
CHAPTER IV

Accretive Operators and
Nonlinear Cauchy Problems

IV.1. Accretive Operators in Hilbert Space

We briefly review various special results on real-valued, convex, lower-semi-
continuous functionals on a Hilbert space. All of these have been obtained in a
more general setting in II.7, but we collect them here for convenience and give
usually substantially more simple proofs in Hilbert space to make the presentation
independent. The subgradient motivates the extension of the notion of m-accretive
operators as given in I.4, and in the remainder of this section we develop the
properties of these multi-valued operators.

Let H be a Hilbert space. A sequence {xn} in H is weakly convergent to
x ∈ H if limn→∞(xn, y)H = (x, y)H for every y ∈ H. In view of the isomorphism
between H and its dual, H ′, this definition is consistent with weak convergence in
a general Banach space, and we shall denote the weak convergence by “xn ⇀ x”.
The important property of weak sequential compactness for reflexive Banach spaces
is particularly simple to verify for Hilbert space.

Proposition 1.1. If {xn} is a bounded sequence in the Hilbert space H, then
it has a weakly convergent subsequence.

Proof. It suffices to consider the case in which H is separable, i.e., it has a
countable dense subset {vn}. (This is the case if H is the closed linear span of the
sequence.) Then the general case is easily obtained from the projection Corollary
I.2.2. Pick a subsequence {x1,n} of {xn} for which {(x1,n, v1)H} converges. Induc-
tively, pick a subsequence {xj,n} of {xj−1,n} such that {(xj,n, vk)H} converges for
k = 1, 2, · · · , j. Thus, {xn,n} is a subsequence of {xn} for which limn→∞(xn,n, vj)H

exists for all j ≥ 1. Now define f(y) = limn→∞(xn,n, y)H for all y in 〈vj〉, the linear
span of {vj}. Then f is linear and continuous, so it has a unique extension to all of
H, again denoted by f ∈ H ′. From Corollary I.3 it follows there is an x ∈ H such
that limn→∞(xn,n, y)H = f(y) = (x, y)H for y ∈ 〈vj〉, and from the boundedness
of {xn,n} it follows that xn,n ⇀ x as desired. �

Since strong convergence of a sequence implies weak convergence, every weakly-
closed set is (strongly) closed. (Note that sequences are adequate to describe the
(strong) closure of a set.) The following Proposition shows that the weak and strong
closure are identical for convex sets.

Proposition 1.2. If K is closed and convex in H then K is weakly closed.

155



156 IV. ACCRETIVE OPERATORS AND NONLINEAR CAUCHY PROBLEMS

Proof. Let x0 be a point not in K; we contruct a weak-neighborhood sep-
arating them. Define x = PK(x0), the indicated projection; we may assume
(x + x0)/2 = 0. Then (x − x0, y − x)H ≥ 0 for y ∈ K, so we have (x, y)H ≥ ‖x‖2
for y ∈ K, and (x, x0)H < 0. That is, the linear functional RHx ∈ H ′ separates K
and x0. �

Corollary 1.1. A convex set is weakly closed if and only if it contains all
weak limits of sequences in K.

Let the function ϕ : H → (−∞,+∞] ≡ R∞ be convex , i.e.,

ϕ(tx+ (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y) , x, y ∈ H , 0 ≤ t ≤ 1 .

Then its domain dom(ϕ) = {x ∈ H : ϕ(x) <∞} is convex in H and each sublevel
set Ec = {x ∈ H : ϕ(x) ≤ c} is convex. The function ϕ is lower-semi-continuous if
each such Ec is closed, c ∈ R. From Corollary 1.1 it follows that this is the same
for weak and strongly closed and for weakly sequentially closed. Moreover we have
the following criterion.

Proposition 1.3. The convex function ϕ : H → R∞ is lower-semi-continuous
if and only if limn→∞ xn = x implies ϕ(x) ≤ lim infn→∞ ϕ(xn).

Proof. The limit condition implies each Ec is closed: xn ∈ Ec and xn → x
implies ϕ(x) ≤ c, hence, x ∈ Ec. Conversely, suppose limn→∞ xn = x and that
there is an ε > 0 for which

ϕ(x)− ε > b ≡ lim inf
n→∞

ϕ(xn) .

