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Abstract Models for distributed capacitance in a thin film are derived in the form of a
system of local RC diffusion equations coupled by a global elliptic equation. Such
models contain the local geometry of the distributed capacitance on which charge is
stored and the exchange of current flux on its interface with the medium. Certain
singular limits are characterized, and the resulting degenerate initial-boundary-value
problems are shown to be well posed.
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1. Introduction

The theory of distributed electrical networks is the natural framework in which
to study the behavior of a system in which wavelengths of interest may become
comparable to the physical dimensions of the system. Such systems arise in the
modeling of integrated circuits operated at high frequencies. Additional applica-
tions of such systems arise in acoustics, microwave, and optical device theory. The
micro-miniaturization of electronics has directed attention toward distributed RC
structures, because significant inductance for circuit applications at frequencies
below a few MHZ is not readily available in very small volumes. General classes
of RC structures possess extremely valuable properties. Important applications
include sharper cutoff filters and larger phase shift with less attenuation than
is obtainable with conventional lumped RC circuits. Micro-circuits, molecular
electronics, and thin-film circuitry are all important fields in which it has become
increasingly difficult to construct accurate models with purely lumped circuit
components. Due to the emphasis on small size, the very proximity of a conduc-
tive region to a ground plane or to another conductive region introduces stray
shunt capacitance that cannot be ignored. Such situations occur in the construc-
tion of thin-layer interconnecting conductors over a substrate and in the use of
crossover connections in non-planar circuits.

Here we shall model the general effects of a single capacitive layer (possibly
imperfectly) bonded to a highly conductive region within a device whose total
vertical height is very thin compared to its horizontal dimensions. This is a re-
finement of the classical RC ladder network which is commonly modeled by a
single diffusion equation. Thus, we consider a simple generic circuit composed of
a highly conductive and very thin region shunted to ground by way of a dielectric
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layer which may be either uniformly or periodically distributed. These two cases
are considered and contrasted. The models described here also arise as the upper
half of a vertically symmetric very thin highly conductive region which contains a
horizontal middle layer of dielectric. Such situations arise in the construction of
capacitors in thin-film structures and also from imperfections in the construction
of interconnections, especially when the use of crossovers is required. It is as-
sumed that the height of the total device is very small and that the conductivity
of this region is large by a comparable factor. A small parameter is introduced in
order to to quantify simultaneously the thinness of the device and the resistivity
of the conducting region. The horizontal dielectric layer is described by a plane in
which the height determines an appropriate scaling of the corresponding resistive
and capacitive parameters. The singular character of the problem is determined
by this small parameter, and we obtain an approximation of the device by finding
the limiting form of the singular initial-boundary-value problem as this param-
eter converges to zero. In particular, the singularity introduced by the thinness
in the geometry will be precisely compensated by the chosen magnitude of the
conductivity in the surrounding material. Without this compensation, the re-
sulting imbalance of scales would effectively decouple these regions of the device,
and the model would fail to capture the current flow between the conducting and
dielectric components.

We define some notation. Let 2 be a domain in R™ and let B be a Banach
space. We denote by LP((2; B) the space of measurable functions f : 2 — B such
that for 1 < p < oo, [, ||f ()|’ dz is finite or for p = oo, ess sup,cq||f(z)|B is
finite. Hence as a special case when B = R, L?(Q2) = L?(Q;R) is the Lebesgue
space of real-valued functions on the domain 2 that are measurable and square
summable in Q with respect to Lebesque measure. We denote by C*°(Q) the
set of restrictions to Q of infinitely differentiable functions in R™ with compact
support. Then W™2(Q), m > 1, is the Sobolev space obtained by the completion

of C*(f) in the norm

1/2
[ullym2) = ( > IIV“UII%z(Q)) ;

laj<m

where @ = (aq,...,qy) is a multiple index, |a| = Y ;" a;, @; > 0. The space
wy" 2(Q) is the closure in W™2(Q) of the set of those infinitely differentiable
functions in ) each of which has compact support in 2. We denote various
spaces of periodic functions by a subscript §. For example, if Y denotes the unit
cube in R", then C{°(Y) is the space of infinitely differentiable functions on R"

that are periodic of period Y, and Wﬂl’Q(Y) is the completion for the norm of
W2(Y) of CEo(Y).

We recall some classical topics in unbounded operators and the Cauchy prob-
lem; see [7] or the first Chapter of [8] for a more extensive treatment. Let V be a
Hilbert space. A bilinear form a(-,-) : V. x V — R is V-coercive if there is ¢y > 0
for which

a(ww)| > collully . weV.



Thin-Film Capacitance Models 3

If a(-,-) is bilinear, continuous and V -coercive, then for each f € V' there is a
unique

u€V:alu,v) = f(v), veV.

Definition 1 An unbounded linear operator A : D — H with domain D in the
Hilbert space H is accretive if

(Az,z)y >0, zeD,

and it is m~accretive if, in addition, A+ I maps D onto H.

Let V be a Hilbert space that is dense in another Hilbert space H. We identify
H = H' by its Riesz map, and we assume the identity V' — H is continuous. Let
a(-,-) be a continuous bilinear form on V. Then we define D to be the set of all
u € V such that the function v — a(u,v) is continuous on V' with the H-norm.
For each such u € D there is then a unique Au € H such that

a(u,v) = (Au,v) g , ueD,veV,

and this defines a linear operator A : D — H.

It is easy to see how the unbounded operator A with domain D in H con-
structed as above from the continuous bilinear form a(-,-) on V is related to the
continuous A € L(V,V') which is equivalent to a(:,-). In fact, the graph of A
is the restriction of the graph of A to V x H. That is, note that H' < V' by
restriction to V' of functionals on H, so D = {u € V : Au € H'} and then
Au € H is just that Au € H' which corresponds through the identification of H
with H'. Thus, when a(-,-) + A(-,-)g is coercive, it is clear that A + Al is an
isomorphism of V onto V' and A + AI is just its (necessarily onto) restriction to
H C V'. Finally, note that A is accretive on H exactly when the linear operator
A satisfies

Av(v) >0, veV.

Theorem 2 Let the operator A be m-accretive on the Hilbert space H. Then
for every ug € D(A) and f € C([0,00), H) there is a unique solution u €
C([0,00), H) of the initial-value problem

(1) u'(t) + Au(t) = f(t) t>0, u(0)=up.

