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Abstract

A distributed microstructure model is obtained by homogenization from an exact micro-m
with continuous temperature and flux for heat diffusion through a periodically distributed hi
heterogeneous medium. This composite medium consists of two flow regions separated by a th
region which forms the doubly-porous matrix structure. The homogenized system recogniz
multiple scale processes and the microscale geometry of the local structure, and it quanti
distributed heat exchange across the internal boundaries. The classical double-diffusion m
Rubinstein (1948) and Barenblatt (1960) are obtained in non-isotropic form for the special c
quasi-static coupling in this homogenized system.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a composite structure consisting of two distinct and separated but fine
tertwinedflow path regions embedded in a matrix and periodically distributed in a dom
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Ω with periodεY , whereε > 0 andY = (0,1)N is the unit cube. In the system of part
differential equations that describes the heat diffusion within this structure, an app
ate scale factor is chosen for the thermal conductivity of the matrix, and the meth
two-scale convergence is used to approximate the resulting very singular system
fully-coupleddistributed microstructure model. This model captures the interaction
tween the local scale and global scale processes, it recognizes the geometry of th
cell boundaries, and it quantifies the heat exchange across the internal boundarie
local structure. The quasi-static case of the distributed coupling in this model yield
classicaldouble-diffusion models of Rubinstein [10] and Barenblatt [3]. These class
double-diffusion models are characterized by having two temperatures (or pressur
signed to each pointΩ , one for each of the two distributed components in the compo
material. Flow in each component is described by a diffusion equation throughout the d
main, and they are coupled by a distributed exchange that is proportional to the diffe
in the temperatures (or pressures) of the components. See Lee and Hill [9] for addition
discussion of such models. Our overall objective is to derive these models by homog
tion from a physically meaningful exact model, i.e., a model in which temperature an
arecontinuous. We achieve this by introducing a third region which separates the
two components and provides the medium for the exchange of flux. The temperatu
dient in this exchange region is necessarily very high, i.e., it is inversely proportion
the local width of the exchange region, and the conductivity in this region is of the
of the local width, in order to maintain continuity of the flux. Such ideas are implicit in
classical development of these models, and we have attempted to make them precis
exact micro-model developed below. This model is a direct extension of that presente
Arbogast et al. in [2] for fluid flow in a fissured medium. In fact, their model is recov
by deleting the second flow region in our system below. In [4] and [5], a similar mod
presented for the single phase flow in a partially fissured medium; see [6,7,12]. E
these models is based on a structure composed of two subregions, thefissure system and
thematrix system. In the partially fissured case, both regions are connected and cont
to the global flow. The double-diffusion model was also obtained as a two-scale lim
Hornung [8], but in his micro-model, the fluxcondition across the internal boundaries w
assumed to be given by a difference in pressure, thereby forcing such a relationship
the macro-limit. In our micro-model below, we assume that both temperature and fl
continuous across all internal interfaces.

In order to indicate spaces ofY -periodic functions we will use the symbol # as
subscript. For example,C#(Y ) is the Banach space of continuous,Y -periodic, functions
defined on all ofRN . Similarly,L2

#(Y ) is the Banach space of functions inL2
loc(R

N) which
areY -periodic. For this space we take the usual norm ofL2(Y ) and note thatL2

#(Y ) is
equivalent to the space ofY -periodic extensions toRN of functions inL2(Y ). The space
H 1

# (Y ) is the Banach space ofY -periodic extensions toRN of those functions inH 1(Y )

for which the trace or boundary values agree on opposite sides of the boundary∂Y , and
its norm is the usual norm ofH 1(Y ). The linear spaceC∞

# (Y ) ≡ C#(Y ) ∩ C∞(RN) is
dense in bothL2

#(Y ) andH 1
# (Y ). The quotient spaceH 1

# (Y )/R is defined as the space
equivalence classes up to constant functions.

Various spaces ofvector-valued functions will arise in the developments below. Th
if B is a Banach space andX is a topological space, thenC(X;B) denotes the spac
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For any measure spaceΩ , we letL2(Ω;B) denote the space of square norm-summa
functionsf :Ω → B such that‖f (·)‖L2(Ω;B) is finite. WhenX (= [0, T ]) or Ω (= (0, T ))

represent the indicated time interval, we denote the correspondingevolution spaces by
C([0, T ];B) andL2(0, T ;B), respectively.

The following definitions and results ontwo-scale convergence have been modified t
allow for homogenization with a parameter (which we denote byt). These modification
do not affect the proofs from [1] in any essential way, and we refer the reader to [1]
more thorough discussion.

Definition 1. A functionψ(t, x, y) in L2((0, T ) × Ω;C#(Y )) which satisfies

lim
ε→0

∫
(0,T )×Ω

ψ

(
t, x,

x

ε

)2

dx dt =
∫

(0,T )×Ω

∫
Y

ψ(t, x, y)2 dy dx dt,

is called anadmissible test function.

Definition 2. A sequenceuε in L2((0, T ) × Ω) two-scale converges to u0(t, x, y) in
L2((0, T ) × Ω × Y ) if for any admissible test functionψ(t, x, y),

lim
ε→0

∫
(0,T )

∫
Ω

uε(t, x)ψ

(
t, x,

x

ε

)
dx dt =

∫
(0,T )

∫
Ω

∫
Y

u0(t, x, y)ψ(t, x, y) dy dx dt.

Theorem 3. If uε is a bounded sequence in L2((0, T ) × Ω), then there exists a function
u0(t, x, y) in L2((0, T ) × Ω × Y ) and a subsequence of uε which two-scale converges
to u0. Moreover, this two-scale convergent subsequence converges weakly in L2((0, T ) ×
Ω) to u(t, x) = ∫

Y u0(t, x, y) dy .

When the sequenceuε is bounded inH 1, we get more information.

Theorem 4. Let uε be a bounded sequence in L2(0, T ;H 1(Ω)) that converges weakly to u

in L2(0, T ;H 1(Ω)). Then uε two-scale converges to u, and there is a function U(t, x, y)

in L2((0, T ) × Ω;H 1
# (Y )/R) such that, up to a subsequence, ∇xuε two-scale converges

to ∇xu(t, x) + ∇yU(t, x, y) in L2((0, T ) × Ω)N .

