
Remarks on Cauchy Problem

Let A denote a linear operator on a Hilbert space H, with domain D(L) ⊂ H a
subspace. (Note that we do not make any continuity assumptions on A.) Suppose the
operator satisfies

• (Av, v)H ≥ 0 for all v ∈ D(L),
• I + A maps D(L) onto H.

If the operator satisfies a V -elliptic type assumption, then the first condition will follow
easily, and then the Lax-Milgram theorem can be used to show that the second condition
also holds. Moreover, these conditions hold for much more general classes of operators
than those arising from elliptic problems.

We will show later that if an operator satisfies these two conditions, then there is a
unique function u : [0,∞) → H which satisfies the initial-value problem

cu′(t) + Au(t) = 0, u(0) = u0.

Here we assume c > 0 and u0 ∈ H are given. Also, in this situation it will follow that
the corresponding non-homogeneous equation is likewise solvable.
Example Let H = L2(0, 1), D(L) = {v ∈ H1(0, 1) : v(0) = 0}, and A = d

dx
.

The two conditions are a bit restrictive, but we can relax them considerably with an
elementary observation. Suppose that u is a solution of the initial-value problem above,
and let λ ∈ IR. Define w(t) = e−λtu(t) for t ≥ 0. Then it is easy to check that w(t) is a
solution of the problem

cw′(t) + (λcI + A)w(t) = 0, w(0) = u0,

and, conversely, w(t) is a solution of this problem only if u(t) = eλtw(t) is a solution of
the original problem. Thus, the initial-value problem is well-posed if

• ((λcI + A)v, v)H ≥ 0 for all v ∈ D(L),
• (1 + λc)I + A maps D(L) onto H,

for some λ ∈ IR. Frequently this is satisfied for large enough λ.
Suppose that u(t) is the solution under these more general hypotheses. Then we find

that
d
dt

c‖u(t)‖2
H = −2(Au(t), u(t))H ≤ 2λc‖u(t)‖2

H ,

so we conclude that

c‖u(t)‖2
H ≤ e2λtc‖u0‖2

H , t ≥ 0.

This stability estimate shows it is worthwhile to know how small the number λ can be
taken.

Advection-diffusion equation

The conservation equation and flux constitutive equation are

cu̇ + ∇ · j = F (x) , j = −k∇u + bu .

where c = c(x), k = k(x) and b = b(x).
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Gravity-driven Fluid Flow. Assume λ ≥ 0. Let V be a subspace of H1(G) that
contains H1

0 (G). and consider the boundary-value problem

u ∈ V :

∫
G

(
λcuv + (k∇u− ub) ·∇v

)
dx =

∫
G

F v dx, v ∈ V.

Define the corresponding operator AR
λ : V → V ′ by

AR
λ u(v) =

∫
G

(
λcuv + k∇u ·∇v − ub ·∇v

)
dx

=

∫
G

(
λcu−∇ · (k∇u− bu)

)
v dx +

∫
∂G

(
k∇u− bu

)
· n v dS

This displays the PDE and the boundary conditions.
Estimates:

AR
λ u(u) =

∫
G

(
λcu2 + k|∇u|2 + 1

2
∇ · bu2

)
dx

−1
2

∫
∂G

u2b · n dS

AR
λ u(u) ≥ 0 if ∇ · b ≥ 0 in G and v|∂G = 0 where b · n > 0 ∀v ∈ V

This is the outflow region. This problem is appropriate for models of fluid flow where b
is the gravity term.

Transport of Concentration.

u ∈ V :

∫
G

(
λcuv + k∇u ·∇v + ∇ · (ub)v

)
dx =

∫
G

F v dx, v ∈ V.

Define the operator AN
λ : V → V ′ by

AN
λ u(v) =

∫
G

(
λcuv + k∇u ·∇v + ∇ · (ub)v

)
dx

=

∫
G

(
λcu−∇ · (k∇u− bu)

)
v dx +

∫
∂G

k∇u · n v dS

This leads to the same PDE but with a modified boundary condition: there is no advec-
tion in the boundary condition.

Estimates:

AN
λ u(u) =

∫
G

(
λcu2 + k|∇u|2 + 1

2
∇ · bu2

)
dx

+1
2

∫
∂G

u2b · n dS

AN
λ u(u) ≥ 0 if ∇ · b ≥ 0 in G and v|∂G = 0 where b · n < 0 ∀v ∈ V

This is the inflow region. Such problems arise as models of concentration transport where
b is the velocity term. Note that

AN
λ u(v) = AR

λ u(v) +

∫
∂G

b · nuv dS

so it is easier for AN
λ to be coercive than for AR

λ .


