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Abstract

A distributed microstructure model is obtained by homogenization from an exact micro-model
with continuous temperature and flux for heat diffusion through a periodically distributed highly-
heterogeneous medium. This composite mediamsists of two flow regions separated by a third
region which forms the doubly-porous matrix structure. The homogenized system recognizes the
multiple scale processes and the microscale geometry of the local structure, and it quantifies the
distributed heat exchange across the internal boundaries. The classical double-diffusion models of
Rubinstein (1948) and Barenblatt (1960) are obtained in non-isotropic form for the special case of
quasi-static coupling in this homogenized system.
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1. Introduction

Consider a composite structure consisting of two distinct and separated but finely in-
tertwinedflow path regions embedded in a matrix and periodically distributed in a domain
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2 with periodeY, wheree > 0 andY = (0, 1)V is the unit cube. In the system of partial
differential equations that describes the heat diffusion within this structure, an appropri-
ate scale factor is chosen for the thermal conductivity of the matrix, and the method of
two-scale convergence is used to approximate the resulting very singular system by a
fully-coupleddistributed microstructure model. This model captures the interaction be-
tween the local scale and global scale processes, it recognizes the geometry of the local
cell boundaries, and it quantifies the heat exchange across the internal boundaries of the
local structure. The quasi-static case of the distributed coupling in this model yields the
classicaldouble-diffusion models of Rubinstein [10] and Barenblatt [3]. These classical
double-diffusion models are characterized by having two temperatures (or pressures) as-
signed to each poin®, one for each of the two distributed components in the composite
material. Flow in each component is debed by a diffusion equation throughout the do-
main, and they are coupled by a distributed exchange that is proportional to the difference
in the temperatures (or pressures) of tbexponents. See Lee and Hill [9] for additional
discussion of such models. Our overall objective is to derive these models by homogeniza-
tion from a physically meaningful exact model, i.e., a model in which temperature and flux
are continuous. We achieve this by introducing a third region which separates the other
two components and provides the medium for the exchange of flux. The temperature gra-
dient in this exchange region is necessarily very high, i.e., it is inversely proportional to
the local width of the exchange region, and the conductivity in this region is of the order
of the local width, in order to maintain continuity of the flux. Such ideas are implicit in the
classical development of these models, and we have attempted to make them precise in the
exact micro-model developed below. This model is a direct extension of that presented by
Arbogast et al. in [2] for fluid flow in a fissured medium. In fact, their model is recovered
by deleting the second flow region in our system below. In [4] and [5], a similar model is
presented for the single phase flow in a partially fissured medium; see [6,7,12]. Each of
these models is based on a structure composed of two subregioffissihesystem and
thematrix system. In the partially fissured case, both regions are connected and contribute
to the global flow. The double-diffusion model was also obtained as a two-scale limit by
Hornung [8], but in his micro-model, the fliwwondition across the internal boundaries was
assumed to be given by a difference in pressthereby forcing such a relationship in

the macro-limit. In our micro-model below, we assume that both temperature and flux are
continuous across all internal interfaces.

In order to indicate spaces df-periodic functions we will use the symbol # as a
subscript. For example&;#(Y) is the Banach space of continuowsperiodic, functions
defined on all oRY . Similarly, L§(Y) is the Banach space of functions[uﬁ)c(RN) which
are Y-periodic. For this space we take the usual nornL&¢Y) and note thati(Y) is
equivalent to the space of-periodic extensions t&" of functions inL2(Y). The space
Hi}(Y) is the Banach space af-periodic extensions t&” of those functions inH(Y)
for which the trace or boundary values agree on opposite sides of the bowitaand
its norm is the usual norm aff1(Y). The linear spac€C(Y) = Cx(Y) N C®RY) is
dense in botlL.2(Y) and H}(Y). The quotient spac#}(Y)/R is defined as the space of
equivalence classes up to constant functions.

Various spaces ofector-valued functions will arise in the developments below. Thus,
if B is a Banach space anxi is a topological space, thefi(X; B) denotes the space
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of continuousB-valued functions defined ok with the corresponding supremum norm.
For any measure space, we let L?(2; B) denote the space of square norm-summable
functionsf : £2 — B such that| £ (-) | .2(¢.p IS finite. WhenX (= [0, T']) or 2 (= (0, T))
represent the indicated time interval, we denote the correspomdahgtion spaces by
C([0, T]; B) andL?(0, T; B), respectively.

The following definitions and results dwo-scale convergence have been modified to
allow for homogenization with a parameter (which we denote)byhese modifications
do not affect the proofs from [1] in any essential way, and we refer the reader to [1] for a
more thorough discussion.

Definition 1. A functiony (¢, x, y) in L2((0, T) x £2; C#(Y)) which satisfies

2
Iim0 / 1/f<t, X, i) dxdt = / /I/f(t, X, y)zdydx dt,
£— &

0,T)x$ O,T)x2 Y
is called aradmissible test function.

