Remarks on Cauchy Problem

Let A denote a linear operator on a Hilbert space H, with domain $D(L) \subset H$ a subspace. (Note that we do not make any continuity assumptions on A.) Suppose the operator satisfies

- $(A v, v)_{H} \geq 0$ for all $v \in D(L)$,
- $I+A$ maps $D(L)$ onto H.

If the operator satisfies a V-elliptic type assumption, then the first condition will follow easily, and then the Lax-Milgram theorem can be used to show that the second condition also holds. Moreover, these conditions hold for much more general classes of operators than those arising from elliptic problems.

We will show later that if an operator satisfies these two conditions, then there is a unique function $u:[0, \infty) \rightarrow H$ which satisfies the initial-value problem

$$
c u^{\prime}(t)+A u(t)=0, \quad u(0)=u_{0} .
$$

Here we assume $c>0$ and $u_{0} \in H$ are given. Also, in this situation it will follow that the corresponding non-homogeneous equation is likewise solvable.
Example Let $H=L^{2}(0,1), D(L)=\left\{v \in H^{1}(0,1): v(0)=0\right\}$, and $A=\frac{d}{d x}$.
The two conditions are a bit restrictive, but we can relax them considerably with an elementary observation. Suppose that u is a solution of the initial-value problem above, and let $\lambda \in \mathbb{R}$. Define $w(t)=e^{-\lambda t} u(t)$ for $t \geq 0$. Then it is easy to check that $w(t)$ is a solution of the problem

$$
c w^{\prime}(t)+(\lambda c I+A) w(t)=0, \quad w(0)=u_{0}
$$

and, conversely, $w(t)$ is a solution of this problem only if $u(t)=e^{\lambda t} w(t)$ is a solution of the original problem. Thus, the initial-value problem is well-posed if

- $((\lambda c I+A) v, v)_{H} \geq 0$ for all $v \in D(L)$,
- $(1+\lambda c) I+A$ maps $D(L)$ onto H,
for some $\lambda \in \mathbb{R}$. Frequently this is satisfied for large enough λ.
Suppose that $u(t)$ is the solution under these more general hypotheses. Then we find that

$$
\frac{d}{d t} c\|u(t)\|_{H}^{2}=-2(A u(t), u(t))_{H} \leq 2 \lambda c\|u(t)\|_{H}^{2},
$$

so we conclude that

$$
c\|u(t)\|_{H}^{2} \leq e^{2 \lambda t} c\left\|u_{0}\right\|_{H}^{2}, t \geq 0
$$

This stability estimate shows it is worthwhile to know how small the number λ can be taken.

AdVECTION-DIFFUSION EQUATION

The conservation equation and flux constitutive equation are

$$
c \dot{u}+\boldsymbol{\nabla} \cdot \mathbf{j}=F(x), \quad \mathbf{j}=-k \boldsymbol{\nabla} u+\mathbf{b} u .
$$

where $c=c(x), k=k(x)$ and $\mathbf{b}=\mathbf{b}(x)$.

Gravity-driven Fluid Flow. Assume $\lambda \geq 0$. Let V be a subspace of $H^{1}(G)$ that contains $H_{0}^{1}(G)$. and consider the boundary-value problem

$$
u \in V: \quad \int_{G}(\lambda c u v+(k \nabla u-u \mathbf{b}) \cdot \nabla v) d x=\int_{G} F v d x, \quad v \in V .
$$

Define the corresponding operator $\mathcal{A}_{\lambda}^{R}: V \rightarrow V^{\prime}$ by

$$
\begin{gathered}
\mathcal{A}_{\lambda}^{R} u(v)=\int_{G}(\lambda c u v+k \boldsymbol{\nabla} u \cdot \boldsymbol{\nabla} v-u \mathbf{b} \cdot \boldsymbol{\nabla} v) d x \\
=\int_{G}(\lambda c u-\boldsymbol{\nabla} \cdot(k \boldsymbol{\nabla} u-\mathbf{b} u)) v d x+\int_{\partial G}(k \boldsymbol{\nabla} u-\mathbf{b} u) \cdot \mathbf{n} v d S
\end{gathered}
$$

This displays the PDE and the boundary conditions.
Estimates:

$$
\begin{aligned}
\mathcal{A}_{\lambda}^{R} u(u)=\int_{G} & \left(\lambda c u^{2}+k|\boldsymbol{\nabla} u|^{2}+\frac{1}{2} \boldsymbol{\nabla} \cdot \mathbf{b} u^{2}\right) d x \\
& -\frac{1}{2} \int_{\partial G} u^{2} \mathbf{b} \cdot \mathbf{n} d S
\end{aligned}
$$

$$
\mathcal{A}_{\lambda}^{R} u(u) \geq 0 \text { if } \boldsymbol{\nabla} \cdot \mathbf{b} \geq 0 \text { in } \mathrm{G} \text { and }\left.v\right|_{\partial G}=0 \text { where } \mathbf{b} \cdot \mathbf{n}>0 \forall v \in V
$$

This is the outflow region. This problem is appropriate for models of fluid flow where \mathbf{b} is the gravity term.

Transport of Concentration.

$$
u \in V: \quad \int_{G}(\lambda c u v+k \boldsymbol{\nabla} u \cdot \boldsymbol{\nabla} v+\boldsymbol{\nabla} \cdot(u \mathbf{b}) v) d x=\int_{G} F v d x, \quad v \in V .
$$

Define the operator $\mathcal{A}_{\lambda}^{N}: V \rightarrow V^{\prime}$ by

$$
\begin{aligned}
& \mathcal{A}_{\lambda}^{N} u(v)=\int_{G}(\lambda c u v+k \boldsymbol{\nabla} u \cdot \boldsymbol{\nabla} v+\boldsymbol{\nabla} \cdot(u \mathbf{b}) v) d x \\
= & \int_{G}(\lambda c u-\boldsymbol{\nabla} \cdot(k \boldsymbol{\nabla} u-\mathbf{b} u)) v d x+\int_{\partial G} k \boldsymbol{\nabla} u \cdot \mathbf{n} v d S
\end{aligned}
$$

This leads to the same PDE but with a modified boundary condition: there is no advection in the boundary condition.

Estimates:

$$
\begin{aligned}
\mathcal{A}_{\lambda}^{N} u(u)=\int_{G} & \left(\lambda c u^{2}+k|\boldsymbol{\nabla} u|^{2}+\frac{1}{2} \boldsymbol{\nabla} \cdot \mathbf{b} u^{2}\right) d x \\
& +\frac{1}{2} \int_{\partial G} u^{2} \mathbf{b} \cdot \mathbf{n} d S
\end{aligned}
$$

$$
\mathcal{A}_{\lambda}^{N} u(u) \geq 0 \text { if } \boldsymbol{\nabla} \cdot \mathbf{b} \geq 0 \text { in } \mathrm{G} \text { and }\left.v\right|_{\partial G}=0 \text { where } \mathbf{b} \cdot \mathbf{n}<0 \forall v \in V
$$

This is the inflow region. Such problems arise as models of concentration transport where b is the velocity term. Note that

$$
\mathcal{A}_{\lambda}^{N} u(v)=\mathcal{A}_{\lambda}^{R} u(v)+\int_{\partial G} \mathbf{b} \cdot \mathbf{n} u v d S
$$

so it is easier for $\mathcal{A}_{\lambda}^{N}$ to be coercive than for $\mathcal{A}_{\lambda}^{R}$.