Theorem 5. Let uε and ε∇xuε be bounded sequences in L2((0, T ) × Ω) and L2((0, T ) ×
Ω)N , respectively. Then there exists a function U(t, x, y) in L2((0, T ) × Ω;H 1

# (Y )/R)

such that, up to a subsequence, uε and ε∇xuε two-scale converge to U(t, x, y) and
∇yU(t, x, y) in L2((0, T ) × Ω) and L2((0, T ) × Ω)N , respectively.

We review some results for degenerate operators of the type that appear below in
plicit evolution equation. AssumeB is continuous, linear, symmetric and monotone fr
the Hilbert spaceV to its dualV ′. Then〈B·, ·〉1/2 is a seminorm on V; denote the comp
tion of this seminorm space byVb and the dual Hilbert space byV ′

b. Note thatV ↪→ Vb is
dense and continuous,

‖ϕ‖Vb = Bϕ(ϕ)1/2 � ‖B‖1/2‖ϕ‖, ϕ ∈ V,
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andB has a unique continuous linear extension fromVb ontoV ′
b. By restriction of func-

tionals we identifyV ′
b ⊂ V ′, and this imbedding is continuous.

Define a seminorm on the range ofB :V → V ′ by

‖w‖W = inf
{‖v‖: v ∈ V, Bv = w

}
, w ∈ Rg(B).

Since the kernel Ker(B) is closed this is a norm; the corresponding normed linear s
W = {Rg(B),‖ · ‖W } is isomorphic to the quotientV/Ker(B), and it is therefore a Banac
space. Finally, we observe thatW ⊂ V ′

b with a continuous inclusion. Specifically, ifw =
Bv with v ∈ V , then∣∣w(ϕ)

∣∣ = ∣∣Bv(ϕ)
∣∣ � Bv(v)1/2Bϕ(ϕ)1/2, ϕ ∈ V,

sow ∈ V ′
b and‖w‖V ′

b
= Bv(v)1/2 = ‖v‖Vb � ‖B‖1/2‖v‖. Taking the infimum and notin

thatB is constant on each coset, we obtain

‖w‖V ′
b
� ‖B‖1/2‖w‖W , w ∈ Rg(B).

The strict homomorphismB :V → W has a continuous dualB′ :W ′ → V ′ given by

B′g(v) = g(Bv), g ∈ W ′, v ∈ V.

Using the identification ofVb ⊂ V ′′
b ⊂ W ′ we obtain for eachg ∈ Vb,

B′g(v) = Bg(v) � ‖g‖Vb‖v‖Vb , v ∈ V,

so‖B′g‖V ′
b
� ‖g‖Vb .B′ is an extension ofB :Vb → V ′

b and hereafter we denote it too byB.
Now V ′

b is a Hilbert space whose scalar product satisfies

(Bu,Bv)V ′
b
= Bu(v) = (u, v)Vb , u, v ∈ Vb.

Hence,(f,w)V ′
b
= f (v) if w = Bv, v ∈ Vb, so we obtain for eachf ∈ V ′

b,

sup
{∣∣(f,w)V ′

b

∣∣: w ∈ W, ‖w‖W � 1
} = sup

{∣∣f (v)
∣∣: v ∈ V, ‖v‖ � 1

} = ‖f ‖V ′ .

This showsV ′ has the normdual to W with respect toV ′
b, or thatV ′

b is thepivot space
betweenW andV ′.

SetV = L2(0, T ;V ). Note that the dual ofV is V ′ = L2(0, T ;V ′).

Proposition 6. The Hilbert space W2(0, T ) ≡ {u ∈ V : (d/dt)Bu ∈ V ′} is contained in
C([0, T ];Vb). Moreover, for each u in W2(0, T ),

(i) the function t �→ Bu(t)(u(t)) is absolutely continuous on [0, T ],
(ii) (d/dt)Bu(t)(u(t)) = 2(d/dt)Bu(t)(u(t)) for a.e. t in [0, T ], and
(iii) for every u in W2(0, T ), there is a constant C for which

‖u‖C([0,T ],Vb) � C‖u‖W2(0,T ).

Corollary 7. Given functions u,v in W2(0, T ), the map t �→ Bu(t)(v(t)) is absolutely
continuous on [0, T ] and

d

dt
Bu(t)

(
v(t)

) = d

dt
Bu(t)

(
v(t)

) + d

dt
Bv(t)

(
u(t)

)
a.e. t in [0, T ].
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Finally, we formulate theimplicit Cauchy problem for an evolution equation in a Hilbe
space in a form that will be convenient for our applications below. Suppose we are g
continuous linear operatorA :V → V ′, a vectorw0 in V ′

b, and a functionf (·) in V ′. The
Cauchy problem is to find a functionu(·) in V such that

d

dt

(
Bu(·)) +A

(
u(·)) = f (·) in V ′, Bu(0) = w0 in V ′

b. (1)

Implicit in (1) is the fact that(d/dt)Bu ∈ V ′. It follows from Proposition 6 thatBu(·)
is continuous intoV ′

b, and the initial condition onBu(·) is meaningful. The realizatio
of A :V → V ′ as an operator onV takes on values inV ′, and a solutionu ∈ V to (1) is
characterized by thevariational form

u ∈ V : −
T∫

0

Bu(t)
(
v′(t)

)
dt +

T∫
0

Au(t)
(
v(t)

)
dt =

T∫
0

f (t)v(t) dt + w0
(
v(0)

)
for everyv in V, with Bv′ ∈ V ′ andBv(T ) = 0. (2)

See Chapter III of [11] for the above and related information on the Cauchy pro
Specifically, we recall the following result.

Proposition 8. Assume the operators A and B are continuous, linear, and symmetric from
the Hilbert space V to its dual V ′, that B is monotone, and there are numbers λ and c > 0
such that

Av(v) + λBv(v) � c‖v‖2, v ∈ V.

Then for each f ∈ L2(0, T ;V ′) and each w0 ∈ V ′
b, there exists a unique solution u of the

Cauchy problem (1), it is characterized by (2), and it satisfies the a priori estimate

T∫
0

Au(t)
(
u(t)

)
dt + sup

0�t�T

{
Bu(t)

(
u(t)

)}
� C(f,w0).

