ADVECTION-DIFFUSION EQUATION

The conservation equation and flux constitutive equation are

(0.1)
$$c\dot{p} + \nabla \cdot \mathbf{j} = F(x), \quad \mathbf{j} = -a\nabla p + \mathbf{b} p.$$

where c = c(x), a = a(x) and $\mathbf{b} = \mathbf{b}(x)$.

Gravity-driven Fluid Flow. Let p denote *pressure* of a slightly compressible fluid in the porous medium. The stationary weak problem has the form

$$p \in V$$
: $\int_G (\lambda cpq + (a\nabla p - p\mathbf{b}) \cdot \nabla q) dx = \int_G F q dx, \quad q \in V.$

Introduce the operator $\mathcal{A}^R: V \to V'$ by

$$\mathcal{A}^{R}p(q) \equiv \int_{G} \left(a \nabla p \cdot \nabla q - p \mathbf{b} \cdot \nabla q \right) dx$$

and note that for smooth functions it is equal to

$$\int_{G} \left(-\boldsymbol{\nabla} \cdot (a\boldsymbol{\nabla} p - \mathbf{b} p) \right) q \, dx + \int_{\partial G} \left(a\boldsymbol{\nabla} p - \mathbf{b} p \right) \cdot \mathbf{n} \, q \, dS \, dS.$$

This displays the PDE and the complementary boundary conditions of third type (Robin).

Set $V = \{q \in H^1(G) : q = 0 \text{ on } \Gamma_D\}$ where Γ_D is a prescribed portion of the boundary, ∂G . In the flow problems, this corresponds to the *drained* portion of the boundary. Then the equation $A^R p = F$ in $L^2(G)$ corresponds to the boundary-value problem

(0.2a)
$$-\boldsymbol{\nabla} \cdot (a\boldsymbol{\nabla} p - \mathbf{b} p) = F \text{ in } G,$$

(0.2b)
$$p = 0 \text{ on } \Gamma_D, \quad a \frac{\partial p}{\partial n} - \mathbf{b} \cdot \mathbf{n} p = 0 \text{ on } \Gamma_R.$$

The set $\Gamma_R \equiv \partial G - \Gamma_D$ is the *sealed* portion of the boundary.

Estimate
$$(\lambda c + \mathcal{A}^R)p(p) = \int_G (\lambda c p^2 + a|\nabla p|^2 + \frac{1}{2}\nabla \cdot \mathbf{b}p^2)dx$$

 $-\frac{1}{2}\int_{\partial G} p^2 \mathbf{b} \cdot \mathbf{n} \, dS:$
 $\mathcal{A}^R p(p) \ge 0 \text{ if } \nabla \cdot \mathbf{b} \ge 0 \text{ in } G \text{ and } q|_{\partial G} = 0 \text{ where } \mathbf{b} \cdot \mathbf{n} > 0 \, \forall q \in V.$

That is, $\Gamma_D \supset \Sigma$, where the set $\Sigma \equiv \{s \in \partial G : \mathbf{b}(s) \cdot \mathbf{n}(s) > 0\}$ is the *outflow region* for the *advective flux*, $p\mathbf{b}$. It corresponds to the *bottom* of the container when \mathbf{b} is the gravity term (pointing downward), and flux may *not* be specified there if A^R is to be accretive.

More generally, let $a_0 \equiv \text{ess inf } a(\cdot) > 0$, and note that

$$\begin{split} & \left| \int_{G} p \mathbf{b} \cdot \nabla p \, dx \right| \le \|\mathbf{b}\|_{L^{\infty}} \|\nabla p\| \|p\| \\ & \le \|\mathbf{b}\|_{L^{\infty}} (\frac{a_{0}}{\|\mathbf{b}\|_{L^{\infty}}} \|\nabla p\|^{2} + \frac{\|\mathbf{b}\|_{L^{\infty}}}{4a_{0}} \|p\|^{2}) \le a_{0} \|\nabla p\|^{2} + \frac{\|\mathbf{b}\|_{L^{\infty}}^{2}}{4a_{0}} \|p\|^{2}, \end{split}$$

so it follows that for all λ satisfying $\lambda c \geq \frac{\|\mathbf{b}\|_{L^{\infty}}^2}{4a_0}$ we have

$$\begin{aligned} (\lambda c + \mathcal{A}^R)p(p) &= \int_G \left(\lambda c p^2 + a |\nabla p|^2 - p \mathbf{b} \cdot \nabla p\right) dx \\ &\geq \int_G \left(\lambda c p^2 + a_0 |\nabla p|^2\right) dx - |\int_G p \mathbf{b} \cdot \nabla p \, dx| \ge 0. \end{aligned}$$

That is, $\lambda c + \mathcal{A}^R$ is accretive if λ is sufficiently large. In fact we can add any first order terms to the bilinear form $\int_G a \nabla p \cdot \nabla q \, dx$ and the sum with $\int_G \lambda p q \, dx$ will be accretive if λ is sufficiently large. Likewise, for λ sufficiently large the bilinear form $\lambda c + \mathcal{A}^R$ is $H^1(G)$ -coercive.

