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¢/ = fare copsidered in which A and
:al differential operators of respeciive

*art 1 lead to existence of generalized
are o mdmca by the techmque of mterpolatlon

class of equatlons

This paper is concerned with existence and regularity of solutions of the
partial differential equation of Sobolev type

S (=D DPmPo(x) D° D u(x, t)+ Z (—1)""D"Z""(x)D"4(x 7)

ol lolsm GE

s diti .
cylinder in d an initial condition at
the bottom. These results will be obtained by conmdermg realizations of
the differential operators appearing in (5) and combining the existence-
regularity theory of such operators with results from Part I on weak and
strong solutions of an abstract evolution equation modeled after (5).

The plan of the paper is as follows. Section 1 consists of an announcement
of the results of Part I and some remarks on (incidental) applications to
equations of parabolic and Schroedinger type. An exposition of the a
priori cstimates and regularity rtesulis for regular elliptic boundary value
problems is contained in Section 2, and these immediately yield existence
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and regularity results for abstract strong solutions of (S) constr
Part 1. Interpolation theory is used in Section 3 to c‘-escribe a
sufficient condition for the weak solution of the hom
be essentiaily di iz

‘

‘So bo ev em afzo Tt
ferential equa i <
o1

or d}“"“‘ a (non-trivial;

¥

me d»rzv tive f he solution. Consider able work on such prob-

lems has occurred, though frecuentv the writers are seemingly not aware

of related results of others as WeH as some interesting applcations of thei

own work. For this reason, this writer has collected in the bibliography all
; ;

of those 1 ubhshed papers on such problems known to him at this time. The

{erent from the ona of
ifferent from the

cations to proviems in uﬁi'
processes can be identified by titie or
that the applications involve equatloﬁs ke (S) only W‘tﬂ m = 0 (parabolic)
or m = /. Thecase of 0 < m < [is of mathematical interest and is the primary
objective here, while that of m = / is much easier, and very strong resulis
have been attained {30, 53, 54, 56].

, We note

T oA i

Let H, W, and ¥, be Hilbert spaces

manne 4 e a dence ciilkest Af B oong
1C4nsS A is d GONSC SUGSEL 01 & and

the space H with its anti-dual ;
The V,— V| duality (-, - > agrees with the inner product C, ) y On ‘the product
spaCP Hx V, and so also does the W,,~ W), duality on Hx W¥,,, so we may
use (-, -> for any one of the three dnal pairs without confusion because of
the indicated identification.

Let m(-, -) and I(-, -} be continuous sesquilinear forms W, and ¥,
respectively. These forms can be represented by m{q&? Yy = / A ¢ Y>> and
W,y = (L, >, where He P (W, , W) and Fe y(V,a V,) The
restriction of .# to the set D(M) = {(j) e W, #¢cH} is an unbounded
operator M on H, and likewise the restriction of & to D(L) = {d e V}:
&L ¢ e H} is an unbounded operator L on H.
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Suppose that /' C({0, w), ¥7) and u, € W, are given. A weak solution is a
function 1 e C([0, ), W) »n C({(0, o), W,) such that u(0) = ug, u{t)e ¥V,

N
[y
Jeonsh

S

¥/ and is equivalent to

iqle = (\” (Tbuiﬁ _‘L H ‘M'(PH

TueorEM 1 Let the Hilbert spaces, V, — W,, — H, sesquilinear jforms,
m{-, Yy and I(-, *), and the operators M and L be given as above. Assume the
Jollowing: there is a k,, > 0 such that

Re m($, ¢) = k,||¢]|% for all ¢ e W,; (1.3)
thereis ak, > 0 such that

Rel(p, ) = k| ¢|7 forall g e V; (1.4)

D(L) © D(M); and (1.5)
there is a complex cone K(§) = {z:|argz| £ 0} with§ £ n/2 such that
(Lo, Md)y € K©) for all ¢ in D(L). (1.6)

Then there exists a unique strong solution for each uy, € D(L) and f € C*([0,
o0), H).

