elastic deformation and pore pres-
sure p! within the matrix, and o%(v?) — p?§ is the combined viscous and
pressure stress of the fluid. Here both p! and p? are the thermodynamic
pressure of the barotropic fluid in the respective regions. The Biot-Stokes
system takes the form

(2.3a) ap' +V-q+cV-v=hy(zt),

(2.3b) Qq+ Vp' =0,

(2.3c) v =V -0 +cVp' = fi(,t),

(2.3d) Clo' —e(u') =0in Q;, and

(2.3¢) co(2)p® + V - v + o) pa(z)g(z) - v2 = ha(x,t),
(2.3f) pa(z)V? = V - 0% + Vp? — e5() pa() p* g(2) = fa(2, 1) ,
(2.3g) C?0? —¢(v?) =01in Q.
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The first (2.3a) is the storeage equation for the fluid mass conservation in
the pores of the matrix in which the fluz q is the relative velocity of the
fluid within the porous structure given by Darcy’s law. This is written in
the form (2.3b) of a force balance in which the flow resistance tensor Q
is the inverse of the conductivity tensor k;;. The third set of equations
(2.3c) is the standard Navier system for the conservation of momentum of
the elastic matrix structure, the constitutive relation (2.3d) is Hookes law
for the stress-strain relationship, and the compliance tensor C! is just the
inverse of elasticity. These first four equations are equivalent to the Biot
system (1.1). The last three equations are just the compressible Stokes
system (1.2) for pressure p?(z,t) and velocity v?(z,t) of the fluid. The
equation (2.3e) accounts for the fluid mass conservation in the channel,
and (2.3f) is the momentum conservation equation. The gravitational force
g contributes to both of these. The Newtonian fluid is described by the
constitutive relation (2.3g) in which the tensor C? is the inverse to the
viscosity tensor.

2.2. Boundary and Interface Conditions. We choose the boundary
conditions on 0€2; U 0€29 — I'19 in a classical simple form, since they play
no essential role here. On the exterior boundary of the porous medium,
0§21 — I'1o, we shall impose drained conditions p1 = 0 on fluid pressure and
the clamped condition vi = 0 on velocity of the structure. On the exterior
boundary of the free fluid, €23 —I'12, we shall impose the no-slip condition
ve = 0 on fluid velocity.

In order to complete a well posed problem, additional interface condi-
ttons must be imposed across the interior boundary I'y5. Let’s begin by
reviewing the interface conditions that have been used previously to couple
various models of fluid and solid composites.

2.2.1. Fluid-solid contact. The natural transmission conditions at the in-
terface of a free fluid and an impervious elastic solid consist of the con-
tinuity of displacement and of stress [52]. The effective flow through a
rigid micro-porous and permeable matrix is described by the Darcy law,
gi = —k;;j0;p*, where q is the filtration velocity or flux of fluid driven by
a pressure gradient, and k;; is the conductivity. In fact, Darcy’s law can
be realized as the upscaled limit by averaging or homogenization of a fine-
scale periodic array of a rigid solid and intertwined fluid. See [58, 2, 27].
Similar results are obtained when the solid is permitted to be elastic, and
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then various scalings of the viscosity lead to a wviscous solid or to the Biot
model of poroelasticity (1.1). See [6, 51, 53, 16, 61, 7, 24, 8, 60].

2.2.2. Fluid-porous medium. The description of a free fluid in contact with
a rigid but porous solid matrix requires a means to couple the slow flow
to the upscaled Darcy filtration. Since a Stokes system is used for the free
fluid, we have two distinct scales of hydrodynamics, and these are repre-
sented by two completely different systems of partial differential equations.
Fluid conservation is a natural requirement at the interface, and other
classically assumed conditions such as continuity of pressure or vanishing
tangential velocity of the viscous fluid have been investigated [25, 43], but
these issues have been controversial. See the discussion on p. 157 of [53].
In fact, one can even question the location of the interface, since the porous
medium itself is already a mixture of fluid and solid. Moreover, Beavers
and Joseph [10] discovered that fluid in contact with a porous medium
flows faster along the interface than a fluid in contact with a solid sur-
face: there is a substantial slip of the fluid at the interface with a porous
medium. They proposed that the normal derivative of the tangential com-
ponent of fluid velocity v satisfy

é%VT = \/LE(VT —qr)
where K is the permeability of the porous medium, and v is the slip
rate coefficient. This condition was developed further in [49, 31], and
a substantial rigorous analysis of such interface conditions was given in
[29, 30]. See [47, 44] for an excellent discussion, [50, 26, 42, 4, 3] for
numerical work, [48] for dependence on the slip parameter, and [5] for
homogenization results on related problems.