There is a subsequence {xnk
} such that ϕ(xnk

) ≤ b + ε/2 and Eb+ε/2 is closed so
ϕ(x) ≤ b+ ε/2, a contradiction. �

Proposition 1.4. Let K be closed convex and non-empty in H, and let ϕ :
H → (−∞,+∞] be convex and lower-semi-continuous. If

(1.1) lim
x∈K,‖x‖→∞

ϕ(x) = +∞ ,

then there exists a minimum point

x0 ∈ K : ϕ(x0) ≤ ϕ(y) , y ∈ K .

Proof. Let {xn} be a minimizing sequence in K. Then (1.1) shows either ϕ
is +∞ on K, so any x0 ∈ K is a solution, or that {xn} is bounded. Proposition 1.1
shows some subsequence is weakly convergent, Proposition 1.2 that the limit x0

belongs to K, and Proposition 1.3 that x0 is a minimum point. �

We recall that the function ϕ is proper if dom(ϕ) is non-empty: ϕ(x) < ∞
for some x ∈ H. Assume that ϕ : H → R∞ is convex, lower-semi-continuous, and
proper. This is equivalent to requiring that the epigraph epi(ϕ) ≡ {[x, t] ∈ H ×R :
ϕ(x) ≤ t} be, respectively, convex, closed, and non-empty.

Lemma 1.1. The function ϕ is lower-bounded by a continuous affine function.
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Proof. Take any point [x0, r0] ∈ H ×R for which x0 ∈ dom(ϕ) and [x0, r0] /∈
epi(ϕ) and define [x1, r1] to be the projection of [x0, r0] on epi(ϕ) in H × R. This
is characterized by

[x1, r1] ∈ epi(ϕ) :
(
[x1, r1]− [x0, r0], [x, t]− [x1, r1]

)
H×R ≥ 0 , [x, t] ∈ epi(ϕ) .

That is, we have ϕ(x1) ≤ r1 and

(1.2) (x1 − x0, x− x1)H + (r1 − r0)(t− r1) ≥ 0 if ϕ(x) ≤ t .

If we choose x = x1 in this inequality, we find that r1 ≥ r0. If r1 = r0 then we
likewise obtain (x1 − x0, x− x1)H ≥ 0 for all x ∈ dom(ϕ), hence, x1 = x0, and this
is a contradiction because [x0, r0] does not belong to epi(ϕ). It follows that r1 > r0.
Setting x = x1 and t = ϕ(x1) in (1.2) shows that ϕ(x1) ≥ r1, hence, ϕ(x1) = r1.
Set w = (x0 − x1)/(r1 − r0). Since we may take t = ϕ(x) in (1.2) we obtain

(1.3) (w, x− x1)H ≤ ϕ(x)− ϕ(x1) , x ∈ H ,

so the continuous affine function ` defined by

`(x) = (w, x− x1) + ϕ(x1)

is a lower bound on ϕ. �

Actually the function ` is exact at x1, `(x1) = ϕ(x1), so it is a maximal linear
lower bound on the epigraph of ϕ. These maximal lower bounds correspond to the
subgradients of ϕ.

Definition. Let ϕ : H → R∞ be convex, proper, and lower-semi-continuous.
Then w ∈ H is a subgradient of ϕ at x1 ∈ H if

(w, x− x1)H ≤ ϕ(x)− ϕ(x1) , x ∈ H .

The set of all subgradients of ϕ at x1 is denoted by ∂Hϕ(x1).

Remarks. If we identify H with H ′ by the Riesz isomorphism, RH , then
the subgradients agree with the subdifferentials (II.7). In general, however, the
subgradient and the Riesz isomorphism depend explicitly on the scalar product in
H. In particular we have

w ∈ ∂Hϕ(x1) ⇔ RHw ∈ ∂ϕ(x1) ,

and this is denoted by RH ◦ ∂Hϕ = ∂ϕ.

The subgradient ∂Hϕ is a multi-valued operator or relation on H × H. It
is accretive (see I.4) in the following sense: if wj ∈ ∂Hϕ(xj) for j = 1, 2, then
(w1 − w2, x1 − x2)H ≥ 0. To see this, note that

(w1, x2 − x1)H ≤ ϕ(x2)− ϕ(x1) ,

(w2, x1 − x2)H ≤ ϕ(x1)− ϕ(x2) ,

and then add these inequalities. Moreover, we have the following.

Proposition 1.5. If ϕ :H→R∞ is convex, proper, and lower-semi-continuous,
then the range of I + ∂Hϕ is all of H.
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Proof. Let w0 ∈ H and define ψ : H → R∞ by

ψ(x) = ϕ(x) + 1/2‖x‖2 − (w0, x)H , x ∈ H .