If additionally A is self-adjoint, then for each ug € H and Holder continuous
f e C*0,00),H), 0 < a < 1, there is a unique solution v € C([0,00),H) N
C'((0,00), H) of (1).
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2. Homogeneous Thin-Layer Model

We describe a single capacitive layer (possibly imperfectly) bonded to the bottom
of a highly conductive region. The resulting device is assumed to be very thin
compared to its horizontal dimensions. Let S C R? be a bounded domain, and
denote its points by Z = (r1,z2) € S. Let Q° = S x (0,¢) be the corresponding
and denote its points by z = (z1,z2,23) € Q°. The region ¢ is bonded by a
resistive layer to the dielectric layer, S, and the bottom of this is grounded.

x#

=z ]

!47 Conductor

~— Dielectric layer

0 L

Figure 1: A homogeneous thin-layer model

The distributed voltage in the conductive region is denoted by u*(z,t), and
ve(Z,t) represents the voltage difference across the bottom capacitive layer. The
bottom layer is a distributed capacitor for which the properties are scaled in
proportion to the height € of the total device. Thus, it has a capacitance %C’ (Z)
inversely proportional to the width and a horizontal conductivity eG(Z) propor-
tional to that width. The vertical resistance of the bonding layer is given similarly
by er1. The conservation of charge requires the balance of the rate of charge ac-
cumulation with horizontal conductance, exchange with the interface, and any

loss due to leakage to ground. That is,
2 (1 AN v ~\XT 0\E 1 € € 1 £ __
5 {EC(.’B)’U (a:,t)} V-eG(z)Vv® + po (v® —u®) + R = 0,

where €R is the appropriately scaled leakage resistance of the capacitance layer.

Exchange with interface
\ ‘j’\

¥ Loss due to leakage to ground

Figure 2: The currents on the bottom layer

_The region 2 is assumed to have a correspondingly very high conductivity
%. This is a material property which we assume. A consequence of the work
below is that it is exactly this order of magnitude of conductivity that maintains

the coupling of Qf with the capacitive layer S in the limit as ¢ — 0.

In this conductive region, we have the conservation of charge

vV-J=0,
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where J is the current field given by Ohm’s law as J = —@Vus(m, t).

9@ out 1 (e e
€2 Qzg3 Ty (U u )

J Conductor

\ lq, ﬁ

Bottom layer

Figure 3: Interface between the conducting region and the bottom layer

On the top, z3 = €, we impose a distributed source of current,

1D Gus(a,t) v = LD Lz,

g2 €2 Ozz ¢

where v is the unit outward normal vector. At the interface x3 = 0, the vertical
current exchange through the resistive layer is

_g@)ou 1
€2 Ors er

@Vus(x,t) v =

where er; is the resistance of interface between the conducting region and the

bottom layer.

The initial charge distribution in the bottom layer is prescribed by
Lo oo 1. ~ -
EC(x)v (z,0) = EC(.’L‘)’UQ(.’E) ) zeSs.
We assume that the boundary is grounded, so the voltages satisfy
u =0 on 0S5 x(0,¢), v*=0 on 0S.

In summary, we have the following system of equations :

—V-MVuE(x,t) =0 z €Q°,

62
1. . ~
9(57) ous gf(xat) T3 =€, TE Sa
=" = 1
€ (91133 ;(us_,us) .’13320, 5365,
1
uwt =0 on 3SX(0,8),
1 _0v(,t) = S I ~ —
ECT V - eGVv -I-a(’u 'U/)"'&U —01 .’EES,.Z‘3—0,
& =0 on 0§,
and

v¥(Z,0) = vo(Z) -
We assume that the coefficients satisfy

0 < constant < ¢g(z),C(Z), G(Z) < constant < oo
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and r1, R > 0. We also assume that the initial condition vy € L?(S) and the initial
source f : [0,T] — L?(S) is Holder continuous, that is, for some 0 < o < 1,

||f(t1) (tg)HLz < C|t1 — t2|a for t1,10 € [O,T] .

Finally, we rescale the vertical axis in order to remove the singular geometry

due to the thinness of the structure. With a change of variables, z3 = ez,

o _ . 0
E—ea—mweget

( —V - gV (&, 2,t) — %%%us(iz,z,t) =0 (%,2) in Q!
Ous f("i’t) z=1,z€f§,
292 %(us_vf) 2=0,7€8,

(2) <
u® =0 on 05
€ 1
Caavt -V eQGVU‘€+T—(fUE—uE)+EUE=0 ZinS, z=0,
1

\ v&(Z,t) =0 on 9S8 x (0,1) ,

and the initial condition
v(Z,0) = vo(Z) .

Now all of the singular or degenerate characteristics appear in the coeflicients of
the system (2) which is posed on a fixed domain Q'. Hereafter we set Q = Q*.

2.1. Elliptic-Parabolic e-Model

In order to obtain an appropriate weak formulation, we introduce two function
spaces,

Vo {fueWhH(Q):u=0 on 98 x(0,1)},
Vo= WeiS)  (2=0).

Then for ¢ € Vy, we multiply both sides of the first equation by ¢ and integrate
over ) with Green’s Theorem and boundary conditions to obtain

/gVu (Z,2,t) - V(Z, 2) d;vdz+/ —2511 (Z,z t)(%qﬁ(:?:,z) dz dz

(3)
+/S%(u5(a”c,0,t)—Us(ic,t))qﬁ(i,O) d:z:/sf(fc,t)qb(i, 1)di ,
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where v is the unit outward normal vector. Similarly for ¢ € Vi, multiplying the
two sides of the second equation by ¢ and integrating over S show that

ove
1%

1
+ | —(v®* —u®(%,0,t))pdz =0.
ST

pdz —I—/ e2GV° - 6<pd§:+/ lvsgodai
@ ; st

Thus a solution of system (2) satisfies u(t) € Vo, v(t) € V; for 0 < t < T, and
(3), (4) hold for each ¢ € Vy, ¢ € V;. Conversely, it follows directly that an
appropriately smooth solution of (3) and (4) will satisfy the system (2) above.

In order to more clearly display the structure of the equations (3) and (4), we
specify some notation. Define bilinear forms af, a5 as follows. For uy, us € Vy,

~ ~ ou1 Ou -
ai(uy,uz) = /Q (gVul - Vug + 8%8—2:18—2:2) dzdz .

This determines a family of operators A € L(Vy, V) by
Afug(u2) = af (u1, u2), u,Us €V .

It is easy to see that the family of linear operators A5 : Vy — V) is uniformly
Vy-coercive for 0 < € < 1. For vy, vy € Vyq,

~ ~ 1
as(v1,v9) = /S <€2GV’01 -V + E’U]_’UQ) dz |

and this determines the family of operators A5 € L(Vy,V]) as before. We specify
the trace at z = 0 and z = 1 as follows. Define vy : Vo — L%(S), its dual
76t L2(S) = V), 1 : Vo — L2(S), and ~} : L?(S) — V) by

wule) = [ u@0e@di . Aivie) = [ v@6E.0dE = (.10 -
nule) = [u@De@di.  2if@) = [ J@6E D dE = (F1d)as) -
Using these definitions we can rewrite the equations (3) and (4) in the following
f;‘);mdu € C([0,T]: V) and v¢ € C((0,T]; L2(S)) N C1((0,T); L2(S)) -

(5) w0 €Vos AT + 35 (0u(8) — v* () = (£ (1) in j

©6) vty ey : @)

€,.€ l € _ € _ : /
o A+ ) 0w (®) =0 in)y

with initial condition v*(Z,0) = vo(Z).