Definition 2. A sequences® in L2((0,T) x £2) two-scale converges to uo(z, x, y) in
L?((0,T) x £2 x Y) if for any admissible test functiof (z, x, y),

|im0/ /u%t,xﬁﬁ(t,x,%)dxdt: / //uo(t,x,y)lﬁ(t,x,y)dydxdt.

0,T) 2 0712 Y

Theorem 3. If u* is a bounded sequencein L2((0, T) x £2), then there exists a function
uo(t,x,y) in L2((0,T) x £2 x Y) and a subsequence of u¢ which two-scale converges
to ug. Moreover, this two-scale convergent subsequence converges weakly in L2((0, T') x
2)tou(t,x)= [yuolt,x,y)dy.

When the sequenag is bounded inH!, we get more information.

Theorem 4. Let u® bea bounded sequencein L2(0, T; H1(£2)) that convergesweakly to u
in L2(0, T; H(£2)). Then u® two-scale convergesto «, and there is a function U (z, x, y)
in L2((0, T) x £2; H#}(Y)/R) such that, up to a subsequence, V,u® two-scale converges
to Vyu(t,x) + VyU(t, x,y) in L2((0, T) x 2)V.

Theorem 5. Let u® and V¢ be bounded sequencesin L2((0, T) x £2) and L2((0, T) x
2)N, respectively. Then there exists a function U(z, x, y) in L2((0, T) x £2; H}(Y)/R)
such that, up to a subsequence, u® and ¢V,u® two-scale converge to U (t, x, y) and
V,U(t,x,y) in L2((0, T) x £2) and L?((0, T) x §2)V, respectively.

We review some results for degenerate operators of the type that appear below in our im-
plicit evolution equation. AssumB is continuous, linear, symmetric and monotone from
the Hilbert spacé to its dualV’. Then(B-, -)/? is a seminorm on V; denote the comple-
tion of this seminorm space by, and the dual Hilbert space by/. Note thatV — V}, is
dense and continuous,

lellv, = Bo@)Y2 < IBIY?pll, ¢eV,
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and B has a unique continuous linear extension frégonto V,. By restriction of func-
tionals we identifyV, C V', and this imbedding is continuous.
Define a seminorm on the range®f vV — V' by

lwllw =inf{|vll: veV, Bv=w}, weRgy®B).

Since the kernel KéB) is closed this is a norm; the corresponding normed linear space
W ={Rg(B), || - |lw} is isomorphic to the quotierit/ Ker(53), and it is therefore a Banach
space. Finally, we observe thit C V; with a continuous inclusion. Specifically, i =

Bv with v e V, then

lw(e)| = |Bu(@)| < Bo)?Bo@)/2, peV,

sow e V; and|lwlly; = Bv()Y?2 = ||jv||y, < |IB]I¥?||v]. Taking the infimum and noting
thatB is constant on each coset, we obtain

lwily; < IBIMlwllw, w e Rg(B).
The strict homomorphisi: V — W has a continuous du# : W’ — V'’ given by
Bgw)=gBv), geW, veV.
Using the identification o, C V;' ¢ W’ we obtain for eacly € Vj,
B'g(v) = Bg) < llgllv, Ivllv,, vevV,

so||B'g|| v, < llgllv,- B'is an extension oB: V, — V, and hereafter we denote it too By
Now V; is a Hilbert space whose scalar product satisfies

(Bu, Bv)vé =Bu()=(u,v)y,, u,veV.

Hence(f, w)Vé = f(v) if w=Bv, v eV}, so we obtain for eaclf € V,,

sup{| (f, w)yy|:

This showsV’ has the norndual to W with respect toV,, or thatV, is the pivot space
betweenw andV’.
SetV = L2(0, T; V). Note that the dual of is V' = L2(0, T; V).

weW, llwllw <1} =sug{|fW)]: veV, vl <1} =[flv.

Proposition 6. The Hilbert space W2(0,T) = {u € V: (d/dt)Bu € V'} is contained in
C([0, T]; Vp). Moreover, for each u in W»(0, T),

() thefunctiont — Bu(t)(u(t)) isabsolutely continuouson [0, 71,
(i) (d/dt)Bu()(u(t)) =2(d/dt)Bu(t)(u(t)) for a.e.¢rin[0, T], and
(i) for every u in W2 (0, T'), thereis a constant C for which

lullcqo,r1,vi) < Cllullwyo,1)-

Corollary 7. Given functions u, v in W2(0, T), the map ¢ — Bu(zt)(v(r)) is absolutely
continuouson [0, '] and

d d d :
EBu(t)(v(t)) = EBM([)(U(t)) + EBU(I)(M(I)) aetin[0,T].
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Finally, we formulate thémplicit Cauchy problemfor an evolution equation in a Hilbert
space in a form that will be convenient for our applications below. Suppose we are given a
continuous linear operatot: V — V’, a vectorwg in v/, and a functionf(-) in V'. The
Cauchy problemis to find a function«(-) in V such that

d . .
E(Bu(.)) +Au) =) inV, Bu(0)=wq inVj. (1)

Implicit in (1) is the fact that(d/dr)Bu € V'. It follows from Proposition 6 thatBu(-)
is continuous intoV,, and the initial condition orBu(-) is meaningful. The realization
of A:V — V’ as an operator oW takes on values iv’, and a solution: € V to (1) is
characterized by theariational form

T T T
uey: —/Bu(r)(u’(t))dt+/Au(r>(u(t))dt=/f(t)u(r)dt+wo(u(0))
0 0 0

for everyv in V, with Bv' € V' andBv(T) =0. (2)

See Chapter Ill of [11] for the above and related information on the Cauchy problem.
Specifically, we recall the following result.