Since ϕ has an affine lower bound, ψ satisfies lim‖x‖→∞ ψ(x) = +∞, so by Propo-
sition 1.4 it attains a minimum value at some x0 ∈ H : that is, 0 ∈ ∂Hψ(x0),
or

(w0, x− x0)H ≤ ϕ(x)− ϕ(x0) + 1/2(‖x‖2 − ‖x0‖2) , x ∈ H .

Replace x by tx+(1− t)x0, use the convexity of ϕ, divide by t > 0, and let t→ 0+

to obtain

(w0, x− x0)H ≤ ϕ(x)− ϕ(x0) + (x0, x− x0)H , x ∈ H .

This shows w0 − x0 ∈ ∂Hϕ(x0) as desired. �

Corollary 1.2. (cf. Proposition I.4.2). For every α > 0, Rg(I+α∂Hϕ) = H.

The preceding results lead us to extend our notion of m-accretive operators to
include possibly nonlinear or multi-valued relations. For any relation A on H, that
is, a subset A of H × H, we define the domain D(A) = {x : [x, y] ∈ A}, range
Rg(A) = {y : [x, y] ∈ A} and inverse A−1 = {[y, x] : [x, y] ∈ A}. This extends the
notion of a function when we identify it with its graph. Conversely, we may regard
A as a function into “subsets of H” with the notation A(x) = {y : [x, y] ∈ A}; then
A is a function exactly when each A(x) is a single point, and D(A) = {x : A(x) is
non-empty}. The linear operations lead to the definitions

λA = {[x, λy] : [x, y] ∈ A} for λ ∈ R and

A+B = {[x, y + z] : [x, y] ∈ A and [x, z] ∈ B} .

Then D(λA) = D(A) if λ 6= 0, and D(A+B) = D(A) ∩D(B).

Definition. The relation or operator A on H is accretive if [xj , wj ] ∈ A for
j = 1, 2, (i.e., wj ∈ A(xj)) implies (w1 − w2, x1 − x2)H ≥ 0. It is m-accretive if, in
addition, Rg(I +A) = H.

Such operators will play a central role in the following where we shall generalize
and extend the results of I.5. We begin with some preliminary extensions of results
from I.4 which characterize m-accretive operators.

Lemma 1.2. (x, y)H ≥ 0 if and only if

‖x‖ ≤ ‖x+ αy‖ , α > 0 .

Proof. Both of these conditions are equivalent to

0 ≤ 2α(x, y)H + α2‖y‖2 , α > 0 . �

Corollary 1.3. The following are equivalent:
(a) A is accretive,
(b) ‖x1 − x2‖ ≤ ‖(x1 + αw1) − (x2 + αw2)‖ for all [xj , wj ] ∈ A, j = 1, 2, and

α > 0, and
(c) (I + αA)−1 is a contraction on Rg(I + αA) for all α > 0.
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Lemma 1.3. The following are equivalent:
(a) A is accretive and Rg(I + αA) = H for some α > 0,
(b) A is m-accretive, and
(c) A is accretive and Rg(I + αA) = H for all α > 0.

Proof. It suffices to show (a) implies (c). Assume (a) and let β > α/2. For a
given w ∈ H we define T : H → H by

T (x) = (I + αA)−1

(
α

β
w +

(
1− α

β

)
x

)
, x ∈ H .

Since (I + αA)−1 is a contraction and

|1− α

β
| = |β − α|

β
< 1 ,

it follows that T is a strict-contraction on H. Thus T has a unique fixed point,
x = T (x), which then satisfies x + βA(x) 3 w. This shows Rg(I + βA) = H if
β > α/2, and (c) follows by an easy induction. �

Let A be m-accretive and define the corresponding resolvents of A by Jα ≡
(I + αA)−1 for α > 0. Each Jα is a contraction on H. From the equivalence of
y = Jα(x) and 1

α (x− y) ∈ A(y), we obtain

(1.4)
1
α

(
x− Jα(x)

)
∈ A

(
Jα(x)

)
, x ∈ H , α > 0 .

We can write (1.4) in the form

1
β

(
β

α
x+

(
1− β

α

)
Jα(x)− Jα(x)

)
∈ A

(
Jα(x)

)
, β > 0 ,

and this is equivalent to

β

α
x+

(
1− β

α

)
Jα(x) ∈ (I + βA)

(
Jα(x)

)
.