Suppose that there exists a solution (u®,v°) of the system (5), (6). From
equation (5), we have

) w= (4 + L) (30 + L)
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Substituting (7) into equation (6), we get

ot 1 (1 S B N O I
En +E{E (I—% («41"‘;70’70) E%) + A5 v
1 (1 1, \7',
:E{E%(Ai‘*'a’)’o’m) ’71}fa

in V]. Of course, we have v*(t) € V; at each t € [0,T]. Define a corresponding
unbounded operator A® : D(Af) — H on the Hilbert space % = L?(S) with the
scalar product

(v w%_/C d:z:—<C'1/21J CYu >7-L

The domain of A® is D(A®) = {v € V; : A®v € H}, and it is defined on this
domain by
11 1 11
A* 6{ <I Y0 (A1+ ’Yo’YO) —’Yo) +A§} .

Proposition 3 Each Af : D(A®) — H is self-adjoint and m-accretive.

(8)

Proof.  From the calculation

a9 = (L (L1 (1- (Af+l : )li* v )V

= c \r Y0 1 T1’7070 rl’)’o 2
_ (1 <A5+i* )—1 RPNy
A Yo 1 Tl’Yo’)’o rl’)’o 2
_ l i T ((AE)*_i_i * **)_li )4 A ] = A°
= 0 " Yo 1 Tl’Yo’)’o Tl’)’o 2| = )

we see that A® is self-adjoint. Since o(Af+ %76“70)_1 %73 is a contraction on #,

it follows that I — yo(Aj + %’y(‘; 70)_1%73 is continuous and monotone. Adding
a positive multiple of this to A5 then yields a coercive operator whose restriction
to H is m-accretive. O

Hence, by Theorem 2, there exists a unique solution of the initial-value prob-
lem for (8). Then we define u®(t) by (7) to obtain the unique solution u® €
C([0,T]; Vo), v¢ € C([0,T); L%(S)) of the system (5) and (6).

Theorem 4 (Regularity of the solution v, v°) We have

u € C([0,T); Vo) and v° € C([0,T]; L*(S)) N CL((0,T); Wy (S) N W22(8)) .

Proof.  From the equation (5), we have that v € C([0,T];Vp). So from the
equation (6), we get v* € C([0,T]; L2(S)) N C1((0,T); W, *(S) NW22(S)). O
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2.2. Strong Convergence

We consider convergence of (5) and (6) as € — 0. In order to describe the limiting
problem, we define the operators A;, A; as

- - 1
.A1’U,1(’U,2) = / gVu1 . V’U,Q dz s AQ’U1 (1)2) = / — V102 dz )
S S R

for uy,upy € W,*(S) and v1,v2 € L*(S). Then the operator A : L2(S) — L2(S)

defined by
1 (1 1 1\7!
A _{_(z__(m_) )m}
Clr 1 71

is self-adjoint and m-accretive as well as bounded. So there exists the unique
solution v € C1([0,T]; L?(S)) of the limit problem :

0 1]1 1\7!
ot A= —{ — il
at’ A C{ﬁ <A1+T1) }f
with initial condition v(%,0) = vo(Z). That is, there exists the unique solution

u € C([O,T];WOI’2(S)) and v € C([0,T]; L?(S)) of the system of differential
equations

1

(9) Ajiu+ —(u—v) = f
T
ov 1

(10) CE‘I-AQ’U-I-E(U—’U,) =0,

with initial condition
v(Z,0) = vo(Z) .

The following theorem is our goal.

Theorem 5 For each 0 < ¢ < 1, let (u®,v®) be the solution of the system of
differential equations (5) and (6) with initial condition v*(%,0) = vo(Z) and
(u,v) € C([O,T];WOIJ(S)) x C1([0,T); L?(S)) be the solution of the system of
differential equations (9) and (10) with initial condition v(Z,0) = vo(Z). Then
u® converges strongly to u in C([0,T];Vy) and v* converges strongly to v in

C([0,T]; L*(S))-

In order to show that v® converges strongly to v in C([0,T]; L%(S)), we notice
that v® is the solution of the e-problem :

a . 1[1 1 -1
el Afpf = — ! — £ i * = he .
8t“ + C {TI’YO (»A1 + Tl’)’o’)’O) ')’1} f
and v is the solution of the limit problem :
0 11 1\ 1!
_ Apy=—-_{— — =h.
FTA C’{ﬁ (A1+7"1> }f

We shall apply the following consequence of the classical Trotter Convergence
Theorem.



10 R.E. Showalter and Hee Chul Pak

Theorem 6 Let A and Af, 0 < e <1, be m-accretive. Suppose that
(I+A°)'F > (I+A)'F in H ,
for all F € H. Assume that h® — h in L([0,T); H) and v§ — vy in H. Then
£

v* > v in C([0,T);H) ,

where v and v are the solutions of the differential equations

a 13 E E __ £ g _ [ 8 — —
pTad + Afv® =h® v°(0) = vy; ; 8tU+AU_h v(0) = vp -

2.2.1. Approximation of the stationary problems

In this section, we first show that for a given F € L%(S), ¥° converges weakly
to ¥ in L2(S), where #° € V| and © € L?(S) are the solutions of the € problem
v* 4+ Afp* = %F and the limit problem v + Av = %F, respectively.

Define u® : u® = (A + %7670)*1(%7865). Then we have

(11) Ajus () +

*3|,_.

l(voﬁg—'ﬁs)(%qﬁ) =0

1
(12) Co™(p) + A" () + (0" = W) () = Flo),
¢ € Vo, p € V1. We substitute ¢ = 4° and ¢ = v, and add the two equations to
get

1 2

- o
VgV |72 + =

iy

0z

+ ||\/5’l_15||%2(5) + ||€\/66’l_15”%2(5)
(@)
+ L 12 ) + 7 (3, 0) — 52 :/F(i)@s(gz) di

R L (S) 1 ’ L (S) g .

This shows that each of

10 _
1
€0z

£

s I Ny 5 1EVETllLas)

|W7—f||L2(Q) ;
L2(Q)

is bounded. It follows that a subsequence %%/ converges weakly to some % in V)
and v59 — v in L?(9).

Lemma 7 The sequence 4 converges strongly to some @ in L?(Q) for which
u = u(%) is independent of z, Vusi — Vu weakly in L*(S)), and so u € Wol’Q(S).