Now let's assume the given function p_0 is positive on Γ_D , and then set $K \equiv \{q \in H^1(G) : q = p_0 \text{ on } \Gamma_D, q \leq 0 \text{ on } \Gamma_U$, where Γ_D and Γ_U are disjoint subsets of the boundary ∂G . Denote the remainder by $\Gamma_N = \partial G - \Gamma_D - \Gamma_U$. The corresponding variational inequality is

$$p \in K: \int_{G} \left(\lambda c p(q-p) + (a \nabla p - p \mathbf{b}) \cdot \nabla (q-p) \right) dx \ge \int_{G} F(q-p) dx, \ q \in K.$$

A solution p is characterized by the unilateral boundary-value problem

(0.3a)
$$\lambda cp - \nabla \cdot (a\nabla p - \mathbf{b}p) = F \text{ in } G$$

(0.3b)
$$p = p_0 \text{ on } \Gamma_D, \quad a \frac{\partial p}{\partial n} - \mathbf{b} \cdot \mathbf{n} p = 0 \text{ on } \Gamma_N, \text{ and}$$

(0.3c)
$$p \le 0, \ a \frac{\partial p}{\partial n} - \mathbf{b} \cdot \mathbf{n} p \le 0, \left(a \frac{\partial p}{\partial n} - \mathbf{b} \cdot \mathbf{n} p \right) p = 0 \text{ on } \Gamma_U.$$

In the flow problem, Γ_D is the boundary exposed to the water and $p_0(s)$ is the *depth*, Γ_N is the part that's sealed, so there is no flow, and on the remaining part exposed to air (at pressure 0) the water pressure is non-negative, any flow across the boundary must be outward, and at every point either the pressure or the flow is null. The *seepage surface* $\{s \in \Gamma_U : a\frac{\partial p}{\partial n}(s) - \mathbf{b} \cdot \mathbf{n}p(s) < 0$ is *unknown*, and finding it would reduce the problem to a much simpler Dirichlet-Neumann boundary-value problem.

Transport of Concentration. Suppose that we know the velocity $\mathbf{b}(x)$ of a fluid flowing through the porous medium, and that fluid is carrying a chemical of concentration u(x). We write the weak form of the corresponding transport equation as

$$u \in V: \quad \int_G \left(\lambda c u v + a \nabla u \cdot \nabla v + \nabla \cdot (u \mathbf{b}) v\right) dx = \int_G F v \, dx, \quad v \in V.$$

Note that the advection (first order) terms are not integrated.

Introduce the operator $\mathcal{A}^N: V \to V'$, where the space V is to be chosen as before.

$$\mathcal{A}^{N}u(v) = \int_{G} \left(a\nabla u \cdot \nabla v + \nabla \cdot (u\mathbf{b})v \right) dx$$
$$= \int_{G} \left(-\nabla \cdot (a\nabla u - \mathbf{b}u) \right) v \, dx + \int_{\partial G} a\nabla u \cdot \mathbf{n} \, v \, dS$$

Then the equation $A^N u = F$ in $L^2(G)$ corresponds to the boundary-value problem

(0.4a)
$$-\boldsymbol{\nabla} \cdot (a\boldsymbol{\nabla} u - \mathbf{b} u) = F \text{ in } G,$$

(0.4b)
$$u = 0 \text{ on } \Gamma_D, \quad a \frac{\partial u}{\partial n} = 0 \text{ on } \partial G - \Gamma_D.$$

This is the same PDE but the boundary condition is of second type (Neumann): it contains no advection.

Estimate $\mathcal{A}^N u(u) = \int_G \left(a |\nabla u|^2 + \frac{1}{2} \nabla \cdot \mathbf{b} u^2 \right) dx + \frac{1}{2} \int_{\partial G} u^2 \mathbf{b} \cdot \mathbf{n} \, dS$: $\mathcal{A}^N u(u) \ge 0 \text{ if } \nabla \cdot \mathbf{b} \ge 0 \text{ in } G \text{ and } v|_{\partial G} = 0 \text{ where } \mathbf{b} \cdot \mathbf{n} < 0 \, \forall v \in V$

This is the *inflow region*. Here the *stability* estimate results from fixing the concentration where the fluid is entering the medium. Of course, in any case we have $\lambda c + \mathcal{A}^N$ is accretive if λ is sufficiently large.

Note that

$$\mathcal{A}^{N}u(v) = \mathcal{A}^{R}u(v) + \int_{\partial G} \mathbf{b} \cdot \mathbf{n}uv \, dS.$$