This proves the resolvent identity

(1.5) Jα = Jβ ◦
(
β

α
I + (1− β

α
)Jα

)
, α, β > 0 .

Proposition 1.6. Let A be m-accretive.
(a) Then A is maximal accretive: if B is accretive and A ⊂ B, then A = B.
Let [xn, yn] ∈ A and xn ⇀ x, yn ⇀ y in H.

(b) If lim infn→∞(xn, yn)H ≤ (x, y)H then [x, y] ∈ A.
(c) If lim supn→∞(xn, yn)H ≤ (x, y)H , then limn→∞(xn, yn)H = (x, y)H .

Proof.
(a) If w ∈ B(x), let z = (I + A)−1(w + x). Then z ∈ D(A) ⊂ D(B) and

w + x ∈ (I +B)(z) ∩ (I +B)(x), so x = z ∈ D(A) and w ∈ A(x).
(b) Taking the lim inf of the inequality

(v − yn, u− xn)H ≥ 0 , [u, v] ∈ A ,n ≥ 1 ,
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gives
(v − y, u− x)H ≥ 0 , [u, v] ∈ A .

Since A is maximal accretive, it equals B = A ∪ {[x, y]}.
(c) From (b) we have (y− yn, x−xn)H ≥ 0, n ≥ 1. Take the lim inf and obtain

lim infn→∞(xn, yn)H ≥ (x, y)H , so (c) follows immediately. �

Actually, every maximal accretive operator in Hilbert space is m-accretive.
Proposition 1.6.a is the easier half of this deep result of G. Minty on the equiva-
lence of these two notions. The remaining parts of Proposition 1.6 give continuity
properties of m-accretive operators. With the identity (1.4) these will lead us next
to results on the approximations of I by Jα and of A by m-accretive Lipschitz
operators.

Proposition 1.7 (Minty-Rockafellar). If A is m-accretive then D(A) is
convex and limα→0 Jα(x)
= Proj

D(A)
(x) for each x ∈ H.

Proof. Let K be the closed convex hull of D(A) and x ∈ H. Set xα = Jα(x)
so 1

α (x− xα) ∈ A(xα) by (1.4). Since A is accretive(
1
α

(x− xα)− v, xα − u

)
H

≥ 0 , [u, v] ∈ A ,

so we obtain

‖xα‖2 ≤ (x, xα − u)H + (xα, u)H − α(v, xα − u)H , α > 0 .

Thus {xα} is bounded, so some subsequence {xα′} converges weakly to a vector
x0 ∈ K. Taking the lim inf in the above shows that

‖x0‖2 ≤ (x, x0 − u)H + (x0, u)H , u ∈ D(A) ,

so we have
x0 ∈ K : (x− x0, u− x0)H ≥ 0 , u ∈ K ,

and this shows x0 = ProjK(x). By the uniqueness of weak limits we have xα ⇀ x0.
From the estimate on ‖xα‖ we also obtain

lim sup ‖xα‖2 ≤ (x, x0 − u)H + (x0, u)H , u ∈ K ,

and setting u = x0 shows lim sup ‖xα‖2 ≤ ‖x0‖2. Hence limα→0 ‖xα‖ = ‖x0‖ so we
have the strong limα→0 xα = x0 in H. Finally, note that if x ∈ K then xα ∈ D(A)
and xα → x so it follows D(A) = K. �

Consider now the following approximation of the m-accretive operator A by a
Lipschitz function. For α > 0 given, add αI to the inverse A−1 and then invert
this sum: Aα = (A−1 + αI)−1. For operators on H = R, Aα is obtained from A
by tilting the graph to obtain a maximum slope of 1/α. In general, we have the
equivalence of

y ∈ (A−1 + αI)−1x , x ∈ (αI +A−1)y ,
y ∈ A(x− αy) , x ∈ (I + αA)(x− αy) ,

and y = 1
α

(
x− Jα(x)

)
. Compare this with (1.4).
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Definition. Let A be m-accretive on H. Then the Yosida approximations of
A is the operator

(1.6) Aα ≡
1
α

(I − Jα) , α > 0 .

Thus, Aα(x) ∈ A(Jα(x)), x ∈ H, and Aα is characterized by y = Aα(x) if and only
if y ∈ A(x − αy). Since A is maximal accretive, we can show that each A(x) is
closed and convex in H. This allows us to define the minimal section operator A0

by
A0x = ProjA(x)(0) = {y : y ∈ A(x) , y of minimal norm }.