Proof.  Since 4 converges weakly in W12(Q) to a u € WH2(Q), 4% converges
strongly to % in L?(Q) and V4% — Vu weakly in L?(2). From the fact that
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oa’i

|%ag—zj||L2(Q) < constant, we have %5~ — 0 strongly as ¢; — 0. With the
conditions V@% — Vu and ag:j — 0, we get % = 0, that is, & = a(Z) is
independent of z. O

So we have for ¢(z,z) = (%) € Vy,

AV T () = /Q gVaci -V dz dz
- /Qg%-wdfédz (:/Sgﬁu-wdz«) = Ava(9) .

Using the weak continuity of the trace map, since 75 — 7 in L?(S) and ||eV® lz2(s)
is bounded, we get

A5 0% ()

~ ~ 1
/S (egGwsj -V(p-l-ﬁvsjfp) di
- ~ 1
= ¢; | £GVv5 -V di:-l—/—@sj dz
J/S J Y R Y
I _
— /—’U(pdl‘EAQ’U((p).
s R

In summary, taking weak limits in (11) and (12) yield the limit system

1
Avi+ —(@—3) = 0
r1

1
Co+ A+ —(0-1) = F,
1

with operators defined at the beginning of Section 2.2. We have shown that for
a given F € L2(S), by uniqueness of the solution, we have the original sequence
@° converges weakly to % in Vy and ©° converges weakly to ¥ in L%(S). Also note
that the system above is equivalent to the single equation

1
v+AD=—F.
v+ Av C

Next we show that o° converges strongly to © in L?(S), and @° converges
strongly to w in Vy. We write the operators Aj and A5 in two parts :

c _ S e, 1 oudp .
u(p) = /QgVu ngdxdz—i—EQ/anz P dz dz

= Au($) + 5 Bru() wh eV,

1 - -
su(p) = /—fugod:i—i—az/GVv-V(pd:E
s R s

= Aw(p) + 82321)((,0) ) v, 0 EVy .
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Add the equations (11) and (12) to get

Cv*(p) + Ar1u® () + E%Blff(qs) + Agv° () + 2Bav° ()

1

+r—(7m‘f — %) (09— ) = Fop .
1

We subtract from this the expression

Col) + Aru(#) + Azol) + - (a — D) — 9)

to obtain the identity

C(@° —v)(p) + AT —u)(4) + 8%61@5(45) +€2Ba9" (1p) + A2(8° — 9) ()

1

(08" — T = (5~ 9)(0¢ — )

1
= o~ (Calp) + A1) + A9(e) + (@ — Db — )
Now substitute ¢ = 4®* — 4 and p = v° — v to get
1
Cl|o° — v[[72(sy + A1 (a° — @) (a* —a) + 6—231(115 — @) (T — @) + e2Bot° (7°)

—E =\ (€ = 1 —E = =€ =
+A2(v" — v)(v —U)+E||70U — @ — (Y —U)H%?(s)

= 2Byt (7) + (F — C9 — Ast + :—l(ﬂ — 17)) (7° — )

- (Alﬁ + :—175 (@ — @)> (@ —a) .

Since the right side converges to zero, it follows that so also does each term on the
left. In particular, we see ©° converges strongly to v in L?(S) and 4° converges
strongly to @ in V.

2.2.2. Approximation of the evolution problem
In this Section, we finish the proof of Theorem 5.

Proposition 8 Suppose w® — w in L%(S). Then fori = 0,1, ( i-l—%’ya‘%)_l'ﬁwg
converges weakly to (A; + %)_111) in Vo, which is independent of z.

Proof.  Let k¢ = (A§ + %7370)_17;‘11)5, i = 0,1. Then we have A5k®(¢) +
%73'70135((;5) = yfw®(¢). As we have shown in Section 2.2.1, the energy estimates
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show that |[k%||y, and |12 £2(q) are bounded so k% converges weakly to some
k in Vy for which k is independent of z. Thus for ¢ € Vy,

APH (@) + ok (0d) = 0 (i) = AK() + —k(g) = w()

This says that k = (A; + %)_lw, and k® converges weakly to k in V. 0

Corollary 9 Let h® = £0(AS + 7-7570) 1S, b = &7 (AL+ )7 f. Then
h¢ converges strongly to h in L'([0,T]; L%(S)).

Proof.  Let k*(t) = ( ‘i—i—%'y{j’m)_l’yff(t) and k(t) = (A +%)_1f(t). Then for
each fixed t, k*(t) converges weakly to k(t) in Vy for which k(¢) is independent of
z. Thus k®(t) converges strongly to k(t) in L?(£2). Since we have yok®(t) — k(t)
for all ¢ € [0,7] and

W) z20s) < mae{ 55 } 21 Olzzcs)

r

by Lebesgue Dominated Convergence Theorem, we obtain that h* — h in L ([0, T;
L?(9)). O

By the result of Section 2.2.1 and Theorem 6, v* converges strongly to v in
C([0,T); L*(S)). Define

) = (44 Svi) (0 + i)

u(t) = (A1+%>_1 (f(t)+Tlv(t)>.

1

Then by Proposition 8, for fixed ¢ € [0,7T], u®(t) converges weakly to u(t) in Vy
for which u(t) is independent of z. Also, we subtract from

A5 (@) + o (0(8) = HEO) + 50 (D)

the expression Aju(t)(¢) + %u(t)('yOqS) to get the identity

A (2) — wl) () + B E)() + — (on(8) — u(t)) (o)

1

— ) + - () 08) — Au()(®) — ~-ult) (09)

(with operators defined in Section 2.2.1). We substitute ¢ = u°(t) — u(t), and
then as € — 0, the right side converges to zero. It follows that u® converges
strongly to u in C([0,T]; V). This completes the proof of Theorem 5.
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3. Two-periodic Thin-Layer Model

Let S C R? be a bounded domain, and denote its points by & = (z1,z2) € S. Let

the thickness of the medium be ¢ > 0, denote by Q¢ = §x (0, ¢) the corresponding

region in R?, and denote its points by z = (1, z2,23) € Q°. The region QF is a
9(Z)

good conductor of conductivity %3, and it is bonded by a resistive layer on the

bottom, z3 = 0 to a periodic array of capacitors.

X3

Capacitors

Y2

Figure 4: A two-periodic thin-layer model

These have period €Y, where Y = [0, 1]? is the unit square, and their thickness
is also scaled by €. Let Y be given in the complementary parts, Y7, Ys, where Y3
represents a scaled copy of one of the capacitors in the layer. Denote by x;(v)
the characteristic function of Y; for j = 1,2, extended Y-periodically to all of R?.
Thus, x1(y) + x2(y) = 1. The global domain S is divided into two subdomains,
S5, S5, given by

SJE-E{QNCES:Xj(%):l} . j=1,2

where S} represents the periodic distribution of capacitance along the bottom.
We shall assume that the domain {y € R? : y2(y) = 1} is smooth and connected,
so the capacitors are necessarily isolated. Hereafter we set x5(Z) = Xj(%)- Due
to the e-scaling of the thickness, the medium Q¢ is bonded along the bottom by
a layer of resistance er; to a layer in S} with capacitance %C () and horizontal
conductivity eG(Z), and it is connected directly to ground in S5 by the resistance
ery. Let u®(x,t) denote the voltage distribution in Q¢ and v*(Z,t) the voltage
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difference across S7.

uf(x,t)

* Conductor ‘

= .
OO0 OO0 OO0 OO0 OO0 & O 0,00 OJ T O O Interface resistance
i:(xl,xz)

v (E,1) 85 S

Figure 5: A periodic bottom layer
In the conductive region 2, we have
V.-J=0,
where J is the conductive current field given by Ohm’s law as J = —%g”—)VuE(:v, t).