2.2.3. Fluid-elastic porous medium. Any model of free fluid in contact with
a deformable and porous medium contains the upscaled filtration velocity
in addition to the displacement and stress variations of the porous matrix.
These must be coupled to the Stokes flow, so all of the previous issues are
present in the interface conditions. See [45, 46].

We begin with the mass-conservation requirement that the normal fluid
flux be continuous across the interface. For this purpose, we introduce the
parameter 8 which represents the surface fraction of the interface on which
the diffusion paths of the structure are sealed. The remaining fraction 1—_
is the contact surface along I'12, where the diffusion paths of the porous
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medium are exposed to the fluid in the open channel, and so the motion
of the structure contributes to the interfacial fluid mass flux. Thus, the
solution is required to satisfy the admissability constraint

(2.4a) (co(1—=B)v!+q)-n=v?-n

for the conservation of fluid mass across the interface. We shall assume
that the Darcy flow across I'19 is driven by the difference between the total
normal stress of the fluid and the pressure internal to the porous medium
according to

(2.4b) ol —p*+p'=aq-n.

The constant a@ > 0 is the fluid entry resistance. The conservation of
momentum requires that the total stress of the porous medium is balanced
by the total stress of the fluid. For the normal component this means

(2.4c) o, — cop' = co(1 = ) (o — p°)
and for the tangential component we have
(2.4d) 07 = 0%.

Finally, this common tangential stress is assumed to be proportional to
the slip rate according to the Beavers-Joseph-Saffman condition

(2.4¢) op =yVQ(vr = vr).
We shall show next that the interface conditions (2.4) suffice precisely to
couple the Biot system (1.1) in €4 to the Stokes system (1.2) in 2.

2.3. The Weak Formulation. Our objective is to construct an appro-
priate variational formulation of the Biot-Stokes system (2.3) coupled by
the interface conditions (2.4). We seek a solution in spaces

pi(t) € Vi, PA(t) € L*(), qt) e W, vi(t) eV, vi(t)eVy,

that are determined by boundary conditions. In order to focus on the
interface conditions, we have chosen here the simplest classical examples,
clamped and drained conditions on the appropriate boundaries, so the
corresponding spaces are given by

Vj:{VEHI(Qj) :v=0on 8Qj—F12}, 73 =1,2,
%:{pEHl(Ql)IZDZOOH Bﬂl—I‘lg}, W:Lﬁlv(Ql)
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Those functions of V7, V1, or Vy have a well defined trace on the external
boundary and on the interface I'12, and those from W have a normal trace,
as noted above.

We want an appropriate weak form of the initial-boundary-value prob-
lem for the system (2.3)—(2.4). Multiply the momentum equations by test
functions w/ € V; and the Darcy law by r € W, integrate the spatial
derivatives and add to obtain

(2.5) /Q (p1v'-w' + (o' — cop'd):e(W!) + Qq - T — p'd:e(r)) d
_*_/02(,02\', -w” + (6° —p*b) : e(w?)) dz
n /F (—o* (n)(w") + o2 (n)(w?) + (cow! +1) - np! — w? - np?) dS

:/ fl-wld;c+/ fy - widz.
Ql QZ

For each triple of test functions satisfying the admissibility constraint
(2.4a), the interface integral reduces to

/F (coBp'n - w! — o' (n)(w') + o*(n)(W?) + (p' — p")n - w?) dS.

Moreover, decomposing the stress terms into their normal and tangential
components, we obtain

[ (s’ — atyut — b wh+ b - wh (2 4 5' = pJud) S,
and then the interface conditions (2.4b)- (2.4e) yield
/F (aq ‘1 (w2 — (1 = Bwy) + WOV — vi)(wa — w;) ds
B /r (O‘(q -m) (r-n) +9vVQ(vi — vr)(wh — w}-p)) ds .