2. The highly-heterogeneous micro-model

Let the unit cubeY be given in three complementary parts,Y1, Y2 andY3, and assume
Y3 separates Y1 from Y2, so∂Y1 ∩ ∂Y2 = ∅; see Fig. 1.

We denote byχj (y) the characteristic function ofYj for j = 1,2,3, extended
Y -periodically to all ofRN . Thus,χ1(y) + χ2(y) + χ3(y) = 1 for a.e.y in R

N . It is
assumed that the sets{y ∈ R

N : χj (y) = 1} for j = 1,2,3, have smooth boundary, b
we do not require these sets to be connected. The correspondingε-periodic characteristic
functions are defined by

χε
j (x) ≡ χj

(
x

)
, x ∈ Ω, j = 1,2,3.
ε
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Fig. 1. Two-dimensional representation of the unit cubeY = (0,1)N .

The global domainΩ is thus divided into three sub-domains,Ωε
1, Ωε

2 andΩε
3, which are

defined by

Ωε
j ≡ {

x ∈ Ω : χε
j (x) = 1

}
, j = 1,2,3.

We use the characteristic functions as multipliers to denote thezero-extension of various
functions. For example, given a functionw defined onΩε

j , the productχε
j w is the zero

extension ofw to all of Ω . Similarly, if w is given onYj thenχjw is the correspondin
zero-extension to all ofY . Conversely,H 1

# (Yj ) will be used to denote the restriction toYj

of functions fromH 1
# (Y ). Finally, we denote byγjw thetrace or restriction to the boundar

∂Yj of functionsw ∈ H 1(Yj ), and similarly byγ ε
j w the trace on∂Ωε

j of functionsw ∈
H 1(Ωε

j ).
The two sub-domainsΩε

1 andΩε
2 are the primaryflow path regions for the model, an

it is assumed that their corresponding conductivitiesµj (j = 1,2) are large relative to th
conductivity of the third regionΩε

3, which we call theexchange region. A radiator in R
3 is

an example of such a medium with the same geometric structure; see Fig. 2. Forj = 1,2,

let Γj,3 ≡ ∂Yj ∩ ∂Y3 ∩ Y be that part of the interface betweenYj andY3 that is interior
to the local cellY . ThenΓ ε

j,3 ≡ ∂Ωε
j ∩ ∂Ωε

3 ∩ Ω represents the corresponding interfa
betweenΩε

j andΩε
3 that is interior toΩ . Likewise, we defineΓ3,3 ≡ ∂Y3 ∩ ∂Y and denote

by Γ ε
3,3 its periodic extension which forms the artificial interface between those parts

matrixΩε
3 that lie within neighboringεY -cells. A two-dimensional view of the boundari

for the unit cubeY is shown in Fig. 1.
Let cj (·),µj (·) ∈ C#(Y ) be given such that

0 � cj (y), 0 < c0 � µj(y), a.e. y ∈ R
3, j = 1,2,3. (3)

We note that the heat capacitiescj (y) (j = 1,2,3) are bounded and permitted to vani
The correspondingε-periodic coefficients inΩε

j are defined by

cε
j (x) ≡ cj

(
x

)
, µε

j (x) ≡ µj

(
x

)
, x ∈ Ωε

j , j = 1,2,3.

ε ε
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Fig. 2. (a) Three-dimensional representation of periodic structure. (b) An extended view of composite mediu
over oneε-period.

The temperature atx ∈ Ω is denoted byu(t, x), and forj = 1,2, the correspondin
flux in Ωε

j is −µj(x/ε)∇uε . In Ωε
3, the flux is given by−ε2µ3(x/ε)∇uε. The diffusion

of heat withinΩ is described by theexact micro-model

∂

∂t

(
cε

1(x)uε(t, x)
) = ∇ · (µε

1(x)∇uε(t, x)
)
, x ∈ Ωε

1, t > 0, (4a)

∂

∂t

(
cε

2(x)uε(t, x)
) = ∇ · (µε

2(x)∇uε(t, x)
)
, x ∈ Ωε

2, t > 0, (4b)

∂

∂t

(
cε

3(x)uε(t, x)
) = ∇ · (ε2µε

3(x)∇uε(t, x)
)
, x ∈ Ωε

3, t > 0, (4c)

γ ε
1 uε(t, s) = γ ε

3 uε(t, s), s ∈ Γ ε
1,3, t > 0, (4d)

γ ε
2 uε(t, s) = γ ε

3 uε(t, s), s ∈ Γ ε
2,3, t > 0, (4e)

µε
1(s)∇uε(t, s) · ν1 = ε2µε

3(s)∇uε(t, s) · ν1, s ∈ Γ ε
1,3, t > 0, (4f)

µε
2(s)∇uε(t, s) · ν2 = ε2µε

3(s)∇uε(t, s) · ν2, s ∈ Γ ε
2,3, t > 0, (4g)

whereνj denotes the unit outward normal on∂Ωε
j , j = 1,2,3. For j = 1,2, note that

νj = −ν3 on Γ ε
j,3. In the above system, a standard diffusion process takes place in

subregion, and both temperature and flux are continuous across the internal boun
Within any small neighborhood, the temperature is expected to be nearly constant in ea
flow region, e.g., inY1 andY2. Thus, all essential fine-scale variations in temperature
occur in the exchange region,Y3, so in Ωε

3 the flux has been scaled byε2 to allow for
the steep temperature gradients (of the order 1/ε) that necessarily exist within this regio
We will show that asε → 0 this scale factor has exactly the right order of magnitud
produce a distributed microstructure model that isfully-coupled. Since the global bound
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te
ary conditions on∂Ω play no essential role in the development below, we shall ass
homogeneous Dirichlet boundary conditions

uε(t, s) = 0 a.e. s ∈ ∂Ω. (4h)

Finally, the initial-boundary-value problemis completed with the initial conditions

cε
j (x)uε(0, x) = cε

j (x)u0(x) a.e. x ∈ Ω, j = 1,2,3. (4i)

As noted above, the model developed by Arbogast et al. [2] for fluid flow in a fiss
medium is recovered by settingY2 = ∅.