On the top, z3 = €, we impose a distributed source of current,

9E) Gty = IENOUT 1
= Vuf(z,t) - v = = ng_ef(x’t)’

where v is the unit outward normal vector.

At the interface 3 = 0, when & € S7, the vertical current exchange through
the resistive interface is given by

@Vus(m,t)- __9@ouw _ 1 v® —uf),

g2 €2 Or3 €r

where er; is the resistance of the interface between the conducting region and
the bottom layer. But when z € S5,

@Vus(w,t) V= 9@ ouw 1

£
g2 €2 Oxs er;y

On the bottom layer, St is a distributed capacitance in which the conservation
of charge requires that for z € 5%,

8 ]. £/~ = = £/~ 1 £~ E(~ 1 E( —
E{EC’U (x,t)}—V-eGVu (w,t)+€r1(v (Z,t) —u (w,O,t))+ERv (z,t) =0,

where ¢R is the leakage resistance across S5 to the ground.
The initial charge distribution in the bottom layer is prescribed by
]. ~ £~ ]- ~ ~ ~ £
-C(2)v°(z,0) = =C(Z)vo(z), T €S57.
€ €
We assume that the lateral boundary of the region €2° is grounded, so the voltages

are all zero there,
u*=0 on 09Sx(0,¢),
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and also each of the capacitor cells is grounded on its boundary,
v*=0 on 957.

We assume that the coefficients satisfy 0 < constant < g¢(Z),C(%),G(Z) <
constant < oo, and r;, R > 0. We also assume that the initial condition
vo € L?(S) and the initial source f : [0,00) — L2(S) is Holder continuous as
in Section 2.

In order to remove the singular geometry due to the thinness of the structure,
we rescale the vertical axis with a change of variables, z3 = €z, % = 53%3 to get
the scaled system

' —6-g@us(i,z,t)—§%§ (Z,2,t) =0 (Z,2) in Q,
f(&,1) z=1,2€ 8,
1
R f“ 2=0,5€55,
(13) E(UE—UE) z2=0,Z €55,
u® =0 on 9S x (0,1) ,
8;: ~-2G@vs+%(vg—us)+%vszﬂ, zeSf, z=0,
{ vé(Z,t) =0 on 05§ ,

and the initial condition v*(%,0) = vo(Z) in L?(S5), wherein and hereafter we
set Q! = Q. Now the parameter ¢ > 0 affects the geometry only through the
periodic array St at z = 0. All additional effects are contained in the size of
various coefficients in (13).

3.1. Elliptic-Parabolic e-Model

First, we describe a weak formulation of the scaled problem. We define function
spaces V), and V§ as follows :

Vo={ueW? Q) :u=0 on 8S5x(0,1)}, Vi=W,%55).

By the zero-extension to S5, we regard v € Wol 2(S5%) as an element in L2(S).
Then for ¢ € Vy, we multiply by ¢ on the both sides of the first equation and
integrate it over ) to obtain

9
0z

+/Sl((:c0t) X; (Z)v®(%,1))¢ d:c—/f d(%,1)dz .

1

/gVu (Z,2,t) - V(E, 2) d:vdz+/ ——u (Z,2,t) —¢(Z,2) dz dz

(14)
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For ¢ € Vi, multiplying ¢ on the both sides of the second equation and integrating

it over S%, we have
ov®

C
s¢ ot

. - 1
wdi+ [ GV - Vdi +/ —vfpdi
s¢ s R

(15)

1
+ [ —( —u*(Z,0))pdz =0.
5571

In order to more clearly display the structure of the equations (14) and (15),
we define the bilinear forms a5 (-,-), a§(-,-) as follows.
For u1, us € Vy,

~ ~ Ouy O _
a3 (ui,ue) = /Q (gVul-Vu2+ 6%%%) dz dz .

This determines a corresponding family of operators A5 € L(Vy,V}) by
Afug(ug) = af (u1,us2) , ui,ug €V .

For vy, vo € VY,

~ ~ 1
as(vy,vg) = /SE <€2GVU1 - Vg + E’Ul’02> dz

1

determines A5 € L(V5, (V{)') similarly by

A5v1(v2) = a5(v1,v2), v1,v2 € V5 .

Using this notation we can rewrite the system (13) in the following form.

Find (uf,v%) € C([0,00); Vo) x C([0,00); L2(S5)) N C1((0,00); V§) :

(16) Afug(t)Jr%’YS(’Youg(t)—Xivg(t)) = 7MU®) in W
a1 o2+ a0 + L) - @) = 0 in (V)

with initial condition
v°(2,0) = vo(Z) Z€57.

The trace operators vy, 71 : Vo — L2(S) are given as before in Section 2.1. Define
a unbounded operator A® : D(Af) — L?(S%) on the Hilbert space H¢ = L?(S%)
with the scalar product

(v,W)gye = o C(z)v(Z)w(Z) dZT .

Note that H® C (Vf)'. The domain of A® is D(A®) = {v € Vi : A%v € H*},
where the value of this operator is given on this domain by

1 (1 1, \ !,
AEEE{E (I—fyo <A§+E’yofyo> 70x§> +A§} .
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Then the system (16), (17) is equivalent to
o .. 11 1, N\t
50 (@) + A% (Z) = oo (-Ai + E7070> 1 f

Since Af is m-accretive and self-adjoint, from Theorem 2, it follows that there
is a unique solution v* in C([0, 00); L2(S5)) N C((0,00); L2(S%)) of the Cauchy
problem for (1). Define u®(t) by
€ = (A l * - * l x £ €
ut(t) = (AL + ry 1070 1 (f(#) + py JOX1Y ),

where x5v°(Z,t) = v*(Z,t) for £ € S§ and 0 otherwise. Then we obtain the
unique solution u¢ € C([0, 00); Vy), v° € C([0,00); V5)NC((0,00); L2(S5)) to the
system (16) and (17).

Theorem 10 (Regularity of the solution u®,v°) We have that

uf € C([0,00); Vo) and v € C([0,00); L2(S5)) N CH((0, 00); V§ N WH2(55)) .

3.2. Two-scale convergence

In this section we introduce the notion of two-scale convergence that will be used
in the following sections. Let €2 be an open set in R™” and Y = [0, 1]™.