Finally, multiply the fluid conservation equations by test functions ¢! €
Vi, ¢* € L?(Qy), and the constitutive equations by 7! € L?(Qy;¥) and
2 € L*(Q;Y), integrate over the corresponding regions and add to the



BIOT-STOKES SYSTEM 9

above to obtain the variational statement
(2.6)

/91 (V! (t) - wh + (o (t) — cop' (2)0) :e(w') + Qq(t) - ¥ — p'(t)d:e(r)
+CloH () mh — (Vi) ep () 4 8:e(a(t)) ' + code(vi(E))g') dx
+ /Q (p2¥°(t) - W + (07(t) — p*(t)0) :e(w?) + Co?(t):7° — (v2(t)) : 7
—zzpzpz(t)g WP eap’ ()¢ + 8:e(VA()¢” + capag - VE(t)¢?) d

+ /112 (a(Q(t) 1) (r-n) +yVO(va(t) — vi(t)) (wh — WIT)) 1S
— /Ql fi(t) - wlde + /92 fy(t) - w?dx + /Q1 h1(t)<p1da:+/ ha()p? iz

Qs

Note that we have carefully written the operators on the stress variables as
dual operators which contain an interior differential operator and bound-
ary conditions, while the operator on displacement variables is the local
differential operator. In summary, we define the product space

V = {(Qolarawla7-119027w277-2) E
Vi x W x Vi x L*(Q,%) x L*(2) x Va x L*(Q, %) :
(co(1—=pB)w'+r)-n=w? -nonTp},

and then the weak formulation of the problem is to find the vector-valued
functions

v(t) = [p'(t),a(t), vi(t), o' (t),p*(t), vi(t), ()| €V, t>0,

1

such that (2.6) holds for every [p!,r,w!, 71, p? w? 72] € V, and we have

the initial conditions

(2.7a) p1v*(0)
(2.7b) pav?(0) =

p1vg, c1p' (0) = cipg in Qy,
>

v, cap®(0) = capf in Qs

Of course, o'(0) is also determined from from (2.3d) and the initial dis-
placement, u'(0).
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3. THE EVOLUTION DYNAMICS

The equations in the system are to hold in the product space
H = L*(Q;) x L2(Q) x L2(Q;) x L*(Q4, ¥) x L*(Q) x L2(Qy) x L*(Qs, %),

and the solution will be sought in the space V. Note that we have the con-
tinuous inclusions V < H = H' — V'. The (explicit) divergence operator
§:¢ is a map of each of W — L2(2;), V1 — L), and V3 — L2(£y),
and then the corresponding dual operator —V - ¢ mapping L2(Q;) — W/,
L2%(Q) — V4, or L2(Qy) — VY, respectively, consists of the gradient and
a boundary condition. Note that Vi < W < L?(Q;). Similar remarks
hold for € : V; — L*(€;, %) and its dual —V- : L*(€;, %) — V. We have
two interface operators in the variational formulation (2.6). These are the
normal trace v,(q) = q - n and the tangential trace yr(v) = vy which
define linear maps 7, : W — L%(T'y3), 77 : V; = L*(T'y2), for j = 1,2.

3.1. The initial-value problem. With the operators so defined, the sys-
tem has the form

d
(3.8a) v(t) eV 7 (Av(¥)) + Bv(t) =f(t) in H, ¢ > 0,
where the matrix of operators and variables are denoted by
[t 00 0 0 0 0) [p'(t)]
000 0 0 00O q(t)
0 0pr 00 0O vi(t)
A=100 0 C 0 0 0, v(@®)=|c(t)],
000 0 ¢ 00 p2(t)
000 0 0 p O v3(t)
\0 00 0 0 0 0/ | o2(t) ]
and
0 d:€ cob:€ 0 0 0 0
V.3 Q+voem 0 0 0 0 0
V-6 0 YeyV/Qyr V- 0 —VOyr 0
B = 0 0 —€ 0 0 0 0
0 0 0 0 0 d0:e+coppg O
0 0 ey 0 V-d-cpg vyVOyr -V
0 0 0 0 0 —€ C
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The evolution equation (3.8a) is to be solved subject to the initial condi-
tion