Proposition 8. Assume the operators A and B are continuous, linear, and symmetric from
the Hilbert space V toitsdual V', that B is monotone, and there are numbers A and ¢ > 0
such that

Av(v) + ABv(v) = c|v||?, veV.

Then for each f € L2(0, T; V') and each wo € V,, there exists a unique solution « of the
Cauchy problem (1), it is characterized by (2), and it satisfiesthe a priori estimate

0<t<T

T
/ Au(t) () di + sup {Bu) (u()} < C(f. wo).
0

2. The highly-heter ogeneous micr o-model

Let the unit cub&’ be given in three complementary parts, Y2 andY3, and assume
Y3 separates Y1 from Y2, sodY1 N aY, = @; see Fig. 1.

We denote byy;(y) the characteristic function o¥; for j = 1,2,3, extended
Y-periodically to all of RY. Thus, x1(y) + x2(y) + x3(y) = 1 for a.e.y in RV It is
assumed that the sets € RV: xj(y) =1} for j =1,2,3, have smooth boundary, but
we do not require these sets to be connected. The correspangiripdic characteristic
functions are defined by

X (x) Ex,'(g), xeR, j=123.
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Fig. 1. Two-dimensional repsentation of the unit cukié = (0, N,

The global domain2 is thus divided into three sub-domaing;, £25 ands2;, which are
defined by

Q2i={re2: xi)=1}, j=123

We use the characteristic functions as multipliers to denoteetweextension of various
functions. For example, given a functien defined on.Qj, the productxjw is the zero
extension ofw to all of £2. Similarly, if w is given onY; then y;w is the corresponding
zero-extension to all of . ConverselyHz(Y;) will be used to denote the restriction Yo
of functions fromH2(Y). Finally, we denote by;w thetrace or restriction to the boundary
dY; of functionsw € Hl(Yj), and similarly byyfw the trace orﬂﬂj of functionsw €
Hl(.(z;).

The two sub-domaing; and$2; are the primarylow path regions for the model, and
it is assumed that their corresponding conductivitiegj = 1, 2) are large relative to the
conductivity of the third regio23, which we call thesxchangeregion. A radiator in R3is
an example of such a medium with the sageometric structure; see Fig. 2. Foe 1, 2,
let I';3=0Y; NdY3NY be that part of the interface betwe&n and Y3 that is interior
to the local celly. Then ijfg = 8[2; N 3825 N £2 represents the corresponding interface
betweean ands2; that is interior tas2. Likewise, we defind’ 3 = 0Y3NdY and denote
by I'; 5 its periodic extension which forms the artificial interface between those parts of the
matrix £25 that lie within neighboring Y -cells. A two-dimensional view of the boundaries
for the unit cuber’ is shown in Fig. 1.

Letc;(), uj(-) € C#(Y) be given such that

0<c¢j(y), O<co<p;(y), aeyeR® j=123 €)

We note that the heat capacitiegy) (j = 1, 2, 3) are bounded and permitted to vanish.
The corresponding-periodic coefficients in?;: are defined by

X X )
cj(x)Ecj<;), ,uj(x)zuj(g), xe.Q;,]zl,Z,S.
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Fig. 2. (a) Three-dimensional regentation of periodic structureb) An extended view of composite medium
over ones-period.

The temperature at € £2 is denoted by(z, x), and forj = 1, 2, the corresponding
flux in !2;? is —uj(x/e)Vus. In £25, the flux is given by—e2u3(x/e)Vut. The diffusion
of heat withins2 is described by thexact micro-model

d

E(ci(x)ue(t, x)) =V. (/Li(x)Vug(t, x)), x €], t>0, (4a)
ad

E(cg(x)ue(t, x)) =V. (/L%(X)VME(I, x)), x €5, t>0, (4b)
ad

E(cg(x)ue(t, X)) =V - (2u§(x)Vu'(t,x)), x5, 1>0, (4c)
yiu®(t,s) =ysu(t,s), selyjs t>0, (4d)
yout(t,s) =ysu(t,s), s€F£3, t >0, (4e)
15 (VUi (t,s) - vi=e’p§()Vul(t,s) -v1, selfs t>0, (4f)
us($)Vu(t,s) - va = 82,u,‘§(s)Vu’9(t, s)-vo, S€ F£3, t>0, (49)

wherev; denotes the unit outward normal @2¢, j =1, 2,3. For j =1, 2, note that

v; =—v3 0N Ff3 In the above system, a stancfard diffusion process takes place in each
subregion, and both temperature and flux are continuous across the internal boundaries.
Within any small neighborhood, the tempera&tis expected to be nearly constant in each
flow region, e.g., inY; andY». Thus, all essential fine-scale variations in temperature will
occur in the exchange regiofiz, so in £25 the flux has been scaled ly to allow for

the steep temperature gradients (of the orde) that necessarily exist within this region.