Definition 11 A sequence of functions u® in L%(Q) is said to two-scale converge

to a limit Up(z,y) € L*>(Q x Y) (denoted by u® N Uo) if for any test function
U(z,y) € C5°Q; Cf°(Y)), we have

lim ng(a:)\IJ (w, g) dzx = /Q/YUO(:I:,y)\P(x,y) dz dy .

e—0

In [1], we can find the following remarks.

Remark 12 1. For any U(z,y) € L?(;Cy(Y)), we have

2
lim [ U (m, E) dr = / / U(x,y)?dzdy .
e—=0Jq £ 0Jy

2. (Nguetseng) Any bounded sequence u® in L%(Q) has a two-scale convergent
subsequence.

3. Let x1(£)v° and ex1(2)Vv® be bounded in L*(Q). Then, there exists a

function V(z,y) € LQ(Q;Wul’Z(Y)) and a subsequence for which Xl(%)%s' and

epm(g%)ij two-scale converge to x1(y)V (z,y) and x1(y)VyV(z,y), respectively.
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These extend to the following situation which is better suited to our needs
here.

Proposition 13 (two-scale convergence with parameter) Suppose that u®
is a bounded sequence in L™([0,00); L?(2)). Then there is a subsequence u®i of
uf and a function Uy(t,z,y) € L*>([0,00); L2(Q2 x Y)) such that for any U(t,z,y)
in L'([0,00); C§°(2 C{°(Y)))

o0 o
lim/ /usj(t,:v)\Il (t,a:, 3) dmdt:/ //Uo(t,x,y)\ll(t,:c,y)dwdydt.
e;i—0Jo Ja €j 0o JyJao

Proof. Let F.(0) = [° [qui(t,2)U(¢,z,2)dedt and D = L*(Q;Cy(Y)).
There is a positive constant C such that ||u®||zeo(0,00;22()) < C- Since
dt

o0 T
F(U) < / ‘(¢ \If(t, ,—)
|F(P)| < A [ ()l L2 () T, @)

o0 o
< C/ max||‘~I’(t,x,y)||L2(Q) dt = C/ 2 @)|lpdt
0 Y€eEY 0

and ¥ € L'([0,00); D). We have F, € (L'([0,00);D))". So a subsequence F, is
weak*-convergent to some Uy € (L' (0, 00;D))’. Hence for any ¥ in L' ([0, 00); D),
< [1e@llo

we have
E] LQ(Q)

so by Lebesgue Dominated Convergence Theorem,

dt
LX)

v <t, T, i)
&j
x
€j

= [T IOl dt

Since L'([0,00);D) is dense in L'([0,00); L?(Q x Y)), it follows that Uy is in
(L'([0,00); L2(Q x Y)))'. By Riesz Representation Theorem, we have

U(®) = [ o0, 90 e

for some Uy € L*°([0, 00); L2(Q2 x Y)). Therefore
© T
lim/ /ugj(t,:v)lll t,z,— | dedt = lim F, ()
e;i—0Jo Jq €j EJ—)O
= U(
o
0 Jyla
O

o
()| = Jim | 7,0 < Timoup [ I Oz

dt

< C/ limsup || ¥
L2(Q)

€;—0
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3.3. Homogenization

In this Section, we investigate the convergence of the solutions of (16) and (17)
as € = 0. The two-scale limit is also the solution of a Cauchy problem. To
find the form of this limit problem, we consider the two-scale convergence of the
corresponding stationary problems for which energy estimates are simpler. This
is justified by the end of this Section. First, we display the operator A which
corresponds to the limit problem. For this, we define operators A; : Vi — (V1)
Az L2(8; Wy (V1)) = (L2(S; Wy (Y1) by

Au(p) = /S GVu(#) - Vo(#) di

AV (T) = /Yl/sc;%V( 7) - V\I'(:vydxdy-l—/ /R ) didi -

Define an unbounded operator A : D(A) — L?(S x Y;) on the Hilbert space
H = L?(S x Y1) with the scalar product

—~

VW)= [ CEVEDW @9 didj

SXYl

The domain of A is D(A) = {V € L2(S;W,*(Y1)) : AV € H}, and it is defined
on this domain by

AV) =2 {% {V— (i + %)_1 [ v(.9) dg} -|—A2V} .

The following lemma justifies the existence and uniqueness of the solution to the
limit problem.

Lemma 14 A : D(A) — L?(S x Y1) is m-accretive and self-adjoint.

Proof.  The m-accretivity is the same as Proposition 3. We observe that

1 —1
<(A1+—) [ v, W(fc,g)>
" ¢! L2(Sx Y1)

1 -1
_ / / (A1+—> V(5,9) dj W (3, §) di di
S JY; T Y1

:/S(Aﬁ%)_l/yl V(i,gj)dg/YlW(g”c,g)dgd:E

-/ (A* )(A1+i)_1 V.5 (A1+i)_1 W (7, §) dj d

T 1 Y

1 -1
" Y1 L2(SxY1)
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From this, we have that A is self-adjoint. O

Let v® € C([0,00); L?(S5)) be the solution of the e-problem :

as~ €. E(~ 11 € 1* 71*~_5~

50" (@) + A @) = g (A5 + i) F@) =K@
v¥(%,0) = vo(Z) (% € S5), and let V € C([0,00); L2(S x Y1)) be the solution of
the limit problem:

0 1 1\ 1t, o .
5iVo+ AT = 5 (“‘“E) f=h  Vo(@,0) = v(®) .

In order to examine the convergence of the solutions, we extend the solutions
ve(t) in L2(S%) to x§v°(t) in L?(S) and similarly extend Vp(t) in L2(S x Y3) to
x1(#)Vo(t) in L*(S x Y).

Theorem 15 For each T > 0, we have

[ [T
0 0

Remark 16 We may not display all the information that we have. In fact,
roughly speaking, the convergence is a kind of weak*-convergence with respect to
L>(0, 00)-norm and two-scale with respect to L?(S)-norm.

In order to prove Theorem 15, we use Proposition 13.

Lemma 17 [[x{v°(t)||£oc ([0,00);22(5)) 18 bounded.

Proof.  Let {Sc(t) : t > 0} be the semi-group generated by —A¢. Then from
the facts that

[0 ()llL2s5) =

°(0) + /Ot Se(t — s)h®(s) ds

L2(5%)

< o Ol + [ 16 laacs
< ||v0||L2(5)+/ 15 (8) | p2(s) ds < constant,
0
we have that for all ¢ > 0, ||xfv*(¢)[|12(s) is bounded. 0

Hence, there is a subsequence v*/ of v® and W in L>®([0,00); L?(S x Y)) such
that for ¥(t,Z,9) € L*([0,00); C§°(S; C(Y))),

: £ z
gljll_I)lO/ /Xl( tm@(t, ,E> dz dt
—/ //W NV(t,Z,7)dz dydt .
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In particular, for ¥(Z,9) € C§°(S;C{°(Y)), we take x(or)(t)¥(Z,§) as a test

function to obtain
T ) T
/ oo (1) dt 2 / W(t)dt ,
0 0

and also we have the following lemma.

