
Advection-diffusion equation

The conservation equation and flux constitutive equation are

(0.1) cṗ + ∇ · j = F (x) , j = −a∇p + b p .

where c = c(x), a = a(x) and b = b(x).

Gravity-driven Fluid Flow. Let p denote pressure of a slightly com-
pressible fluid in the porous medium. The stationary weak problem has
the form

p ∈ V :

∫
G

(
λcpq + (a∇p− pb) ·∇q

)
dx =

∫
G

F q dx, q ∈ V.

Introduce the operator AR : V → V ′ by

ARp(q) ≡
∫

G

(
a∇p ·∇q − pb ·∇q

)
dx

and note that for smooth functions it is equal to∫
G

(
−∇ · (a∇p− bp)

)
q dx +

∫
∂G

(
a∇p− bp

)
· n q dS .

This displays the PDE and the complementary boundary conditions of
third type (Robin).

Set V = {q ∈ H1(G) : q = 0 on ΓD} where ΓD is a prescribed por-
tion of the boundary, ∂G. In the flow problems, this corresponds to the
drained portion of the boundary. Then the equation ARp = F in L2(G)
corresponds to the boundary-value problem

−∇ · (a∇p− bp) = F in G,(0.2a)

p = 0 on ΓD, a
∂p

∂n
− b · np = 0 on ΓR.(0.2b)

The set ΓR ≡ ∂G− ΓD is the sealed portion of the boundary.
Estimate (λc +AR)p(p) =

∫
G

(
λcp2 + a|∇p|2 + 1

2∇ · bp2
)
dx

− 1
2

∫
∂G p2b · n dS :

ARp(p) ≥ 0 if ∇ · b ≥ 0 in G and q|∂G = 0 where b · n > 0 ∀q ∈ V.
That is, ΓD ⊃ Σ, where the set Σ ≡ {s ∈ ∂G : b(s) · n(s) > 0} is the

outflow region for the advective flux, pb. It corresponds to the bottom of
the container when b is the gravity term (pointing downward), and flux
may not be specified there if AR is to be accretive.
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More generally, let a0 ≡ ess inf a(·) > 0, and note that

|
∫

G

pb ·∇p dx| ≤ ‖b‖L∞‖∇p‖‖p‖

≤ ‖b‖L∞(
a0

‖b‖L∞
‖∇p‖2 +

‖b‖L∞

4a0
‖p‖2) ≤ a0‖∇p‖2 +

‖b‖2
L∞

4a0
‖p‖2,

so it follows that for all λ satisfying λc ≥ ‖b‖2
L∞

4a0
we have

(λc +AR)p(p) =

∫
G

(
λcp2 + a|∇p|2 − pb ·∇p

)
dx

≥
∫

G

(
λcp2 + a0|∇p|2

)
dx− |

∫
G

pb ·∇p dx| ≥ 0.

That is, λc +AR is accretive if λ is sufficiently large. In fact we can add
any first order terms to the bilinear form

∫
G a∇p · ∇q dx and the sum

with
∫

G λpq dx will be accretive if λ is sufficiently large. Likewise, for λ
sufficiently large the bilinear form λc +AR is H1(G)-coercive.

Now let’s assume the given function p0 is positive on ΓD, and then
set K ≡ {q ∈ H1(G) : q = p0 on ΓD, q ≤ 0 on ΓU , where ΓD and
ΓU are disjoint subsets of the boundary ∂G. Denote the remainder by
ΓN = ∂G− ΓD − ΓU . The corresponding variational inequality is

p ∈ K :

∫
G

(
λcp(q−p)+(a∇p−pb)·∇(q−p)

)
dx ≥

∫
G

F (q−p) dx, q ∈ K.

A solution p is characterized by the unilateral boundary-value problem

λcp−∇ · (a∇p− bp) = F in G,(0.3a)

p = p0 on ΓD, a
∂p

∂n
− b · np = 0 on ΓN , and(0.3b)

p ≤ 0, a
∂p

∂n
− b · np ≤ 0,

(
a
∂p

∂n
− b · np

)
p = 0 on ΓU .(0.3c)

In the flow problem, ΓD is the boundary exposed to the water and p0(s)
is the depth, ΓN is the part that’s sealed, so there is no flow, and on the
remaining part exposed to air (at pressure 0) the water pressure is non-
negative, any flow across the boundary must be outward, and at every
point either the pressure or the flow is null. The seepage surface {s ∈ ΓU :
a ∂p

∂n(s)−b ·np(s) < 0 is unknown, and finding it would reduce the problem
to a much simpler Dirichlet-Neumann boundary-value problem.



3

Transport of Concentration. Suppose that we know the velocity b(x)
of a fluid flowing through the porous medium, and that fluid is carrying
a chemical of concentration u(x). We write the weak form of the corre-
sponding transport equation as

u ∈ V :

∫
G

(
λcuv + a∇u ·∇v + ∇ · (ub)v

)
dx =

∫
G

F v dx, v ∈ V.

Note that the advection (first order) terms are not integrated.
Introduce the operator AN : V → V ′, where the space V is to be chosen

as before.

ANu(v) =

∫
G

(
a∇u ·∇v + ∇ · (ub)v

)
dx

=

∫
G

(
−∇ · (a∇u− bu)

)
v dx +

∫
∂G

a∇u · n v dS

Then the equation ANu = F in L2(G) corresponds to the boundary-value
problem

−∇ · (a∇u− bu) = F in G,(0.4a)

u = 0 on ΓD, a
∂u

∂n
= 0 on ∂G− ΓD.(0.4b)

This is the same PDE but the boundary condition is of second type (Neu-
mann): it contains no advection.

Estimate ANu(u) =
∫

G

(
a|∇u|2 + 1

2∇ · bu2
)
dx + 1

2

∫
∂G u2b · n dS :

ANu(u) ≥ 0 if ∇ · b ≥ 0 in G and v|∂G = 0 where b · n < 0 ∀v ∈ V
This is the inflow region. Here the stability estimate results from fixing

the concentration where the fluid is entering the medium. Of course, in
any case we have λc +AN is accretive if λ is sufficiently large.

Note that

ANu(v) = ARu(v) +

∫
∂G

b · nuv dS.