Theorem 1.1. Let A be m-accretive.
(a) Each Aα is m-accretive and Lipschitz with constant 1

α , α > 0.
(b) (Aα)β = Aα+β, α, β > 0.
(c) For each x ∈ D(A), ‖Aαx‖ converges upward to ‖A0x‖, limα→0Aα(x) =

A0x, and

‖Aαx−A0x‖2 ≤ ‖A0x‖2 − ‖Aαx‖2 , α > 0 .

(d) For each x /∈ D(A), ‖Aαx‖ is increasing and unbounded as α→ 0.

Proof.
(a) From the definition of Aα and (1.4) we obtain

(Aαx1 −Aαx2, x1 − x1)H

=
(
Aαx1 −Aαx2, α(Aαx1 −Aαx2) + (Jαx1 − Jαx2)

)
H

≥ α‖Aαx1 −Aαx2‖2

since A is accretive. Therefore Aα is accretive and satisfies

‖Aαx1 −Aαx2‖ ≤
1
α
‖x1 − x2‖ , x1, x2 ∈ H .

From the definition of Aα it follows that x satisfies the resolvent equation
w = (I+βAα)(x) if x is a fixed-point of the function T (x) = w−βAalpha(x).
Such a fixed-point exists if β < α, for then T is a strict contraction.

(b) This follows from the characterization of y = Aαx by y ∈ A(x− αy).
(c) If x ∈ D(A) then

0 ≤ (A0x−Aαx, x− Jαx)H = α(A0x−Aαx,Aαx)H

so we have ‖Aαx‖2 ≤ (A0x,Aαx)H and ‖Aαx‖ ≤ ‖A0x‖. Applied to Aβ

with (b) we obtain ‖Aα+βx‖2 ≤ (Aβx,Aα+βx)H and ‖Aα+βx‖ ≤ ‖Aβx‖, so
it follows that ‖Aα(x)‖ increases as α decreases and satisfies

‖Aαx−Aα+βx‖2 ≤ ‖Aαx‖2 − ‖Aα+βx‖2 , α, β > 0 ,

for each x ∈ H. If {‖Aαx‖} is bounded then this inequality shows that there
is a y ∈ H for which limα→0Aα(x) = y. Also (1.6) shows limα→0 Jα(x) = x,
and so from Proposition 6 and (1.4) we obtain y ∈ A(x). Also ‖y‖ =
limα→0 ‖Aαx‖ ≤ ‖A0x‖, so y = A0x. This also proves (d). �
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Finally we return to the special case of a subgradient, A = ∂ϕ, and show the
approximations Aα are derivatives likewise.

Definition. Let f : H → R be a function and x ∈ H. Then a vector f ′(x) ∈ H
is the Frechet gradient of f at x if

lim
y→x

[(
f(y)− f(x)−

(
f ′(x), y − x

)
H

)/
‖y − x‖

]
= 0

If such a f ′(x) exists we say f is Frechet differentiable at x.

Proposition 1.8 (Moreau). Let ϕ : H → R∞ be proper, convex and lower-
semi-contin-uous; set A = ∂ϕ. Define for each α > 0

ϕα(x) ≡ min
{ 1

2α
‖y − x‖2 + ϕ(y) : y ∈ H

}
, x ∈ H .

Then ϕα(x) = α
2 ‖Aαx‖2 + ϕ(Jα(x)), and ϕα is convex and Frechet differentiable

with gradient ϕ′α = Aα. Also ϕα(x) converges upward to ϕ(x) as α ↓ 0 for each
x ∈ H.

Proof. From the proof of Proposition 1.5 it follows that the minimum in the
definition of ϕα is attained at y if and only if 0 ∈ 1

α (y − x) + ∂ϕ(y), and this is
equivalent to y = Jα(x). This shows ϕα(x) = 1

2α‖x− Jαx‖2 +ϕ(Jα(x)) as desired.
Let x, y ∈ H; from Aα(x) ∈ ∂ϕ(Jαx) it follows that (Aαx, Jαy − Jαx)H ≤

ϕ(Jαy)− ϕ(Jαx), hence,

ϕα(y)− ϕα(x) ≥ α

2

{
‖Aαy‖2 − ‖Aαx‖2 +

2
α

(Aαx, Jαy − Jαx)H

}
.