Next we shall develop an equivalentvariational formulation for our exact micro-mode
in the energy space V ≡ H 1

0 (Ω). Then the continuity of temperature (4d) and (4e) f
low from the inclusionu ∈ V . The leading terms in our system are given by the lin
degenerate operatorBε :V → V ′ defined by

Bεu(ϕ) =
∫
Ω

cε(x)u(x)ϕ(x) dx, u,ϕ ∈ V,

wherecε(x) ≡ χε
1(x)cε

1(x)+χε
2(x)cε

2(x)+χε
3(x)cε

3(x). The completion ofV with the cor-
responding semi-scalar product can be characterized as the spaceV ε

b of those measurabl
functionsu(·) on the support ofcε(·) for which cε(·)1/2u(·) ∈ L2(Ω), and the dual of this
space is the Hilbert space(V ε

b )′ = {cε(·)1/2ϕ(·): ϕ ∈ L2(Ω)}. The symmetric and non
negative operatorBε is just multiplication bycε(·). The principle operatorAε :V → V ′ is
defined by

Aεu(ϕ) ≡
∫
Ω

µε(x)∇u(x) · ∇ϕ(x) dx, u,ϕ ∈ V,

whereµε(x) ≡ χε
1(x)µε

1(x) + χε
2(x)µε

2(x) + ε2χε
3(x)µε

3(x). The formal part of this oper
ator in L2(Ω) consists of the elliptic parts of (4a)–(4c), and the remaining part con
the flux interface conditions (4f), (4g).

The variational form of theexact micro-model given by (4) is theCauchy problem to
find uε(·) ∈ L2(0, T ;H 1

0 (Ω)) such that{
d
dt
Bεuε(t) +Aεuε(t) = 0 in (L2(0, T ;H 1

0 (Ω)))′,
cε(·)1/2uε(0) = cε(·)1/2u0 in L2(Ω).

(5)

Here the initial valueu0 could be prescribed inV ε
b .

Each of the operatorsAε is linear, symmetric, andV -elliptic.

Lemma 9. For each ε > 0, there exists a constant Cε > 0 such that

Aε(w)(w) � Cε‖w‖2
V for every w in V.

It follows from Lemma 9 that (5) is well posed. We remark that the coercivity estima
given in this lemma permits even the degeneratesteady-state case c(·) = 0. However, we
need additional estimatesindependent of ε for theL2 norm of the solution in our following
work.
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Denote therescaling of the functionsµε(·) andcε(·) to ε = 1 by

µ(y) ≡ χ1(y)µ1(y) + χ2(y)µ2(y) + χ3(y)µ3(y)

and

c(y) ≡ χ1(y)c1(y) + χ2(y)c2(y) + χ3(y)c3(y),

respectively. Then we have the following

Lemma 10. If
∫
Y

c(y) dy > 0, then there exists a constant K > 0, such that∫
Y

µ(y)
∣∣∇w(y)

∣∣2 dy +
∫
Y

c(y)
∣∣w(y)

∣∣2 dy � K‖w‖2
L2(Y )

(6)

for all w in H 1(Y ).

This follows by a compactness argument; see Proposition II.5.2 in [11].

Lemma 11. There exists a constant K > 0, such that∫
Ω

µε(x)
∣∣∇w(x)

∣∣2 dx +
∫
Ω

cε(x)
∣∣w(x)

∣∣2 dx � K‖w‖2
L2(Ω)

(7)

for all w in H 1(Ω) and 0 < ε � 1.

Proof. Recall thatY ε = εY = {x = εy: y ∈ Y }. For a givenw ∈ H 1(Y ε), the change o
variabley = x/ε yields∫

Y ε
1

µε
1(x)

∣∣∇w(x)
∣∣2 dx +

∫
Y ε

2

µε
2(x)

∣∣∇w(x)
∣∣2 dx

+
∫
Y ε

3

µε
3(x)

∣∣ε∇w(x)
∣∣2 dx +

∫
Y ε

cε(x)
∣∣w(x)

∣∣2 dx

� εN

[∫
Y1

µ1(y)
∣∣∇yw(y)

∣∣2 dy +
∫
Y2

µ2(y)
∣∣∇yw(y)

∣∣2 dy

+
∫
Y3

µ3(y)
∣∣∇yw(y)

∣∣2 dy +
∫
Y

c(y)
∣∣w(y)

∣∣2 dy

]

� εNK‖w‖2
L2(Y )

. (8)

The first inequality in (8) is a result of the change of variabley = x/ε, which leads to
integration over the fixed domainY , and the second inequality comes from applying
first “Poincare-type” inequality obtained in (6). Usingx = εy to change back to the micro
variable yields∫

ε

µε(x)
∣∣∇w(x)

∣∣2 dx +
∫
ε

cε(x)
∣∣w(x)

∣∣2 dx � K‖w‖2
L2(Y ε)

. (9)
Y Y
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f

e fol-
The domainΩ is covered by a regular mesh of sizeε: each cellY ε
i is a translate o

the ε-cell, Y ε. Denote byΩ̃ε the union of all these cells, that is,̃Ωε = ⋃N(ε)
i=1 Y ε

i , where
the number of cells isN(ε) = |Ω |ε−N [1 + o(1)]. We note thatΩ ⊂ Ω̃ε and hence by
zero-extensions we haveH 1

0 (Ω) ⊂ H 1
0 (Ω̃ε).

Now, let w ∈ H 1
0 (Ω). By summing the inequalities in (9) over all of theY ε

i -cells, we
get ∫

Ω̃ε

µε(x)
∣∣∇w(x)

∣∣2 dx +
∫
Ω̃ε

cε(x)
∣∣w(x)

∣∣2 dx � K‖w‖2
L2(Ω̃ε)

.

ReplaceΩ̃ε by Ω in the domain of integration to obtain the desired estimate.�
Theorem 12. Assume (3), that

∫
Y c(y) dy > 0, and u0 ∈ L2(Ω). Then for each 0 < ε � 1

there exists a unique solution uε of the Cauchy problem (5), and these satisfy the uniform
estimate ‖uε‖L2((0,T )×Ω) � C.