Let the hyportheses of Theorem V hold and assume 8 < w/2

eyl £5 ¢y 44807¢

1.6). Then there exists a unique strong solution for each u, € D(M) and
Flolder continuous from [0, oo) fo I,
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THEOREM 2 Let the Hilbert spaces V,— W, — H, sesquilinear forms,
m(-, Y and I(-, *}, and the operaiors A and £ be given as above. Assume the
Jollowing: there is a k,, > O such that (1.3} holds for all ¢ € W, there is a
iy > Osuch that (1.4) holds for all p = V' a!zd

continuous from [0, co)
These last two results were obtained in Part I by

A — Af

M) and M respcctwely
Finally, consider the following special case. Let H be
e, and set m((z’), V) = a{p, Wy, W,, = H. Let ¥, be
Ja Contmuous semuﬂmea form on 1

PN

f.A4" and the Eq. (1.1)1

The conditions {1.3) and (1.4) are satisfied iif Reo > ¢ and Re f§ > U,
and (1.5) is always true since D{M) = H 2 D(L). The condition (1.6) is
easy to verify, since

L¢, M¢) = pan(¢, )

nd n(¢, ¢) is real. If {arg {,B&)] = 7/2, then Theorem 1 asserts the existence
of a strong soluuon for u, in D(L) and fe CX([0, o), H). Choosing & = e'*/*
and f = e~ ™% we obtain after multiplying by « (and making an appropriate
changeinf)

an equation of Schroedinger type. Similarly, we see from the Corollary to
Theorem 1 (and also from Theorem 2) that (1.8) is an abstract parabolic

equation whenever larg(/jtx)! < w{2. See [32, 38} for additional results and
references.

2. STRONG SOLUTIONS

Let G be a bounded open set in Euclidean n-space with an infinitely dif-
ferentiable boundary 0G of dimension n—1 with & on one side of 0G. We
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shall use the notation D; = 8/0x;and D* = DT ... D} for an n-tuple « of

nonnegative integers, M = To;. Similarly, if x = (x;, %5,....x,) is in
no o __ on

Rox*=x7...x

or integer £ = 0, H~ denotes the completion of the set % of infinitely

i
bl e i Al Almciiee F 7Y it eacmant fo ilha e | AT
inctions on the closure of G with respect 10 e norm @y =
4+ 3 :
t

ANy Y . - b

(@ ¥l = 2 AJe D" DY dxtjo| = kj
Then H * is the Hilbert space of (equivalence ciasses of) functions ¢ in
H® = LX(G) (Lebesgue square-summable) for which D%¢ € L*(G) whenever

l ] g k, where derivatives are taken in &', the space of distributions on G
{49] We denote by H* the closure in H* of C§, those functions of C* with

compact suppoit. See [1, 2, 18, 33, 38, 48, 64] for details.
Let/ = Obean integer and define by

of the form
Y{(=D¥Drrx)Deg:p|, o] < 1} (2.3)
The partial differential operator & is elliptic at x € G if its principal part

satisfies

for every £e R", £ # 0. & is then of order 2/; it is properly elliptic [47]
if it is elliptic and for linearly independent &, # € R" the polynomial z — &’

(x Fa>myhael

roots wa 1th nogitive imasinary nart.
WX, €27y ias s Ous Wikl

PUsIUuYLY dlidziialy pdit

Consider a set of boundary operators

Lj(:b = . Z lj,a(x) Da(nb, lj,oze CDO: 1 é]gp (24)

la] =i

These are normal if the principal parts satisfy



Downloaded by [Professor Ralph Showalter] at 11:45 04 September 2014

86 R. E. SHOWALTER
I

J

s [, for ;'# k. (That is,

inct orders.) This set 1s a D Z”f’zfez‘
!'A < p. (Then every ord

depsnd on bouﬂuary conditi
following [7, 38]:

dary operators of order < [. {This

anerators YV I

lary

Suppose now that ¢, /e C” and
(¢, ¥) = fosf ¥ dx

for all  in C* such that L) = O on dG, 1 < j £ p. Since the equality holds
for y in CF it follows from (2.2) that # ¢ = fand hence from (2.5) that

By
./J o~
S~
2

&
C

=
i
)

(2.6)

for all such . But since the set {KPH, .. K} is a normal system, (2.6)
implies that L;¢p = 0, p+1 < j < I Thus the sesquilinear form (2.1) and
the boundary operators (2.4) determine the elliptic boundary value problem

Fo =1, inG
Lip =0, 1=j=140n0G. 2.7

Those boundary operators of order </ (stable) are specified a priori,
and those of order = ] (natural) must be obtained from Green’s formula
by a suitable choice of operators {K; = p < j < [].
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LemMMA 2.1 Define Vito be those ¢ in C” for whichL;¢0 = 0ondG,1 £ L
Assume that the Ses.juzlz'neai' orm (2.1} sat 94, 5 the coercive estimate (1.4)
for ail ¢ in V. Then the L*(G)-closure of &V — C= is precisely the operator
L of &1, where }17 = LXG) and V, is defined below, and L-F*'"" ~ D(L) —
H'is an isomorphism for every integer v = 0

]

[\
trmed
Too b

1101 ma? rmdﬁy, the estimate (1.4) then implies th
[3, 4] so the boundary value problem (2.7) is regular iz
below.