Lemma 18 For any A > 0,
X7 0T (N) T

where W represents Laplace transform : W()\) = Jo e MW (t) dt.

Proof.  For ¥(z,7) € C§°(S;C°(Y)), we take e MU (Z,7) as a test function to
observe

lim | x}0% (A 2)T (5:, ﬁ) dz
e;—0Jg €j
o -
= lim (/ e MxF v (t, T) dt) dz
e;—0Jg 0 5]
= lim/ / ’\t\I/< ) di dt
€;—0 €j
:/ //W 7)e MU (3, 5) dF dj dt

//(/ W (2, )dt) U(%,§) dF dj
- L/SW(A’f’ﬂ)@(i,ﬂ) dz dj ,

—~~

that is, for fixed A > 0, x7/ 0% (\) 2, W(A). 0

Therefore we take Laplace transform on %vf(t) + Acv=(t) = h*(t) in (V5)' to get

AE — v (0) + AS0F = ke in (V5)' .

Suppose we have the condition that
(18) Xi M+ A9 hlge = xa(§) AT+ A) A
for all h € L*(S). Then we obtain

XiE () 2 x1 @) + A) LR+ o) -
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In fact, from the estimate ||(AT + A®)~!|| < 3, we have

: € eN—1 (72 N N _
lim HX1 (AT + A7) (h5|5f - h|5f) < lim XHhE — hllr25) =0,

‘LQ(S)
by Corollary 9, where ﬁ|g§ means the restriction map on S7. Hence
XiF() = XEOT + AT TR g + XT(AT + A%) oo
-1 (7= N -1 (7
= Xi(AI+A%) (h5|5§ - h\S§) +X1(AT +Af) (Msi +’UO\S§)

25 x1@ O+ A)7H(h + )

By Lemma 18, this means that W()\) = x1(§) (AT + A)~ (R +v). By the unique-
ness of Laplace transform, we get W = x1(g)Vp and

%%‘I‘AVO :h ‘/0(0) = Vo

in L?(S x Y1). Also, since the solution of above is unique, we have that the
original sequence fOT X5v° (t) dt converges weakly to fOT x1(9) Vo (t) dt.

It remains to verify (18) to finish the proof of Theorem 15. This is done in
the next Section.

3.3.1. Two-scale convergence of stationary problems

In this Section, we prove (18), that is, for a given h € L%(S), we have
Xiv" =V,
where v° € V{ and Vy € L?(S; WO1 2(Y1)) are the solutions of the e-problem

No* (#)+ A%T° (3) = Lh(Z) (& € S7) and the limit problem AVy (%, 7) + AVp (7, §) =
Sh() ((&,9) € S x Y1), respectively.

Define ¢ : u° = (A + %’y(’j’yo)_l(%'ygxﬁﬁs). Then we have

(19) ASa () + %(wﬁ ) ed) = 0 $ €V
(20)  ACT (i) + A5 (i) + :—l(xiff @) (@) = hlp), peVE.

We set ¢ = u®, ¢ = v° and add the two equations to show that the sequences
IV@®|| 20 ||%\/§%ﬂ5||L2(Q), 19| L2(s2), EVDlL2(s2) are bounded. It follows
that a subsequence u4°/ converges weakly to some @ in Vy for which % is indepen-
dent of z, and x}’7% two-scale converges to x1W for some W € L2(S; Wﬂl’Q(Y)).

Let Vo = Wlg,y,, the restriction to § x Y1. Then, for ¢(Z,z) = ¢(Z) € V1 on
equation (19) and taking limit we have

Arva(p) + - (u— [ Vo) dy) (@) =0 in().

™
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Since ' &;Vv©i 2 x1(§) VW, we get for any ¥ € C§°(S; Cye(Y)) with O =0
on Yy, ¥(Z, g) € V;’ and so

& i - GV - z iffa Z
Ay’ v (‘l‘ (z, €j>> /f{stVU (qV‘«I’ <v EJ)) + 7 U < €]>} dz

o 1.
o / /GVg%-Vg\D(i,g)dizdg+/ /—V()\I/da”cdg
vi /s viJs R

= AQ‘_/()(\P) .

Remark 19 We have that W = 0 on 9Y;.

Proof.  Since g;x} V& N x1(§) VW, for ¥ € C§°(S; Cg’o(Y))Q, we get that

lim [ e;x7 Vo - @ (:1: ;) dﬁ:/y/sm(g)%W(ﬁ,g)-\Il(fz,g) di dij .
J

e—=0Jg
)}

By the uniqueness of the limit, we have W (Z, ) = 0 on 8Y;. O

By integration by parts of the left-hand side, we also have

. z = -
—;1_1)1(1)/)(1’ O {EJV \I’( a>+Vg-'Il<a:,

//Xl W(z,y Vy-\Il(ir,gj)d:id;lj.

We have shown that for a given function h € L?(S), we have the original sequence
#° converges weakly to 4 in Vy and x§7° two-scale converges to x1V, for which
(w, Vo) is the solution of a corresponding system (with operators defined at the
beginning of Section 3.3)

vt~ (= [ W.pdi) = 0 )
. 2 1,2 !
ACTo + AVl + (Vo —a) = h i (LA(S;WP(N)))
We note the limit system is equivalent to

(. §) + ATo(@9) = ga@h(E) . (E9) €S x V.

3.3.2. Approximation of the evolution problem

Theorem 20 Letuf € C([0,00); Vo), v° € C([0, 00); L2(S5))NC((0, 00); L2(S5))
be the solutions of the e-problem of (16), (17) with initial condition v¢(Z,0)
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v (%), T € Sf. Suppose u € C([0,00); V1) and Vo € C([0,00); L2(S x Y1)) N
C((0,00); L2(S; Wy * (Y1) NW22(Y1))) are the solutions of the system
1
) + = (w)~ [ Vo.0.0d5) = @) inoay
0

O Volt) + AW (2) +

with initial condition Vy(Z,9,0) = vo(Z), (Z,9) € S X Y1. Then

L -u©) = 0 i (L2SWERW))
1
/OTx‘ivs(t)dti>/OTX1(:t7)Vo(t)dt and /OTug(t)th/OTu(t)dt in Vo

for every T > 0.