Proof. Givenw in V ε,

Aε(w)(w) +Bε(w)(w)

� 1

2

[∫
Ω

µε(x)
∣∣∇w(x)

∣∣2 dx

]
+ 1

2

[∫
Ω

µε(x)
∣∣∇w(x)

∣∣2 dx +
∫
Ω

cε(x)
∣∣w(x)

∣∣2 dx

]

� 1

2

∫
Ω

µε(x)
∣∣∇w(x)

∣∣2 dx + 1

2
K‖w‖2

L2(Ω)

� c0ε

2
‖∇w‖2

L2(Ω)
+ 1

2
K‖w‖2

L2(Ω)
. �

3. The two-scale limit

Let us begin this section by giving some preliminary convergence results. In th
lowing, we shall denote the gradient in thex-variable by∇, the gradient in they-variable

by ∇y , and we use the symbol “
2→” to denote two-scale convergence.

Lemma 13. For each ε > 0, let uε(·) denote the unique solution to the Cauchy problem (5).
Then there exist

(i) a pair of functions uj in L2(0, T ;H 1
0 (Ω)), j = 1,2,

(ii) a triple of functions Uj in L2((0, T ) × Ω;H 1
# (Yj )/R),

and a subsequence of uε(·), hereafter denoted by uε , which two-scale converges as fol-
lows:
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)
The-
χε
j uε 2→χj (y)uj (t, x), j = 1,2, (10a)

χε
j ∇uε 2→χj (y)

[∇uj (t, x) + ∇yUj(t, x, y)
]
, j = 1,2, (10b)

χε
3uε 2→χ3(y)U3(t, x, y), (10c)

χε
3ε∇uε 2→χ3(y)∇yU3(t, x, y), (10d)

χε
j µε

j∇uε 2→χj (y)µj(y)
[∇uj (t, x) + ∇yUj(t, x, y)

]
, j = 1,2, (10e)

χε
3εµε

3∇uε 2→χ3(y)µ3(y)∇yU3(t, x, y). (10f)

Proof. Apply the evolution equation (5) to the solutionuε(t). Integrating with respect tot ,
we obtain

1

2
Buε(t)

(
uε(t)

) − 1

2
Buε(0)

(
uε(0)

) +
t∫

0

Aεuε(s)
(
uε(s)

)
ds = 0.

With the assumptions given in (3), in particular 0< c0 � µj , j = 1,2,3, we have

1

2

∥∥(cε)1/2uε(t)
∥∥2

L2(Ω)

+ c0

t∫
0

(∥∥χε
1∇uε

∥∥2
L2(Ω)

+ ∥∥χε
2∇uε

∥∥2
L2(Ω)

+ ∥∥εχε
3∇uε

∥∥2
L2(Ω)

)
ds

� 1

2

∥∥(cε)1/2u0
∥∥2

L2(Ω)
, t ∈ [0, T ].

This estimate shows that(cε)1/2uε(·) is bounded inL∞(0, T ;L2(Ω)). In addition, the gra-
dientsχε

1∇uε , χε
2∇uε andεχε

3∇uε are bounded inL2(0, T ;L2(Ω)N). Statements (10a
and (10b) follow from Theorem 4. Likewise, statements (10c) and (10d) follow from
orem 5. Finally, the flux termsχε

j µε
j (x)∇uε(t, x), j = 1,2, andχε

3εµε
3(x)∇uε(t, x) are

bounded inL2(0, T ;L2(Ω)N). By Theorem 3,χε
1µε

1(x)∇uε(t, x), χε
2µε

2(x)∇uε(t, x), and
εχε

3µε
3(x)∇uε(t, x) converge as stated.�

By writing uε = χε
1uε + χε

2uε + χε
3uε, we find that Lemma 13 implies

uε 2→χ1(y)u1(t, x) + χ2(y)u2(t, x) + χ3(y)U3(t, x, y),

ε∇uε 2→χ3(y)∇yU3(t, x, y),

and for any test functionϕ in C∞
0 (Ω; [C∞

# (Y )]N),∫
Ω

ε∇uε(t, x) · ϕ
(

x,
x

ε

)
dx

= −
∫

uε(t, x)

[
ε∇ · ϕ

(
x,

x

ε

)
+ ∇y · ϕ

(
x,

x

ε

)]
dx.
Ω
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.

ro-

oose
By taking two-scale limits on both sides of this last equation, we obtain∫
Ω

∫
Y

χ3(y)∇yU3(t, x, y) · ϕ(x, y) dy dx

= −
∫
Ω

∫
Y

[
χ1(y)u1(t, x) + χ2(y)u2(t, x) + χ3(y)U3(t, x, y)

]∇y · ϕ(x, y) dy dx.

(11)

The divergence theorem shows that the left side of (11) is simply∫
Ω

∫
Y3

∇yU3(t, x, y) · ϕ(x, y) dy dx

= −
∫
Ω

∫
Y3

U3(t, x, y)∇y · ϕ(x, y) dy dx +
∫
Ω

∫
∂Y3

U3(t, x, s)ϕ(x, s) · ν3 ds dx,

while the right side of (11) can be written as

−
∫
Ω

∫
Y1

u1(t, x)∇y · ϕ(x, y) dy dx −
∫
Ω

∫
Y2

u2(t, x)∇y · ϕ(x, y) dy dx

−
∫
Ω

∫
Y3

U3(t, x, y)∇y · ϕ(x, y) dy dx.

Combining these last two results, (11) yields∫
Ω

∫
∂Y3

U3(t, x, s)ϕ(x, s) · ν3 ds dx

= −
∫
Ω

∫
Y1

u1(t, x)∇y · ϕ(x, y) dy dx −
∫
Ω

∫
Y2

u2(t, x)∇y · ϕ(x, y) dy dx

= −
∫
Ω

∫
∂Y1

u1(t, x)ϕ(x, s) · ν1 ds dx −
∫
Ω

∫
∂Y2

u2(t, x)ϕ(x, s) · ν2 ds dx.

Given the periodicity ofU3 andϕ onΓ3,3 we obtain the following constraint in the limit

Lemma 14. The two-scale limits [u1, u2,U3] obtained in Lemma 13 satisfy the continuity
condition

uj (t, x) = γ3U3(t, x, s), s ∈ Γj,3, j = 1,2, a.e. x ∈ Ω.

This shows that the temperature in the local cellY3 matches the corresponding mac
temperatures across its respective internal boundaries.