The boundary value oroblem (2.7) 1s called reg 1y
elliptic, the boundary operators are i is,
for cach x € 3G, each tangent £ 5% § at x and each at x,

the polynomials L'{x, é+2zy), |
i AR AN A
L Rh:—912 Z:ds

£ 8]+ #]l0) 2.8)

ferall ¢in V. [5, 12, 13, 38, 4¢].
Denote the L*-closure of &:V — C* by &,. The estimate (2.8) with
= 0 shows that &%, has domain ¥,, and closed range R(%Z,) in L*(G)
[12, p. 368]. The estimate (1.4) shows that %, is injective. Si“ar‘c (2.2) holds
for ¢ e sz and W € ¥, (use (2.5) and extend ye continuity) it follows that
- .

V)
¥, < L and hech the omraturs coincide i
int cfm 3

for ¢,y in C*, where
Ly = Y {(=DII DI (x) Doy pl, [o‘! =)
is the formal adipint of &, Let e C®, If (L, ) = (¢, L¥Y) for all ¢
in V, then
Tool T K, pLai— 3 K;pL) ds = 0

J
Jjsp J>p
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for ¢ in ¥. Since {K;:1 £ j < [}isanormalset, this shows ¢ belongs to the set

b,—

V= {weC“:L-u’/ =0 1<j<p Ljp=0p<jslondG}l

Yy .
;is a regu?ar ’noundﬂ:v value problem, and the L*-

b= 3 m D', m,eC® 12j<m (2.9)

;of oraer < m and equai to zne order of some M, then V', is

dense in W,

Proof The first statement follows easily by closure since the norm on V
is stronger than the norm on W in each case.

Now, the hypotheses J'= W implies that each M; has the same order as
exactly one of the L;’s [7, p. 306]. Since the {#/,} is a normal system, this
establishes a bljectlon M; — L; onto a proper subset of the normal systen
{L;:1 ] = !} this blje tion is determmpd by the requirement that order
(M’J) = J. We also obtain the fact that the normal system fﬁ/{l

k,.,.

L), 1
Ie o A nimad Dy wes o
18 weaxer

o

PRI, L,‘ uuuuuuuu Lot (7 ) R PN I tam
RllaAll RLLIL ULUUUL Suoset 11.4 /}f (o) CLOLITENIEAL, _)\] wueanclt, WE mecain

[l i~
that if ¢ is in C* and if every L; ¢ = 0 on 8, then every M;¢ = 0 on 0G.
These follow from [7, pp. 304-~306]

Tet iLJ n; denote those 111} not included i {L )'> SO {Lj} {LJ,; U
{L;} is a disjoint union. Let ¥, be those ¢ in C°° for which all L; ¢ =
Then we have V< V, & W from definitions and the preceding para&apha
respectively. Since each L. has order = m by hypothesis, V' is dense in V
with respect to the norm of H™ [48, Lemma 4.9]. Similarly, the closures of
V, and W in H™ depend only on those operators of order < m. But the
systems {L;:order L; < m} and {M,;" order M; < m} arc equivalent
(each is weaker than the other) by the preceding paragraph and the last

~
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hypotheses, so W,, is precisely the closure in H™ of V. Hence we have shown
that ¥ is densein W, E.D.

1

1nese

eminas combme with Theorem 1 and its corollary to give the follow-

squilinear form (

i h, 4y = {§em” () D7 P(x) D7 Yix} dx:|p|, o] £ m} (2.10)
with C*® coefficients. Assume that the normal set of boundary operators (2.9)
is determined as above by (2.10), the siable operators in (2.9) and Green’s

theorem. Let J be the partial differential operaior determined by m(p, ¥y =
(MG Ay for all d and r in the set W defined in Lemma 2.2. We shall assume
the fellowing:

N1 AN 1 1 . 1y
£ {1.5) holds for all

iv) if the order of L; is < m, then there is an M; with order (A;) = order

(Ly;
v) if M;¢ = 0 on 8G for all M; of order < m, then L;¢ =0 on 0G
whenever order L; < m;

vi) there is a complex cone K(f) = {z:|argz| < 6}, 0 < # < n/2, such
that forall ¢ in ¥,

§6Z $(x)A P(x) dx € K(©).