Writing Jα = I − αAα gives

ϕα(y)− ϕα(x)

≥ α

2

{
‖Aαy‖2 − ‖Aαx‖2 + 2(Aαx,Aαx−Aαy)H +

2
α

(Aαx, y − x)H

}
=
α

2
‖Aαy −Aαx‖2 + (Aαx, y − x)H

≥ (Aαx, y − x)H .

Interchanging x, y gives

ϕα(x)− ϕα(y) ≥ (Aαy, x− y)H = (Aαx, x− y)H + (Aαy −Aαx, x− y)H

so we obtain

0 ≤ ϕα(y)− ϕα(x)− (Aαx, y − x)H ≤ 1
α
‖y − x‖2 .

This shows ϕ′α(x) = Aα(x). Since Aα is accretive, it follows by Proposition II.7.4
that ϕα is convex.

Now from the definition of ϕα we obtain

ϕβ(x) ≤ ϕα(x) ≤ ϕ(x) , 0 < α < β

and we have seen above that

ϕ(Jβx) ≤ ϕβ(x) .
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By Proposition 1.7 it follows that for each x ∈ D(A), lim Jα(x) = x and so

ϕ(x) ≤ lim inf ϕ(Jαx) ≤ lim inf ϕα(x) ≤ lim supϕα(x) ≤ ϕ(x) .

That is, limϕα(x) = ϕ(x). But for each x /∈ D(A), ‖x − Jαx‖ → ‖Proj
D(A)

(x) −
x‖ > 0 and α‖Aαx‖2 = ‖Aαx‖ ‖x− Jαx‖ → +∞, so

ϕα(x) → +∞ = ϕ(x) . �

Corollary 1.4. dom(ϕ) ⊂ D(A), hence, D(A) ⊂ dom(ϕ) ⊂ dom(ϕ) ⊂
D(A).

IV.2. Construction of m-accretive Operators

We first recall some examples ofm-accretive operators which are subgradients of
convex functions as discussed in Section II.8. This class includes a variety of elliptic
boundary-value problems. Then we introduce the realization of an m-accretive
operator in the Hilbert space H that is distributed over L2(Ω,H) and realizations
of first-order derivatives of either real or vector-valued functions of several variables
corresponding to initial-value problems. By adding such operators we shall obtain
evolution equations and (as special cases) a variety of parabolic initial-boundary-
value problems.

Example 2.a: Convex Functions on R.
Let F : R → R be a monotone function and denote its left and right limits at

x ∈ R by F−(x) and F+(x), respectively. Then F−(x) = F+(x) at all but at most
a countable set of points. The subgradient of the convex function

ϕ(x) ≡
∫ x

x0

F−(s) ds =
∫ x

x0

F+(s) ds

for a given x0 ∈ dom(F ) is given by

∂ϕ(x) = [F−(x), F+(x)] , x ∈ R .

Example 2.b: Convex Integrands.
Let Ω be a measureable subset of Rn and ϕ : R → R∞ be proper, convex,

and lower-semi-continuous. We shall also suppose that either 0 = ϕ(0) = min(ϕ).
(Note that if Ω has finite measure, then we may use an affine exact lower bound
for ϕ to change variable and thereby reduce to this case. That is, if ϕ(x) ≥ `(x)
for the affine continuous function, `(·), then we replace ϕ(·) by ϕ(·)− `(·).) Then

Φ(u) ≡
∫

Ω

ϕ(u(x)) dx

defines a proper, convex, lower-semi-continuous function Φ : L2(Ω) → R+
∞ with

domain dom(Φ) = {u ∈ L2(Ω) : ϕ ◦ u ∈ L1(Ω)}, and the subgradient is computed
pointwise, i.e., f ∈ ∂Φ(u) if and only if

u, f ∈ L2(Ω) and f(x) ∈ ∂ϕ(u(x)) , a.e. x ∈ Ω .

(See Proposition II.8.1.)
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Example 2.c: L2-Realizations.
Let A be m-accretive on the Hilbert space H. Set H = L2(Ω,H), the square-

summable H-valued functions on Ω, and define A on H by v ∈ A(u) if and only
if

u, v ∈ H and v(x) ∈ A(u(x)) , a.e. x ∈ Ω .

If A(0) 3 0 or if Ω has finite measure, it follows easily that A is m-accretive and
(I+αA)−1f(x) = (I+αA)−1(f(x)), a.e. x ∈ Ω. Specifically, given f ∈ H we define
u(x) = (I + αA)−1(f(x)), x ∈ Ω, and check that u ∈ H.