We will show that as — 0 this scale factor has exactly the right order of magnitude to
produce a distributed microstructure model th&ulsy-coupled. Since the global bound-
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ary conditions or$2 play no essential role in the development below, we shall assume
homogeneous Dirichtdoundary conditions

u®(t,s)=0 ae secds. (4h)
Finally, the initial-boundary-value probleis completed with the initial conditions
cj x)uf0,x) = cj (Xuo(x) aexef, j=1,23 (4i)

As noted above, the model developed by Arbogast et al. [2] for fluid flow in a fissured
medium is recovered by setting = @.

Next we shall develop an equivalerriational formulation for our exact micro-model
in the energy space V = H&(.Q). Then the continuity of temperature (4d) and (4e) fol-
low from the inclusionu € V. The leading terms in our system are given by the linear
degenerate operaté : V — V'’ defined by

Bfu(p) = / cF@ux)px)dx, u,peV,
2

wherec® (x) = x§ (x)c](x) + x5 (x)c5(x) + x5 (x)c5(x). The completion of with the cor-
responding semi-scalar product can be characterized as the'gpatehose measurable
functionsu(-) on the support of? (-) for which ¢¢ (-)2u(-) € L?(£2), and the dual of this
space is the Hilbert spad®)’ = {c®(-)Y?p(): ¢ € L?(£2)}. The symmetric and non-
negative operataB® is just multiplication byc® (-). The principle operatad®:V — V' is
defined by

Agu(go)E/us(x)Vu(x)-V(p(x)dx, u,pcv,
2

whereu® (x) = x1 (x)ug(x) + x5 (x)u5(x) + szxg(x)ug(x). The formal part of this oper-
ator in L2(£2) consists of the elliptic parts of (4a)—(4c), and the remaining part contains
the flux interface conditions (4f), (49).

The variational form of thexact micro-model given by (4) is theCauchy problem to
find u®(-) € L2(0, T; H}(£2)) such that

{ Bt () + AUt (1) =0 in (L3O, T; Hg(£2))). 5)

cE(OY2uE0) = cf () Y2 in L3(R2).
Here the initial value:o could be prescribed iW; .
Each of the operatotd? is linear, symmetric, anél-elliptic.

Lemma 9. For each ¢ > 0, there exists a constant C, > 0 such that
Af (w)(w) = Ce|wl|?  for everywin V.
It follows from Lemma 9 that (5) is well posetlVe remark that the coercivity estimate
given in this lemma permits even the degenestdady-state case ¢(-) = 0. However, we

need additional estimatésdependent of ¢ for the L2 norm of the solution in our following
work.
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Denote theescaling of the functiongu?(-) andc?(-) toe = 1 by

() = x1(Mr1() + x2()p2(y) + x3(y)ua(y)
and

c(y) = x1(y)e1(y) + xa(y)e2(y) + x3(y)es(y),
respectively. Then we have the following

Lemma 10. If fy c(y)dy > 0, then there exists a constant K > 0, such that

/M(y)|Vw(y)|2dy+/c(y)|w(y)|2dy2K||w||iz(y) (6)
Y Y
for all w in HL(Y).

This follows by a compactness argument; see Proposition 11.5.2 in [11].

Lemma 11. There exists a constant K > 0, such that

2 2
/pf(x)‘Vw(x)| dx +/c€(x)\w(x>| dx > Kllw|2s,, (7)
2 2
for all win H1(22) and0 < ¢ < 1.

Proof. Recall thatY? =&Y = {x =¢y: y € Y}. For a givenw € H1(Y?), the change of
variabley = x /¢ yields

/Mi(x)|Vw(x)|2dx—i—/,u%(x)|Vw(x)|2dx

Yi Y

+/u§(x)\8Vw(X)|2dx+/c€(X)\w(x)|2dx

Y?f Ye

>8N[fm<y>|vyw(y)|2dy+fuz(y>|vyw<y>|2dy
Y1 Y2

2 2
+ / u3|Vyw | dy + / c|w)| dy]
Y3 Y
> eNKllwl)25 - (8)
The first inequality in (8) is a result of the change of variable: x /e, which leads to
integration over the fixed domain, and the second inequality comes from applying our

first “Poincare-type” inequality obtained in (6). Using= ¢y to change back to the micro-
variable yields

/MS(X)\Vw(x)Ide +/CS(X)\w(x)|2dx > Klwl2s - 9)
YS y@
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The domains2 is covered by a regular mesh of sizeeach cellY/ is a translate of
the e-cell, Y¢. Denote bys2, the union of all these cells, that i€, = Uf’:(i) Y£, where
the number of cells iV(e) = |2]e "N [1 + o(1)]. We note that2 C £2, and hence by
zero-extensions we havél(2) C H3($2,).