Next, we develop the variational problem satisfied by these two-scale limits. Ch
smooth test functions
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e

(i) ϕj in L2(0, T ;H 1
0 (Ω)), j = 1,2, and

(ii) Φj in L2((0, T ) × Ω;H 1
#(Yj )/R), j = 1,2,3,

such that∂ϕj/∂t is in L2(0, T ; [H 1
0 (Ω)]′) for j = 1,2, ∂Φ3/∂t is in L2((0, T ) × Ω;

[H 1
# (Y3)/R]′), Φ3(T ) = 0, andγ3Φ3 = ϕj on Γj,3, j = 1,2. For eachj = 1,2, we

can assume that the extensions ofΦj into Y3 have no common support. Also, w
use the notation(·),t to represent the time derivative(∂/∂t)(·). If we apply (5) to the
triple [ϕ1(t, x)+εΦ1(t, x, x/ε),ϕ2(t, x)+εΦ2(t, x, x/ε),Φε

3(t, x, x/ε)] in L2(0, T ;V ε),
where the functionΦε

3(t, x, y) is defined by

Φε
3(t, x, y) ≡ Φ3(t, x, y) + ε

2∑
j=1

Φj (t, x, y) in Yj , for j = 1,2,

and integrate by parts int , we obtain

−
2∑

j=1

T∫
0

∫
Ω

χε
j (x)cε

j (x)uε(t, x)

(
ϕj,t (t, x) + εΦj,t

(
t, x,

x

ε

))
dx dt

−
T∫

0

∫
Ω

χε
3(x)cε

3(x)uε(t, x)Φε
3,t

(
t, x,

x

ε

)
dx dt

−
2∑

j=1

∫
Ω

χε
j (x)cε

j (x)u0(x)

(
ϕj (0, x) + εΦj

(
0, x,

x

ε

))
dx

−
∫
Ω

χε
3(x)cε

3(x)u0(x)Φε
3

(
0, x,

x

ε

)
dx

+
2∑

j=1

T∫
0

∫
Ω

χε
j (x)µε

j (x)∇uε(t, x) · ∇
(

ϕj (t, x) + εΦj

(
t, x,

x

ε

))
dx dt

+
T∫

0

∫
Ω

χε
3(x)µε

3(x)ε∇uε(t, x) · ε∇Φε
3

(
t, x,

x

ε

)
dx dt = 0. (12)

Taking two-scale limits in (12) yields the following result.

Theorem 15. Assume the coefficients satisfy (3) and
∫
Y

c(y) dy > 0, and that the function
u0(·) is in L2(Ω). Then the two-scale limits [u1, u2,U1,U2,U3] established in Lemma 13
satisfy the two-scale limit system

(i) uj in L2(0, T ;H 1
0 (Ω)) for j = 1,2,

(ii) Uj in L2((0, T ) × Ω;H 1
# (Yj )/R) for j = 1,2,3,

(iii) γ3U3(t, x, s) = uj (t, x) on Γj,3 for j = 1,2,
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to

ing
bles and
such that

−
2∑

j=1

T∫
0

∫
Ω

∫
Y

χj (y)cj (y)uj (t, x)ϕj,t (t, x) dy dx dt

−
T∫

0

∫
Ω

∫
Y

χ3(y)c3(y)U3(t, x, y)Φ3,t (t, x, y) dy dx dt

−
2∑

j=1

∫
Ω

∫
Y

χj (y)cj (y)u0(x)ϕj (0, x) dy dx

−
∫
Ω

∫
Y

χ3(y)c3(y)u0(x)Φ3(0, x, y) dy dx

+
2∑

j=1

T∫
0

∫
Ω

∫
Y

χj (y)µj (y)
(∇uj (t, x) + ∇yUj(t, x, y)

)
× (∇ϕj (t, x) + ∇yΦj (t, x, y)

)
dy dx dt

+
T∫

0

∫
Ω

∫
Y

χ3(y)µ3(y)∇yU3(t, x, y) · ∇yΦ3(t, x, y) dy dx dt = 0 (13)

for all

(i) ϕj in L2(0, T ;H 1
0 (Ω)), j = 1,2,

(ii) Φj in L2((0, T ) × Ω;H 1
#(Yj )/R), j = 1,2,3,

for which

(iii) ∂ϕj/∂t ∈ L2(0, T ; [H 1
0 (Ω)]′), j = 1,2,

(iv) ∂Φ3/∂t ∈ L2((0, T ) × Ω; [H 1
#(Yj )/R]′), Φ3(T ) = 0 in L2(Ω × Y3), and

(v) γ3Φ3 = ϕj on Γj,3, j = 1,2.

Note that conditions (iv) and (v) together imply that eachϕj (T ) = 0 in L2(Ω). Unique-
ness ofu1, u2, andU3 will follow from the proof of Theorem 18 below. Moreover,U1 and
U2 are determined to within a constant for eacht ∈ (0, T ), so each of these is unique up
a corresponding function oft .

4. The homogenized system

We shall eliminate the variablesU1 andU2 and obtain a closed system for the remain
three unknowns. This is possible since there are no constraints between these varia
the remaining unknowns. Thus, for eachk = 1,2, consider thecell problem:
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s
s

s

FindUk in L2((0, T ) × Ω;H 1
# (Yk)/R):

T∫
0

∫
Ω

∫
Yk

µk(y)
(∇uk(t, x) + ∇yUk(t, x, y)

) · ∇yΦ(t, x, y) dy dx dt = 0

for everyΦ in L2((0, T ) × Ω;H 1
#(Yk)/R).

This is obtained by setting eachϕj = 0 andΦ3 = 0 in (13). The input to this problem i
the gradient∇uk(t, x), which we can write in terms of the orthonormal basis vectors a

∇uk(t, x) =
N∑

i=1

∂uk

∂xi

(t, x)ei .

This is independent ofy, so the functionsUk(t, x, y) can be represented withseparated
variables by

Uk(t, x, y) =
N∑

i=1

∂uk

∂xi

(t, x)Wk
i (y),

where the functionsWk
i (y) are solutions of the followingcoefficient cell problems.