Suppose additionally that A is a subgradient, i.e., A = ∂ϕ for an appropriate
ϕ : H → R∞. Define Φ : H → R∞ as above and note that A ⊂ ∂Φ. But A is
maximal, so we see A = ∂Φ. Moreover, for α > 0 we have Aαu(x) = Aα(u(x)) and
this leads to

Φα(u) =
α

2
‖Aαu‖2 + Φ

(
(I + αA)−1u

)
=
∫

Ω

{α
2
‖Aα(u(x))‖2 + ϕ

(
Jα(u(x))

)}
dx

=
∫

Ω

ϕα(u(x)) dx .

Thus the approximations of Φ and ϕ correspond.

Example 2.d: Initial-Value Problems.
Let H be the Hilbert space L2(0, 1) and u0 ∈ R. Define A = d

dt on the domain
D(A) = {u ∈ H1(0, 1) : u(0) = u0}. Then A is m-accretive and the resolvent is
given by

(2.1) (I + αA)−1f(t) = e−t/αu0 +
1
α

∫ t

0

e−
(t−s)

α f(s) ds .

Note that this is of the form e−t/αu0 + (1 − e−t/α)w(t), where w(t) is a convex
combination of the values of f and thus (I + αA)−1f(t) is a convex combination
of u0 and w(t). This observation is very useful when considering data in a given
closed convex set, for then the resolvent remains in that set.

The above extends directly to the case of vector-valued functions, i.e., on H =
L2((0, 1),H). Moreover, it can be extended to H = L2(Ω,H) where Ω is a smoothly
bounded domain in Rn, A = ∂

∂xk
, 1 ≤ k ≤ n, and D(A) = {u ∈ H : Au ∈ H and

u|Γk
= u0} where Γk = {y ∈ ∂Ω : νk(y) < 0}. Here νk is the k-th component of the

unit outward normal vector ~ν on ∂Ω.

Example 2.e: Boundary-Value Problems.
Let Ω be a bounded domain in Rn whose boundary Γ = ∂Ω is a C1-manifold

of dimension n − 1 with Ω locally on one side. Thus we have a trace functional
γ : H1(Ω) → L2(Γ) which gives generalized boundary values. (See Section II.4.)
Let ψ : R → R be convex and continuous with

(2.2) 0 ≤ ψ(s) ≤ C(s2 + 1) , s ∈ R ,

and define Ψ : H = L2(Ω) → R∞ by

Ψ(u) ≡ 1
2

∫
Ω

|~∇u|2 dx+
∫

Γ

ψ(γu) ds if u ∈ H1(Ω) , +∞ otherwise .
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Note that dom(Ψ) = H1(Ω) and that Ψ is proper and convex. To see Ψ is lower-
semi-continuous, let un → u in L2(Ω) with Ψ(un) ≤ c; after passing to a subse-
quence we have un ⇀ u in H1(Ω) and γun ⇀ γu in L2(Γ), so we have

1
2

∫
Ω

|~∇u|2 dx ≤ lim inf
n→∞

1
2

∫
Ω

|~∇un|2 dx ,
∫

Γ

ψ(γu) ds ≤ lim inf
n→∞

∫
Γ

ψ(γun) ds

by weak-lower-semicontinuity of the respective terms. The result follows by the
super-additivity of lim inf.

To compute the subgradient, let F ∈ ∂Ψ(u), that is, F ∈ L2(Ω), u ∈ H1(Ω)
and ∫

Ω

F (v − u) dx ≤ Ψ(v)−Ψ(u) , v ∈ H1(Ω) .

Let w ∈ H1(Ω), 0 ≤ t ≤ 1, and set v = tw+ (1− t)u above, use convexity of ψ and
then let t→ 0+ to obtain

(2.3)
∫

Ω

F (w−u) dx ≤
∫

Ω

~∇u · ~∇(w−u) dx+
∫

Γ

(
ψ(γw)−ψ(γu)

)
dx,w ∈ H1(Ω) .

Choosing w = u±ϕ with ϕ ∈ C∞0 (Ω) in (2.3) yields the partial differential equation

(2.4.a) −∆u = F in L2(Ω)

in the sense of distributions on Ω. Let B = γ[H1(Ω)] be the range of γ with
the norm induced by the quotient map from H1(Ω)/H1

0 (Ω). Then according to
Proposition II.5.3 we have the abstract Green’s theorem∫

Ω

~∇u · ~∇v dx =
∫

Ω

(−∆u)v dx+ ∂u(γv) , v ∈ H1(Ω)

with a ∂u ∈ B′ which extends the notion of normal derivative ∂
∂ν = ~ν · ~∇ on the

boundary Γ, so we obtain

∂u(ζ − γu) ≤
∫

Γ

(ψ(ζ)− ψ(γu)) ds , ζ ∈ B .