Now, letw € H&(.Q). By summing the inequalities in (9) over all of th&-cells, we
get

/mx)IVw(x)lzdx +/c€<x)|w<x>|2dx > Klwl, g

2 2

Replaces2, by £2 in the domain of integration to obtain the desired estimate.
Theorem 12. Assume (3), that [y c(y)dy > 0,and ug € L%(£2). Thenfor each0 < ¢ < 1
there exists a unique solution u® of the Cauchy problem (5), and these satisfy the uniform
eStImate ||I/t€ ||L2((0,T)><Q) < C

Proof. Givenw in V¢,

Af (w) (w) + B (w)(w)
1 . 2 1 R 2 R 2
25 /“ ()| Vw(x)|“dx +5 /M @) |[Vw )| dx+/c @) |w@)|"dx
2 2 2

2
2

1 . 2 1 2
> | w )| Vwx)| dx+§K||w||L2(_Q)

3. Thetwo-scalelimit

Let us begin this section by giving some preliminary convergence results. In the fol-
lowing, we shall denote the gradient in thevariable byV, the gradient in the-variable

by V,, and we use the symboﬁ” to denote two-scale convergence.

Lemma 13. For each ¢ > 0, let u® (-) denote the unique sol ution to the Cauchy problem (5).
Then there exist

(i) apair of functionsu; in L2(0, T; H}(2)), j =1, 2,
(i) atripleof functionsU; in L2((0, T) x 22; H}(Y;)/R),

and a subsequence of u®(-), hereafter denoted by u*, which two-scale converges as fol-
lows:
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Xout S ux), j=1,2 (10a)
X5Vt B[V, 0) + VUi x, n] j=1.2, (10b)
KU 3 x3(MUs(, %, y), (10¢c)
K56ViUE S xas()V,Us(t, x, ), (10d)
xfujVus—2>Xj(y)uj(y)[Vuj(t,x)+Vij(t,x,y)], j=12 (10e)
X5eMEVUE B X3V Us(t, X, y). (10f)

Proof. Apply the evolution equation (5) to the solutiafi(r). Integrating with respect tq
we obtain

13
1 1
EBug(t) (u® @) — EBMS(O)(MS(O)) + / Au(s)(u®(s)) ds =0.
0
With the assumptions given in (3), in particulakQo < 1, j =1, 2, 3, we have

1
> I ()M 2uf (1) I 22(9)
t

+CO/(” vausHiZ(.@) + HXSV”8||i2(Q) + H8X§V”S ”32(9))‘13
0

1
<3l Y207, ). 1€I0.T].

This estimate shows thét?)Y/2u#(-) is bounded ir.>° (0, T; L2(£2)). In addition, the gra-
dientsy$ Vu®, x5Vu® ande x5 Vu® are bounded ir?(0, T; L?(22)V). Statements (10a)
and (10b) follow from Theorem 4. Likewise, statements (10c) and (10d) follow from The-
orem 5. Finally, the flux termgfuj(x)VuS(t,x), J =12, and xzeus(x)Vu(t, x) are
boundedinL2(0, T; L2(2)N). By Theorem 3y u§ (x)Vul (¢, x), x515(x)Vu®(t, x), and
exsm5(x)Vu®(t, x) converge as stated.O

By writing u® = xju® + x5u® + x5u®, we find that Lemma 13 implies

2
u® = xa(ua(t, x) + xo()uz(t, x) + x3(y)Us(t, x, y),
2
eVu® = x3(y)VyUs(t, x, y),
and for any test functiop in C3°(2; [C§°(Y)]N),

X
/sVug(t,x)-(p<x,g> dx
Q
:—/ug(t,x)l:eVo(p(x,g)+Vyo(p(x,§):|dx.
Q2
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By taking two-scale limits on both sides of this last equation, we obtain

//m(y)VyUs(t,x,y)-«p(x,y)dydx
QY

= —//[Xl(y)ul(t,x) + x2(Mu2(t, x) + x3(NUs(t, x, y) |[Vy - @(x, y) dydx.
Y
(11)
The divergence theorem shows that the left side of (11) is simply

ffvyus(r,x,y)-w(x,y)dydx

2 Y3

=—//Ug(t,x,y)Vy-(p(x,y)dydx+//U3(t,x,s)(p(x,s)-V3dsdx,

2 Y3 2 0Y3

while the right side of (11) can be written as

—//ul(t,x)Vyo(p(x,y)dydx—//uz(t,x)Vy'q)(x,y)dydx

21 2 Y
—//Ug(t,x,y)Vy'q)(x,y)dydx.
2 Y3

Combining these last two results, (11) yields

//Ug(t,x,s)(o(x,s)-v;gdsdx

2 9Y3
=—f/ul(t,x)vy-«p(x,y>dydx—/fuz(r,x>vy-w(x,y)dydx
2 Y 2 Y2
:—//ul(t,x)(p(x,s)ovldsdx—//uz(t,x)(p(x,s)ovzdsdx.
2 Y, 2 9Y2

Given the periodicity ol/3 ande on I'3 3 we obtain the following constraint in the limit.