Definition 16. For eachk = 1,2 and 1� i � N , let the functionWk
i (y) ∈ H 1

# (Yk/R) sat-
isfy ∫

Yk

µk(y)
[
ei + ∇yWk

i (y)
] · ∇yΦ(y) dy = 0 for Φ ∈ H 1

# (Yk)/R.

The corresponding strong forms are the Neumann-periodic boundary-value problem


∇y · (µk(y)[ei + ∇yWk
i (y)]) = 0 in Yk,

µk(s)[ei + ∇yWk
i (s)] · νk = 0 onΓk,3,

Wk
i (y) andµk(s)[∇yWk

i (s)] · νk areY -periodic.
(14)

Note that each of the coefficient cell functionsWk
i is determined up to a constant.

SubstituteUk(t, x, y) into (13) along with

Φk(t, x, y) =
N∑

j=1

∂ϕk

∂xj

(t, x)Wk
j (y) for k = 1,2.

Then (13) yields the variationalhomogenized problem:

Find a triple of functions

(i) uj in L2(0, T ;H 1
0 (Ω)) for j = 1,2, and

(ii) U3 in L2((0, T ) × Ω;H 1
#(Y3)) with

(iii) γ3U3(t, x, s) = uj (t, x) onΓj,3 for j = 1,2,
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such that

−
2∑

k=1

c̃k

( T∫
0

∫
Ω

uk(t, x)ϕk,t (t, x) dx dt +
∫
Ω

u0(x)ϕk(0, x) dx

)

+
T∫

0

∫
Ω

N∑
i,j=1

Ak
i,j

∂uk

∂xi

(t, x)
∂ϕk

∂xj

(t, x) dx dt

−
T∫

0

∫
Ω

∫
Y

χ3(y)c3(y)U3(t, x, y)Φ3,t (t, x, y) dy dx dt

−
∫
Ω

∫
Y

χ3(y)c3(y)u0(x)Φ3(0, x, y) dy dx

+
T∫

0

∫
Ω

∫
Y

χ3(y)µ3(y)∇yU3(t, x, y) · ∇yΦ3(t, x, y) dy dx dt = 0 (15)

for all

(i) ϕj in L2(0, T ;H 1
0 (Ω)), j = 1,2,

(ii) Φ3 in L2((0, T ) × Ω;H 1
#(Y3)),

for which

(iii) ∂ϕj/∂t ∈ L2(0, T ; [H 1
0 (Ω)]′), j = 1,2,

(iv) ∂Φ3/∂t ∈ L2((0, T ) × Ω;H 1
#(Y3)

′), Φ3(T ) = 0 in L2(Ω × Y3), and
(v) γ3Φ3 = ϕj onΓj,3, j = 1,2.

The homogenized coefficients in (15) are the constants̃ck and Ak
ij for k = 1,2, 1�

i, j � N , defined by

c̃k ≡
∫
Yk

ck(y) dy,

Ak
ij ≡

∫
Yk

µk(y)
(
ei + ∇yWk

i (y)
) · (ej + ∇yWk

j (y)
)
dy. (16)

The specific heats̃ck are the indicated simple averages, and thenon-isotropic diffusion
coefficients{Ak

ij } are constructed directly from the coefficient cell functions{Wk
i }.

Lemma 17. For k = 1,2, the matrix of homogenized coefficients {Ak
ij } is symmetric and

positive-definite.
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or the
e

Proof. The symmetry of{Ak
ij } is clear from the definition. For anyξ ∈ R

N we have

N∑
i,j=1

Ak
ij ξiξj =

∫
Yk

µk(y)∇y

N∑
i=1

ξi

(
Wk

i (y) + yi

) · ∇y

N∑
j=1

ξj

(
Wk

j (y) + yj

)
dy � 0,

and if this is zero, then
∑N

i=1 ξi(W
k
i (y) + yi) is constant. From here we find

∑N
i=1 ξiyi

must satisfy the boundary conditions in (14), hence,ξ = 0. �
The strong form of (15) can now be determined by making appropriate choices f

remaining test functions. By settingϕj (t, x) = 0 for j = 1,2 we obtain from Eq. (15) th
following mixed Dirichlet-periodiclocal cell problem for eachx ∈ Ω :


c3(y) ∂

∂t
U3(t, x, y) − ∇y · [µ3(y)∇yU3(t, x, y)] = 0 in Y3,

U3(t, x, y) andµ3(y)∇yU3(t, x, y) · ν areY -periodic onΓ3,3,

U3(t, x, s) = uj (t, x) onΓj,3, j = 1,2.

(17a)

Now letting ϕ1 in C∞
0 (0, T ;H 1

0 (Ω)) and choosingϕ2 = 0, andΦ3 in L2((0, T ) × Ω;
H 1

# (Y3)) as above, we obtain the firstmacro-diffusion equation

c̃1
∂

∂t
u1(t, x) −

N∑
i,j=1

A1
ij

∂

∂xj

(
∂u1

∂xi

(t, x)

)

+
∫

Γ1,3

µ3(s)∇yU3(t, x, s) · ν3 ds = 0. (17b)

Similarly, lettingϕ2 in C∞
0 (0, T ;H 1

0 (Ω)) and choosingϕ1 = 0, andΦ3 in L2((0, T )×Ω;
H 1

# (Y3)) as above, we obtain the secondmacro-diffusion equation

c̃2
∂

∂t
u2(t, x) −

N∑
i,j=1

A2
ij

∂

∂xj

(
∂u2

∂xi

(t, x)

)

+
∫

Γ2,3

µ3(s)∇yU3(t, x, s) · ν3 ds = 0. (17c)

The inclusions inL2(0, T ;H 1
0 (Ω)) given by (i) yield the pair ofglobal boundary condi-

tions

uk(t, s) = 0 on∂Ω, k = 1,2. (17d)

Finally, we have also theinitial conditions

c̃kuk(0, x) = c̃ku0(x), k = 1,2,

c3(y)U3(0, x, y) = c3(y)u0(x) for a.e.y ∈ Y3, x ∈ Ω. (17e)

It follows from Lemma 17 that the elliptic operators in (17b) and (17c) arestrongly-elliptic.
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at
riate

form
es
4.1. The main result

We summarize and complete the proof of the preceding results.