Proof.  With the consequence of Section 3.3.1 and Theorem 15 in Section 3.3,
we have that for each T > 0,

T 9 T
| xvrwar 2 [a@v.
0 0

For each T > 0, from the facts that

T 1, N\ L[ T, 1 T,
[uwwar = (4 Zain) ([ ir@des - [Cpdo o) |
0 1 0 i Jo

/OTu(t)dt _ (A1+%>—1 (/OTf(t)dt+%/()T/Yxl(g)Vo(t"’?)d@dQ |

and since - -
| vwa— [ [ @5 dgd.

by Proposition 8, we obtain that

/OTug(t) dt — /OTu(t) dt

in V) for which u(Z,t) is independent of z. O

4. Concluding Remarks

4.1. The Homogeneous Thin-layer Model

In Theorem 5, we have obtained the system of differential equations

1
Aiu+ —(u—v) = f
(21) B
L b s+ S —u) = 0
g T LT =
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with initial condition v(%,0) = vo(Z) as the limit problem describing the thin-
layer conductor with a homogeneous capacitive layer. The strong formulation of
this system is

V- (3)Vul@, £) + :—l(u(a”:,t) w(@,8) = (3 1)
ca”g’ b %(v(:ﬁ,t) (@) + %v(x,t) —0. Fes,

u=0 on 0§
and  v(Z,0) = vo(Z) zes.

Note that the second equation is an ordinary differential equation, that is, the
horizontal diffusion along the capacitor, —V - G(Z)Vv(Z,t), was lost in the limit.

The original solution pair, u®(t) and v°(t), converges strongly to u(t) and v(¢)
in Vg and L?(S9), respectively, and the convergence is uniform in t € [0, T]. Thus,
we may regard the solution of the limit problem (21) as a good approximation
of the solution of the exact e-model system (2) for ¢ > 0 sufficiently small. Note
that the components of this limit system satisfy the pseudo-parabolic equation

0 1 o 1
22 42\ = 4= .
(22) (cat+R)( Ayt Ag r1<03t+R)f+f
This equation is well-posed both forward and backward in time, so there is no
regularizing effect.

Theorem 21 (Regularity of solutions) The solution u, v of the limit problem
(21) satisfies u € C([0,T]; Vo N W22(S)) and v € C*([0,T); L*(9)).

In fact, the regularity of solutions is preserved for all time, since the Sobolev
spaces are invariant under the generator of the C°-group of operators which
represents the solutions of (22), namely, the bounded operator %(I — %(./h +
%)*1) = %(I — (I +71.A1)"1). Furthermore, this bounded operator is the Yosida
approximation of A, so as 71 — 0, it converges strongly to A;. In particular, it
follows from Yosida’s proof of the Hille-Yosida Theorem that the solution of (22)

depends continuously on r; as r; — 0.

4.2. The Periodic Thin-layer Model

In Theorem 20, we have found the limit system of differential equations

A1u<t)+i(u<t)— [ vo<-,g,t)d:a) = f(t) in (V)

C%Vo(t)JrAzVo(t)+i(Vo(t)—U(0)) = 0 (B 0))
1

(23)
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with initial condition Vy(Z,7,0) = vo(Z), (Z,7) € S x Y1, to be the two-scale
limit of the exact e-model system (16), (17) for the thin-layer conductor with a
periodic capacitance layer. The strong formulation of this system is

~V - g(@)Vu(@, 1) + & (63, 1) — fy, Vo(3,5,1)dj) = [(3,1), F€S,
CEVo(E,7,t) — GAVo(&,7,1) + =(Vo(%, §,1) — u(E, 1)) + £Vo(&,§,t) =0,
yeY, zTeSsS,
u=0, on Jd5,
and Vp=0, on Sx0dY;.

Note that the second differential equation is a family of parabolic equations, and
they retain the local diffusion in the terms GA@V()(iZ‘, 7,t). It survives as a family
of independent differential equations with respect to time ¢ and the local variable
y. That is, for each £ € S, we have a second order diffusion equation with
constant coefficients on the local cell Y.

It may seem counter-intuitive that the local diffusion is retained in the limit
of the periodic array while it disappears in the homogeneous case which has
the larger capacitance layer. The following remarks show this is due to the loss
through the Dirichlet boundary conditions on the local cells.

Counsider again the case of periodic thin-layer capacitors, but instead of being
directly connected along their boundary, we assume they are insulated against
lateral current flow. This leads to the Neumann boundary condition in (23)
instead of the Dirichlet condition, and we lose the local diffusion.

Theorem 22 Suppose we have

ove
ov

(Z,t) =0 on OS]

in place of the boundary condition in the system (13). Then the limit problem is
the system

V- g(3)Vul(, 1) + % (W@ ) — [Vilo(@,0) = f(it) F€S
24 9 - o . 1 B
(24) O0(E D+ —(0(E1) ~u(E0) + po(@H =0, FcS
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Proof.  We have the same result as the case of Dirichlet boundary condition:
the limit problem has the strong form

~V - 9(%)Vu(z,t) + L (u(j’t) _/

1

V(@ 3,t) d@) —f(#,t) Fe€S

C_V(j'ay’t) - GAQV(‘%agat) + (V(ja’gat) - u(il’t)) + _V(jalgat) =0 )
ot 1 R
7€YY €S
u=0, on 08
and 8—V:0 on S xo0Y;
ov

From the uniqueness of the solution of this system, the observation that if
V(Z,9,t) = v(Z,t) then this system is equivalent to (24), and from the exis-
tence of the solution of (24), we conclude that V(Z,9,t) is independent of .
a

4.3 Discussion

Models of distributed networks were classically developed by methods of aver-
aging in which arguments often depended on intuition. Such conceptual models
can also be developed from the theory of miztures. The homogeneous thin-layer
model (4.1) is typical of the form of such systems as are derived by these tech-
niques. In theoretical physics and stochastic analysis, there emerged percolation
theory as the method of choice. In mathematics there has been developed the
theory of homogenization in which one can say that the equations with rapidly
oscillating coefficients have been averaged by the asymptotic expansions. Dis-
tributed microstructure models such as our periodic thin-layer model (4.3) arise
as the limits by this method.

The advantage of all these methods is that macroscopic properties are deduced
from microscopic properties and the geometry of the structure. The disadvantage
is that the exact physics of the microscopic model must be known. For example,
in the e-model of our periodic thin-layer model it was not clear how one should
treat the flux at the boundary of the local capacitive cells. The question as to
which model is better in a given situation can only be answered by experimental
tests. The value of these averaging techniques is that they precisely relate the
assumed structure at the micro-scale to the final model derived on the macro-
scale.

A related difficulty in the use of asymptotic averaging techniques is that there
are many choices possible for the scaling of both geometry and coefficients or
other material properties. Often such a choice is natural, such as the scaling
of the capacitance and conductance coefficients in our models according to the
width of the layer. In other cases, one chooses a scaling based on the anticipated
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or possibly necessary outcome. The choice of the e =2 scaling of the high conduc-
tance in the two models considered above was based on the requirement that the
limiting macro-model should retain the coupling of the conductive region with
the capacitive layer. The two methods used here are useful tools which support
the modeling process wherever spatial upscaling is necessary.
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