Then for holder continous L*(G)-valued funciion
o e
) =7,

”f(t)_f(T)HLZ(G) = Klt—fly, K>0,y>0,
there is a unigue W ,,-valued function u(t) = u(-, t) continuous on [0, c0) and
continvously d'ﬂ'erﬂnziablﬂ on (0, o) such that uw(0) = uy, W) eV, and

16N 200 £ n

)+ Fu(t) = f(8)in LG for each t > 0.
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Proof We need only note that Lemmas 2.1 and 2.2 allow us to apply the
corollary of Theorem 1 with ¥, and W, defined as above, H = L*(G),
DLy = V,,and D(M) = W

2m* QED

above 1s true when uy e V,, and [ is con-

ROLLARY 3 [f /=0, then for t > 0, u(t)
t) which is) C® in x, analytic in t, Saz‘zsﬁe (S)ir

N
¥
Qo
m )

Lu(x,t) =0,1s751

, continuously into V,, N
that following Theorem 4 in the nex

=

Remarks 1) Since we have restricted atte o those boundary value
problems for which the Garding-type estima

class of boundary conditions is delimited considerably as c;mpare to
those solvable by other coercive estimates. See [30

cussion.

2) The hypothesis (iif) of Theorem 3 i
L

aker .than the cperators {

is equivalent to saying the operators
3 See [., 304—309 47, 468-4707 f
&

&)
C.

Ior

ther equivalent condifions on svst

some of which we used in Vh proof of Lemma 2.2,

3. ABSTRACT REGULARITY OF THE WEAK SOLUTION

Consider the weak solution constructed in Theorem 2 of §1 for the homo-
geneous Eq. (1.1) (f = 0) and initial condition u, in W,,. This weak solution
cannot be a strong solution unless u, is in 2(M). (This is a consequence of
the definitions.) More significant is the fact that in the special case of V, =

W, and D(L) = D(M), one can show that u(¢y) € D(M) for some #, = 0
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: spaces and assume 4, — A;. Consider the space
(2, « of {equivaience iasses of ) functions u(t) such that "u(r) e
L ({) (ool At\’ l‘xu/(l‘) EI;ZZ‘;U; [s 8 “i)? S wWe use th: E\J\JLAI\,; AlALbhr(mL O

atives are taken in the sense of
W, a Ay, A) i

o, Ag, Ay 18 & panaca

strongly measurable functions an
distributions. Iif —1/2 < o < 1/2,
with norm

Fach ue’ ’(2 o, Ay, A7) uniguely determines an element u(0) & A4,

the trace of u. Let T(2, o, A, 4)) be the space of traces u(0)
functions u in WCZ a, Ao, A;) \,zt‘l the (quotient) norm of an element g e
Y civen kv

h
t

H
[

inf {lulp2monn 40 = a}.

Then T(2, o, Ay, A) is a Banach space which we hereafter denote by [4,,
A0l = T2, q, AO, i), /240 =46, Also define [4,, 4,;0] = 4, and
o, A1} = A4,

We shall use the following properties of these spaces [34-37]:
(reiteration): [[4o, 4;300], [4o, 4136,1:01 = [Ao, A;3(1—00,+60,). (3.1)
(duality): [4,, 4,;01 = [4], 4531

whenever 4, and A, are reflexive. (3.2)
(interpolation): If {BO, B} is a second pair of Banach spaces with
BH—}‘B" then ""(\AO "’O"‘Jp/A B ggﬁ‘éualllavl {“07 ﬁl ﬁj}‘
for cVery 0,0 = it = i. (33)

Many other constructions and points of view have been developed which
lead to similar results and we refer t
references to interpolation methods. Qur i
for Hilbert spaces where most of these methods are equwalent.

Consider the unbounded operator I introduced in §1 by the pair of
spaces ¥, — H and sesquilinear form (-, -) on ¥, We shall assume that

ilts
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{1.4) holds; this makes L a regularly 4ccreuve operatm {25, 28] Thus,
fractional powers, L%, 0 £ 0
Lis closed and maximal accret

<

\Jv
=
[o%
‘\J
a
(2]
E
i
::
G
N
(=4
o
o,
O
wy
o
%
o
=
%
S
~
e,
B‘
[l

accretive. Results analogous to {3.1—3} have Deen demonsirated for the

domains D(L?) [26, 27] and furthermore one has

N

and the norms are equivalent [37]. A s
M of §1 Wheq we assume the estimate (1

rro*n the coercive estimaie (1 ) it f‘
H are isomorphisins, wheie D(L) has
hence dense in  [32, pp. 9-121.