Lemma 14. The two-scale limits [u1, u2, Uz] obtained in Lemma 13 satisfy the continuity
condition

uj(t,x)=y3Us(t,x,s), selj3 j=12 aexef.

This shows that the temperature in the local ¢glimatches the corresponding macro-
temperatures across its respective internal boundaries.

Next, we develop the variational problem satisfied by these two-scale limits. Choose
smooth test functions
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(i) ¢;in L2, T; HY(2)), j=1,2, and
(i) @;in L2((0,T) x 2; HX(Y;)/R), j =1,2,3,

such thatde; /dt is in L2(0, T; [H}($2)1) for j = 1,2, ad3/dt is in L?((0, T) x £2;
[Hé‘(Yg)/R],), @3(T) =0, andys®3z = ¢; on I3, j =1,2. For eachj = 1,2, we
can assume that the extensions @f into Y3 have no common support. Also, we
use the notatior(-) ; to represent the time derivativ@/at)(-). If we apply (5) to the
triple [p1(t, x) +eP1(t, x, x/¢e), a(t, x) +eP2(t, x, x/¢), P5(t, x, x/e)]In L2(0,T; V*),
where the functios (¢, x, y) is defined by
2
D5, x,y) = D3t x,y) +e Y Pjt,x.y) inY;, forj=12
j=1

and integrate by parts in we obtain

T
—Z//Xf(X)Cj(X)ug(t,x)((pj,,(t,x)+sq>.,~,,<t,x,%))dxdt
0

=19 o

o

/ x5 () e5(x0)u’(t, x)P3, <t, X, f) dx dt
g e
17

2
_ Z/ X;(x)ci(x)uo(x)(goj(o,x) +:c9; (O, X, g)) dx
i=1lg

_/Xg(x)cg(x)uo(x)ég(o’x’ z)dx

2
2 T
+Z//)(j(x)uj(x)Vu£(t,x)-V((pj(t,x)+8q5j(t,x,§>>dxdt
=10 @
T
+//X§(x)u§(x)8Vu€(t,x)oeVCDé(t,x,g) dxdt =0. (12)
0 2

Taking two-scale limits in (12) yields the following result.

Theorem 15. Assume the coefficients satisfy (3) and [, ¢(y) dy > 0, and that the function
uo(-) isin L2(£2). Then the two-scale limits [u1, up, U1, Us, Us] established in Lemma 13
satisfy the two-scale limit system

(i) u;inL2(0,T; H}(2)) for j =1,2,
(i) UjinL?((0,T) x 2; H}(Y;)/R) for j=1,2,3,
(i) y3Us(t,x,s)=uj(t,x)onlj3zfor j=1,2,
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such that

2 T
+> //x,;(y)u,;(w(wj(r,x)+VyU,-(r,x,y))
=lo 2 v

x (Voj(t,x)+ Vy@;(t,x,y))dydxdt

T
+///X3(Y)M3(Y)VyU3(taX,Y)'Vy¢3(f,X,y)dydxdt=O
02Y
for all

(i) ¢; INL2(0,T; Hy(2)), j =1.2,
(i) @;inL2((0,T) x 2; Hy(Y;))/R), j=1,2,3,

for which

(i) d¢;/0t € L%(0, T; [HI (1), j=1,2,

(iv) ad3/dt € L2((0,T) x £2; [HF(Y;)/R]), ®3(T) = 0in L?(£2 x Y3), and

(V) y3®@3=¢;0nrlj3, j=12

(13)

Note that conditions (iv) and (v) together imply that eggh7) = 0 in L2(£2). Unique-
ness ofu1, up, andUs will follow from the proof of Theorem 18 below. Moreover; and
U, are determined to within a constant for each(0, T), so each of these is unique up to

a corresponding function of

4. The homogenized system

We shall eliminate the variablég andU» and obtain a closed system for the remaining
three unknowns. This is possible since there are no constraints between these variables and

the remaining unknowns. Thus, for eack: 1, 2, consider theell problem:
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Find Uy in L2((0, T) x $2; H}(Y)/R):

T
///Mk(Y)(Vuk(t,x)+VyUk(t,x,y))-qu)(t,x,y)dydxdtzo
02 Y

for every® in L2((0, T) x £2; H}(Yx)/R).

This is obtained by setting eagh = 0 and®z = 0 in (13). The input to this problem is
the gradienVu, (¢, x), which we can write in terms of the orthonormal basis vectors as

N duy
Vui(t,x)= t, i
ui(t, x) ; oy, (e
This is independent of, so the functiond/, (¢, x, y) can be represented wiieparated
variables by

N
duy
Ue(t,x,y) = (t, )Wk,
iz %

where the functionSzVi" (y) are solutions of the followingoefficient cell problems.

Definition 16. For eachk = 1,2 and 1< i < N, let the functionW/ (y) € H}(Y/R) sat-
isfy

/Mk(Y)[ei + VWi ()] Vy@()dy=0 ford e Hi(Y;)/R.