Theorem 18. Assume that the coefficients in the exact micro-model (4) satisfy the condi-
tions (3) and

∫
Y

c(y) dy > 0, and that the initial function u0(·) is in L2(Ω). For k = 1,2,
1 � i � N , let the functions Wk

i (·) ∈ H 1
# (Yk/R) be the solutions to the coefficient cell prob-

lems (14), and define the homogenized coefficients by (16). For each ε > 0, let uε denote
the unique solution to the initial-boundary-value problem (4). Then there exist a triple
of functions uj in L2(0, T ;H 1

0 (Ω)), j = 1,2, U3 in L2((0, T ) × Ω;H 1
# (Yj )/R), and a

subsequence of uε , likewise denoted by uε , for which we have two-scale convergence

χε
j uε 2→χj (y)uj (t, x), j = 1,2, χε

3uε 2→χ3(y)U3(t, x, y),

and these two-scale limits u1, u2,U3 are the unique solution of the homogenized system
(17). Furthermore, the coefficients in this system satisfy

c̃j � 0, j = 1,2, c3(y) � 0, y ∈ Y3, c̃1 + c̃2 +
∫
Y3

c3(y) dy > 0,

and
{
Ak

ij

}
is symmetric and positive-definite, k = 1,2.

Proof. It remains only to prove theuniqueness of the solution of (15). We shall show th
it is just the variational form (2) of a well-posed Cauchy problem (1) for an approp
evolution equation in Hilbert space. Define theenergy space

V ≡ {[ϕ1, ϕ2,Φ3] ∈ H 1
0 (Ω) × H 1

0 (Ω) × L2(Ω;H 1
# (Y3)

)
:

γ3Φ3(x, y) = ϕj (x) for y ∈ Γj,3, j = 1,2
}
,

and the operatorsA andB :V → V ′ by

Au(ϕ) ≡
2∑

k=1

∫
Ω

N∑
i,j=1

Ak
i,j

∂uk

∂xi

(x)
∂ϕk

∂xj

(x) dx

+
∫
Ω

∫
Y3

µ3(y)∇yU3(x, y) · ∇yΦ3(x, y) dy dx,

Bu(ϕ) ≡
2∑

k=1

∫
Ω

c̃kuk(x)ϕk(x) dx +
∫
Ω

∫
Y3

c3(y)U3(x, y)Φ3(x, y) dy dx

for u = [u1, u2,U3], ϕ = [ϕ1, ϕ2,Φ3] in V . It is easy to see thatA andB satisfy the
conditions of Proposition 8. Specifically, it follows from Lemma 17 thatA is V -elliptic.
Furthermore, it is straightforward to check that the system (15) is precisely the weak
(2) of the Cauchy problem (1), so the solutionu is unique. Moreover, this establish
independently the existence of this weak solution to the homogenized system (17).�
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4.2. Quasi-static exchange

Consider the case of no heat storage in the exchange region, that is, letc3(·) = 0. Then
the functionU3(t, x, y) satisfies the local boundary-value problem


−∇y · [µ3(y)∇yU3(t, x, y)] = 0 in Y3,

U3(t, x, s) = uj (t, x) onΓj,3, j = 1,2,

U3(t, x, s) andµ3(s)∇yU3(t, x, s) · ν areY -periodic onΓ3,3.

In order to calculate the exchange flux, we exploit the linear dependence of the solu
this elliptic partial differential equation on the boundary conditions. Thus, the solutio
the local cell problem will be represented in terms of the solutionU(·) to theexchange cell
problem


∇y · [µ3(y)∇yU(y)] = 0 in Y3,

U(y) = 1 onΓ1,3,

U(y) = 0 onΓ2,3,

U(y) andµ3∇yU · ν3 are periodic onΓ3,3.

The solutionU(·) is thecharacteristic flow potential in Y3, and we see that 1− U(·) is the
solution to the corresponding problem with 1 and 0 interchanged in the boundary
tions onΓj,3, j = 1,2. Since eachuj (t, x) is independent ofy, the solution to the loca
boundary-value problem is given by

U3(t, x, y) = u1(t, x)U(y) + u2(t, x)
(
1− U(y)

)
.

Using the divergence theorem, we compute the flux termsqj,3 across the correspondin
boundaries intoY3,∫

Y3

∇y · (µ3∇yU3) dy =
∫

Γ1,3

µ3∇yU3 · ν3 ds +
∫

Γ2,3

µ3∇yU3 · ν3 ds ≡ q1,3 + q2,3.

This shows for the quasi-static case thatq1,3 + q2,3 = 0, and furthermore we have

−q2,3 = q1,3 ≡
∫

Γ1,3

µ3∇yU3 · ν3 ds = [
u1(t, x) − u2(t, x)

] ∫
Γ1,3

µ3∇yU · ν3 ds.

This yields the heat exchange in the form

Γ (u1, u2)(t, x) = κ
[
u1(t, x) − u2(t, x)

]
,

which is exactly the exchange term given in the Rubinstein–Barenblatt systems. W
that all the effects of the microstructure geometry are contained in the characteristic fl
potentialU(·). Moreover, the maximum principle implies∇yU · ν3 > 0 on Γ1,3, so the
exchange coefficient satisfies

κ ≡
∫

Γ1,3

µ3∇yU · ν3 ds > 0. (18)

In summary, the quasi-static case of the decoupled homogenized system (17) ta
form
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in:

ch,
3.
c̃1
∂u1

∂t
(t, x) −

N∑
i,j=1

A1
ij

∂

∂xj

(
∂u1

∂xi

(t, x)

)
+ κ

(
u1(t, x) − u2(t, x)

) = 0, (19a)

c̃2
∂u2

∂t
(t, x) −

N∑
i,j=1

A2
ij

∂

∂xj

(
∂u2

∂xi

(t, x)

)
+ κ

(
u2(t, x) − u1(t, x)

) = 0, (19b)

which is precisely thedouble-diffusion model of Rubinstein [10] and Barenblatt [3]. W
have shown that the system (19) is the two-scale limit of the exact micro-model
the case ofquasi-static diffusion in the exchange region. Moreover, in this micro-mo
the temperature and flux are continuous across all internal boundaries, and we hav
an explicit representation (18) for the heat transfer coefficientκ . Finally, we note that the
diffusion coefficients in the component equations are necessarilynon-isotropic.
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