Tha Aanoale ~rRne Yy
1ilC dUUDCI_y d%«ﬁh\/d L (L) 7 ii

is precisely the operator obtained from th
That 1s /(ab ) = (¢, L“Llf)a for d> ev,

By taking the continuous dual of the {Banach space) isomorphism L*:
D(L*) — H, we obtain the isomorphism (L*):H — D(L*)Y defined by
[(L*Yh, ¢l = (h, L*P)y for h i'1 H and ¢ in P(L*). From the identifications
He V)« DY we have [(L*Vh, ¢l = Ith, §) = {(&Lh, ¢> = [Lh, $],
for hin ¥V, and ¢ in D(L*). ThJs implies (L*)'h e V, and (LY =L onV,
Denote thisextension of .V, = V/ by &, = (L*)': H — D(L*)'.

Similarly, we obtain an extension #,:H — D{(}*) of A by taking the
(continuous) dual of M*:D(M™*} » H. Since M is self adjoint, we have
additionally D(M) = D{A*),

Let {u(t) t Z 0} be the weak solution obtained in Theorem 2 in the
form u(t) = S(t)uo, {S@):t = 0} is the analytlc semigroup of bounded

1 4
. _ _
operators in W, generated by of = — A%, Since this semi

analytic, we havc the following abstract regularlty result. [23, 31, 63, 64].

LemMA 3.1 For each t > 0, and integer N = 1, o#/NS(t) e Z(W,), S™(t)
exists in the uniform topology of F(W,) and SW(t) = #VS(t). In particular,
S(Z) is a coniinuous operator from W, into D{s#™).

objective in the following is to find a sufficient conditio to assure

/Ny = D(L) for some (large) in

O
"1

r N, Thic wi p}ace l() in D(L)
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Since M and L are regularly accretive and M is self-adjoint, we have the
following. [25, 371.

Lrvmia 3.3 For real ¢, 0 Z
Also [H, D(LY; ¢1 = [H, B(L*

Proof From (3.4) and Le

H; 1~ ¢] and (3.2) vields t

Ter
s u‘/eu sivﬁ} ariy.

The nj-ﬁ.s' eacr ¢, 0 < :f <1,

Proof By hypotheses, we have [D(M), H; 1—¢]= [[DL), H; 0];
H;1—¢] and this last space is precisely [D{L), H; 1— ¢+ ¢8] by (3.1). The
resu tfollows from (3.2). Q.E.D.

LemMa 3.5  Assume that for some real 8,0 < 8 < 1, [D(L), H; 81 = D(M).
Let ¢ be real and 0 £ ¢ < 1/2. Then F~* A maps [D(M), H; @] i L)

nto [D(L),

H; $(1-0)]
Progf The operator 4, is an "‘omorphism of [D{(M), H; ¢1 onto [H,
-"-’11’*}', z,z'i]' by {3.3). But [H, D(M7*Y; @1 is precisely [H, D(MY; ¢} by
Lemma 3.3; this is coniained in [H, D(L); ¢(1 —06)]. But we assumed g >0,

so ¢p(1—6) < 1/2 and Lemma 3.3 implies [H, D(L)" d)(l ——0) = [H, D(L*Y;
#(1—0)]. Thus we have shown that ./, maps [D(M), H; ¢]into [H, D(L*Y;
d(1—6)]. Since ¥, isan 1°O’narpuism of D ) onto H and of H onto D(L*Y,
we have by (3.3) that #7! is an isomorphism of [H, D(L*); ¢(1—6)] onto
[D(L), H; ¢(1—0)]. The desired result follows by iracing the composite
operator &1 A, Q.E.D.

Lemma 3.6 Assume the hypothes

such that (L) maps W, in

5. Then there is an inieger N

o
N
el

R

"

[t
&
=
3
Q
w
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Proof Since we have [D(A1Y, H: 1

L=y

<.

Y
jav)
o]
a.
Py

et

O
d
t‘
(9%
,g
1
©
S"

¥
maps :V ‘“tf‘ D

jas)

2

]

PRTPp Y N f) 1 1 <r -
Remark For 8 > 0 but ‘vezy small, we may decrease the number ¢

iterations necessary G cary W, into D{i) Ly the following observation,
Lemma 3.3 showed that &4 maps [ D{8). H; ¢] into [ DL, 7; ¢(1—3)]
if 0= ¢ < 1/2. Now if ¢(1—0) £ 6, then the latter space is contained in
D(M) and one more iteratlon suffices. Otherwise, ¢(1—6) > 6 and we have
1Dy, H; (1 —6)] = [D(M), H: ¢—(5/1—6)]. Hence, themterp(ﬁatlonvarx-
able decreases by the amouvnt 6/(1—4) at cach iteration until it i5 £ 6.
Thus { )/26 iterations will suffice.