Yk

The corresponding strong forms are the Neumann-periodic boundary-value problems
Vy - (ulei + VyWEm)D =0 inY,
uk()lei + Vy W)l -ve=0 onlygs, (14)
WE(y) anduk (s)[V y WE(s)] - v areY-periodic.

Note that each of the coefficient cell functioﬂé is determined up to a constant.
SubstituteUy (¢, x, y) into (13) along with

N
0k
qsk(t,x,y)=2§(t,x)wj’?(y) fork=1,2.
=1

Then (13) yields the variationabmogenized problem:
Find a triple of functions
(i) u;in L2(0,T; H}(£2)) for j=1,2, and

(i) Usin L2((0, T) x £2; H}(Y3)) with
(i) y3Us(t,x,s)=u;(t,x)onljzforj=1,2,
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such that

-

w-
1

T
k(/ up(t, x)ek (¢, x)dxdt+/uo(X)<pk(O,x)dx)
1 0

2 2

+

O O O~ O—

[N

N
3uk dpx
k
/Z o, )Wj(t,x)dxdt
2

i,j=

x3(Wes(WUs(t, x, y)P3 (¢, x, y)dydxdt

~—

x3(y¥)e3(Muo(x)@3(0, x, y)dydx

No— O ——

+ x3(Mu3(y)VyUs(t,x,y) - Vy®P3(t,x,y)dydxdt =0

/

~—

for all

(i) ¢;in L2(0, T; H}(£2)), j =1, 2,
(i) @3in L2((0, T) x £2; H}(Y3)),

for which
(i) d¢;/0t € L20, T; [HE(SV), j=1,2,

(iv) ad3/dt € L2((0,T) x £2; HX(Y3)'), @3(T) =0in L?(2 x Y3), and
(V) y3P3=¢;0nlj3s j=12

(15)

The homogenized coefficients in (15) are the constant and Af.‘l. fork=1,2, 1<

i, j < N, defined by
EkE/Ck(Y)dy,
Y

A E/Mk(}’)(ei +VyWEW) - (ej + VyWi()dy
Yi

(16)

The specific heats; are the indicated simple averages, andrbe-isotropic diffusion

coefficients{Afj} are constructed directly from the coefficient cell functi({m»sk}.

Lemma 17. For k = 1, 2, the matrix of homogenized coefficients {A{Fj} is symmetric and

positive-definite.
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Proof. The symmetry o{Af.‘l.} is clear from the definition. For ariye RN we have

N N N
> AL =/uk(y)vy D EW ) +2)-Vy D (Wi () +y))dy >0,

i,j=1 Y i=1 j=1

and if this is zero, they_/¥ ; & (WK (y) + y) is constant. From here we fifd/x ; & yi
must satisfy the boundary conditions in (14), herice;0. O

The strong form of (15) can now be determined by making appropriate choices for the
remaining test functions. By settingj (¢, x) = 0 for j = 1, 2 we obtain from Eq. (15) the
following mixed Dirichlet-periodidocal cell problemfor eachx € §2:

c3(y) 2 U3(t, x,y) = Vy - [u3(y)V,Us(t, x, )] =0 inYs,
Us(t,x,y) andus(y)V,Us(t, x, y) - v areY -periodic onl3 3, (17a)
Us(t,x,s)=u;(t,x) onljs, j=12

Now letting 1 in C$°(0, T; H}(£2)) and choosingp, = 0, and®3 in L2((0, T) x £2;
Hé‘(Y3)) as above, we obtain the finsiacro-diffusion equation

N

9 L0 [dur
—uy(t,x) — A — t,
c1 3tul( .X) Z ij 8)6'] (Bxi ( -x))
i,j=1
+ / u3(s)VyUs(t, x,s) - v3ds =0. (17b)

Iz

Similarly, lettingg in C3°(0, T'; H(}(Q)) and choosing1 = 0, and®3 in L2((0, T) x £2:
H#}(Yg)) as above, we obtain the secamdcro-diffusion equation

3 N 3 [ dup
Co—u(t, x) — E A2 — t,
e BIMZ( 2 Y ox; (3)6,’ ( X))

i,j=1

+ / u3(s)VyUs(t, x,s) - vads =0. (17¢)
I3

The inclusions inL2(0, T; H}(£2)) given by (i) yield the pair ofjlobal boundary condi-
tions

uy(,s)=0 onds2, k=1,2. (17d)
Finally, we have also thimitial conditions

Crur (0, x) =cruo(x), k=12,

c3(Y)U3(0, x, y) = c3(y)up(x) fora.e.yeYs, xe 2. (17e)
It follows from Lemma 17 that the elltic operatorsin (17b) and (17c) asteongly-elliptic.
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4.1. The main result
We summarize and complete the proof of the preceding results.