(3.8b) Av(0) = Avy

where Avy is determined from (2.7). Note that A : HL — H' is degenerate
but symmetric and nonnegative, and it is easy to see that B : V —» V
is monotone. The equation (3.8a) is an example of an implicit evolution
equation with degenerate operators as coefficients, sometimes known as a
degenerate Sobolev equation. We recall that Jack Lagnese was a major
contributor to the development of the theory of these abstract Sobolev
equations, especially the singular perturbation theory and dependence of
the solution on the operators. See [32, 41, 33, 34, 35, 36, 37, 38, 39, 40].

Since A + B is H-coercive in our situation, uniqueness for the initial
value problem (3.8) is easy to establish. According to the general theory
of such equations [54, 17|, for existence of a solution it suffices to establish
the range condition Rg(AA+ B) D Rg(A) for A > 0. For this, we consider
the resolvent system

v =[P (), a(t), v (1), o (8), B*(8), V3(2), *(B)] € V -

(3.9a) Acip' + 6:6(q) + cd:e(v?) = crhy,

(3.9b) (Q+mam)a+V-dp' =s,

(3.9¢) Aorvt = Vol + ¢V - 8p + vy Oy (v — v = pify

(3.9d) Mlo! —e(v) =€,

(3.9e) Aca(2)p? + 8:6(V?) + ca(z) p2(2)g(x) - v = coha,

(3.9f) Apa(2)v: =V - 02 + V - 6p° — co(z) pa(z) p* g
V(v = v') = pofy,

(3.9g) Co® —e(v?) = &,

where the right side of this system is given as [c1h1, s, p1f1, &1, c2h2, pofs, &3]
€ H'. Note that (3.9) contains the interface conditions (2.4).

The means by which we establish the solvability of the resolvent system
will depend critically on how much degeneracy occurs in the operators. For
example, in the least degenerate case in which all the constants ¢y, p1, c2, p2
are strictly positive, the resolution of (3.9) is straightformward. In the
mathematically more interesting and practically more relevant situations,
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some of these coefficients will vanish. In many of these cases, we can elim-
inate appropriate variables, thereby obtaining elliptic terms in the system,
and then solve the reduced higher order system. We shall indicate briefly
how one can establish the solvability by means of the mized formulation
of the resolvent system in which it is regarded as a saddle point problem
from convex analysis [15].

3.2. The mixed formulation. Here we shall consider the resolvent sys-
tem (3.9), but instead of writing a single operator equation in the space
V' with 7 unknowns, we shall re-order the variables according to their role
in the physics of the model, not in the geometry of the problem. Thus, we
write the resolvent system on a product of two spaces so that it is realized
as a saddle point problem. The first space X consists of the displacement
variables,

X = {[q,v1,va) € W x V1 x Vy: (cy(1—B)v' +q)-n=v> n},
and the second space Y contains the generalized stress variables,
Y = {[p1,01,p2, 09] € L*(1) x L*(21, %) x L*(Q) x L* (2, )}
If we define the operators
A: X=X B: X=Y C: Y=Y

by means of the matrices

Q + 7y, 0 0
A= 0 A1+ vV Orr  —vpVerr |,
0 — VO Ap2+ V@
d:€ cgd:e 0 Acgc 0 0 O
0 —& 0 0 X' 0 0O
B = 0 0 0:€+ copog- |’ ¢= 0 0 Ao O}
0 0 —£ 0 0 0 C?
then the system (3.9) is obtained in the form

Ax — By =f
Bx+Cy=g

for the unknowns x = [q, v, Vo] € X, y = [p1, 01, P2, 02] € Y. This formu-
lation requires a closed range condition on the operator B, and it provides
a natural and well established approach to the numerical approximation
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of such problem. In addition, the analysis of this formulation provides a
means to establish the relation with the singular limits such as the incom-
pressible case co = 0 of the Stokes flow and the quasistatic case p; = 0 of
consolidation processes. However, we can work directly with the original
formulation (3.9) to obtain these limits and the corresponding existence
results. These issues will be developed for nonlinear extensions of these
models in forthcoming works.
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