THEOREM 4 Lei

that { DL, H; 6]

the weak solution

€ ({0, o0), D(L)).

Proof The solution is obtained from the semigroup by u{r) = S(H)u,.
Choose N as in Lemma 3.6 and let # > 0. Lemma 3.1 shows that u(r) e
D({L). Regarding the differentiability of the function u:(0, oo) — D(l),
we have for 6 # 0 sufficiently small

<

Ut +8)—u(®)f5 = o =N{(S(/2+8) - S(t/2)/5} VS Duy. (3.5

This follows from the semigroup property, the commutativity of &/ wiih
each S{1), and the fact that ﬂNS(t/2)uO is in W, (Lemma 3.1). Since S(-)
is strongly-differentiable in W, at #/2, the expression in (3.5) to the right
of o/~ converges in W, as 8 — 0. Hence the left side of (3.5) converges in
D(L). (Note that o7~V is continuous from W,, into D(L); this follows from
Lemma 3.6 and the closed-graph theorem [53, 54].)

This argument can be repeated to show u is infinitely differentiable.

Q.E.D.

Remark The above proofs apply if D(M'/?) = D(a*!/?). The result of
Theorem 4 also follows if we drop this requirement but assume the following:
wo € [D{3), H; ¢] for some real ¢, 0 £ ¢ < 1/2. However, the existence of
weak solutions for non-self-adjoint M is still open.
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el
i

EEM:\M 4.1 be normal systems af boun(’ﬁrv operaftors
operators, each of order < 2m, etc)) Let

as in Lem

the systems
of the operatolo of order <
empty if p = 0.) Assume

v pc CW, we have quu = G

-0 on 0G, 15j<q Them V), is

THEOREM 5  Assume that the two regular boundary value pro&lems {ff ;
Lyl =jshand{M; M, 1 <)< ermined by sesquilinear
forms (2 1) and (2. 10) respeclwely, and the staole boundary operators 01
each problem as in Section 2. Assume the following: (1) For any ¢ in C%, w
have M ;¢ = 0 on 0G for those M, of order < m if and only if L;¢ = 0 on
oG for those L; of order < m. (ii) There is a k,, > 0 such that (1.3) and (1.7)
hold for cvery ¢ in W, Thereisa k; > 0 such that (1.4) holds for ¢ in V.
Then for cach iig in W,y and Holder-continuous [0, oo) — L), there exists
a unique functron ue C([O, o), W, n CH(0, ), W) such that u(0) =
and, for t > 0, u(t) e V,and

) ) = (1), ¢ 4.1)
Jorall pinV,.

Remarks 1) The Eq. (4.1) is more natural for our concrete weak problems
than is (1.1) in ¥} since ¥} is not necessarily a space of distributions. Since
(4.1) holds for all ¢ in CF, it follows that (1.1) is satisfied in &',

2) More general £ can be used but the structure of W/ is often diflicult to
N4 m
describe,
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T. ot mee s f - Ty 3 1My 1
In order to verify in our example the hypothesis of Theorem 4 involving
1 e

the interpolation subspaces, we shall need th

Levva 4.2 Lei p>q = 0 be integers and 7 = (1-0yp+0g be integer,
I R 1 TY TS . N1~
whereG = 0 = 1.Then [V, V,, 01 V.

Proof First note that the identity is continuous from V, into H? and
from V, into A hence by interpojation from [V, ¥V, 0] into {#7, HY; 0]
But it is well known [38,p.49] that [H?, H9,0] = H', so [V, V,; 0] is

"

continucusly imbedded in A",
Now, let fe [V, V;; 8]. Since ¥, is dense in [V, V; 0], there is a sequence
J: €V, such that f, —» fin [V, Vq, 8]. But by the d‘oove paragraph, this

sequence is Cauchy in H', hence converges to some g € V,. By uniqueness
of limitsin H ,wehavef = ge V.. Q.ED.

hypotheses of Theorem 5, assume V & W,
,f nction u is, for each t > 0, e(mai a.e. 10 a funciion
G, u(x, -) is analyric on (0, o0}, and u(x, 1) satisfies

we Qbfam V
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