Theorem 18. Assume that the coefficients in the exact micro-model (4) satisfy the condi-
tions (3) and fy c(y)dy > 0, and that the initial function uo(-) isin L2(£2). For k = 1, 2,
1<i < N, letthefunctions WX (-) € H}(Yx/R) bethe solutionsto the coefficient cell prob-
lems (14), and define the homogenized coefficients by (16). For each ¢ > 0, let u® denote
the unique solution to the initial-boundary-value problem (4). Then there exist a triple
of functions u; in L2(0, T; H3}($2)), j = 1,2, Uz in L?((0, T) x £2; H¥(Y;)/R), and a
subsequence of u?, likewise denoted by «#, for which we have two-scale convergence

&

2 . 2
xjut = ximMujt,x), j=1,2,  xzu* = xa(Us(t, x,y),

and these two-scale limits u1, up, U3 are the unique solution of the homogenized system
(17). Furthermore, the coefficientsin this system satisfy

>0, j=12  ()>0, yers, 51+52+/c3(y>dy>o,
Y3
and {Aﬁ-‘j} is symmetric and positive-definite, k=1, 2.

Proof. It remains only to prove thaniqueness of the solution of (15). We shall show that
it is just the variational form (2) of a well-posed Cauchy problem (1) for an appropriate
evolution equation in Hbert space. Define thenergy space

V = {lg1, 92, P3l € Hy(82) x HF(£2) x L?(82; HF (Y3)):
y3®3(x,y)=¢;(x)forye s, j=1,2},
and the operatord andB:V — V’ by

2 N
ouy @k
Au(p) = Z/ 3 Aﬁjr(x)a—?(x)dx
k=1g i,j=1 Xi XJ
+//M3(y)VyU3(x,y)-Vy<1>3(x,y)dydx,
2 Y3

2
Bu) =Y [aunpmdr+ [ [emustos.ydydx
k=1

2 Y3

for u = [u1,u2, Usl, ¢ = [¢1, 02, @3] in V. It is easy to see thatl and B satisfy the
conditions of Proposition 8. Specifiba it follows from Lemma 17 thatA is V-elliptic.
Furthermore, it is straightforward to check that the system (15) is precisely the weak form
(2) of the Cauchy problem (1), so the solutiens unique. Moreover, this establishes
independently the existence of this weak solution to the homogenized system (17).
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4.2. Quasi-static exchange

Consider the case of no heat storage in the exchange region, thatig;)et 0. Then
the functionUs(t, x, y) satisfies the local boundary-value problem

=V, - [u3()V,Us(t, x,y)]=0 inYs,

Us(t,x,s)=u;(t,x) onlj3 j=1,2,

Us(t, x,s) andus(s)V,Us(t, x, s) - v areY -periodic onl3 3.
In order to calculate the exchange flux, we exploit the linear dependence of the solution of
this elliptic partial differetial equation on the boundary conditions. Thus, the solution to

the local cell problem will be repsented in terms of the solutidf(-) to theexchange cell
problem

Vy - us()VyU(y)]=0 inYs,
U(y)=1 onlyg,

Uy)=0 onljga,

U(y) andu3V,U - vz are periodic o3 3.

The solutionU (-) is thecharacteristic flow potential in Y3, and we see that1 U (-) is the
solution to the corresponding problem with 1 and 0 interchanged in the boundary condi-
tions onl’ 3, j =1,2. Since each(r, x) is independent o, the solution to the local
boundary-value problem is given by

Us(t, x,y) =u1(t, )U(y) +uz2(t, x)(1 - U(y)).

Using the divergence theorem, we compute the flux teymsacross the corresponding
boundaries intd’s,

/Vy'(M3VyU3)dy=/M3VyU3'V3dS+/,U«3VyU3‘V3dsqu,3+q2,3o
Y3 Ins I3

This shows for the quasi-static case thag + g2.3 = 0, and furthermore we have

—qz,3=q1,3E/MsVyU3'V3ds=[u1(t,x)—u2(t,X)]/M3VyU'V3ds.
Ins I3

This yields the heat exchange in the form
I (ug, u2)(t, x) =k [us(r, x) — uz(t, x)],

which is exactly the exchange term given in the Rubinstein—Barenblatt systems. We note
that all the effects of the microstructureageetry are contained in the characteristic flow
potential U (-). Moreover, the maximum principle impli€8 ,U - vz > 0 on Iy 3, so the
exchange coefficient satisfies

KE/MgVyU'ngS>0. (18)
I3

In summary, the quasi-static case of the decoupled homogenized system (17) takes the
form



210 R.E. Showalter, D.B. Visarraga / J. Math. Anal. Appl. 295 (2004) 191-210

N
.0 o [0
clﬁ(t,x) -y A,-ljg(%(t,x)) + i (ua(t, x) — uz(t, x)) =0, (19a)
ij=1 J !
 dun NS0 [oun
Ca— =(t,%) — Z Sl e GED + i (ua(t, x) — ur(t, x)) =0, (19b)
ij=1 7 !

which is precisely thelouble-diffusion model of Rubinstein [10] and Barenblatt [3]. We
have shown that the system (19) is the two-scale limit of the exact micro-model (4) in
the case ofjuasi-gatic diffusion in the exchange region. Moreover, in this micro-model

the temperature and flux are continuous across all internal boundaries, and we have found
an explicit representation (18)rfthe heat transfer coefficiert Finally, we note that the
diffusion coefficients in the component equations are necessarnkysotropic.
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