Using the growth-estimate (2.2) on ψ gives a c1 > 0 such that

|∂u(ζ)| ≤ c1(‖ζ‖2L2(Γ) + 1) , ζ ∈ B ,

and B is dense in L2(Γ), so we obtain ∂u ∈ L2(Γ) and the generalized boundary
condition

(2.4.b) ∂u+ ∂ψ(γu) 3 0 in L2(Γ) .

Thus F ∈ ∂Ψ(u) implies (2.4), and the converse is immediate, so this characterizes
∂Ψ.

It is very useful to be able to add operators. The problem is that the domain
of the sum is the intersection of the domains, and this can be too small unless the
operators are compatible. For example, the two operators −∆ on D1 = H1

0 ∩H2

(Dirichlet) and −∆ on D2 = {u ∈ H2 : ∂u
∂ν = 0} (Neuman) are both m-accretive,

but D1 ∩D2 is too small.
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Lemma 2.1. If A is m-accretive and B is accretive and Lipschitz, then A+B
is m-accretive.

Proof. First note that A + B is clearly accretive. Given f ∈ H we want
u ∈ dom(A) : f ∈ u + Bu + A(u). Since A is m-accretive if and only if αA is
m-accretive ∀α > 0, we may assume B is a strict contraction. Thus, the desired u
is characterized by u = (I + A)−1(f − Bu), the fixed point of a strict contraction
on H. �

Consider a pair A,B of m-accretive operators, and the equation for their sum,
f ∈ u+Au+Bu. A “penalty method” of approximation is the system

uα +Auα +
1
α

(uα − vα) 3 f , Bvα +
1
α

(vα − uα) 3 0

in which 1
α (uα − vα) is the “penalty”: as α → 0 one hopes u0

∼= v0 in the limit.
This system is equivalent to the single equation

(2.5) uα +A(uα) +Bα(uα) 3 f

which has a solution by Lemma 2.1.

Proposition 2.1 (Brezis-Crandall-Pazy). Let A and B be m-accretive.
If the sequence {Bαuα} is bounded, then there exists u : f ∈ u + Au + Bu and
uα → u.

Proof. Set wα = f − uα −Bαuα ∈ A(uα). Then

‖uα − uβ‖2 + (wα − wβ , uα − uβ) + (Bαuα −Bβuβ , uα − uβ) = 0

and uα − uβ = (αBαuα − βBβuβ) + ((I + αB)−1uα − (I + βB)−1uβ) imply that

‖uα − uβ‖2 ≤ ‖Bαuα −Bβuβ‖ ‖αBαuα − βBβuβ‖

so {uα} is Cauchy and uα → u ∈ H. Since {Bαuα} and {wα} are bounded,
for some subsequence we have Bαuα ⇀ v, wα ⇀ w. But then w ∈ A(u); since
(I +αB)−1uα = −αBαuα +uα → u and B((I +αB)−1uα) 3 f −uα−wα, we have
v ∈ B(u). Thus

u+ w + v = f , w ∈ A(u) , v ∈ B(u) . �

In order to use this result, one needs an a-priori estimate on {Bαuα}. One can
show also that {Bαuα} is bounded only if there exists a solution. Here is a useful
observation.

Lemma 2.2. If D(A) ∩D(B) 6= ϕ, then {uα} is bounded.

Proof. Let u0 ∈ D(A) ∩D(B) and pick fα ∈ u0 +A(u0) +Bα(u0). Since A,
Bα are accretive, |uα − u0|2 ≤ (f − fα, uα − u0), hence |uα − u0| ≤ |f − fα|; note
|Bαu0| ≤ |B0u0|. �

Thus, if also A or B is bounded , Proposition 2.1 applies.
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Proposition 2.2 (Brezis). Let B be m-accretive and ϕ : H → R∞ be proper,
convex and lower semi-continuous. Suppose there is a C > 0 such that

(2.6) ϕ((I + αB)−1u) ≤ ϕ(u) + Cα, u ∈ H,α > 0 .

Then ∂ϕ+B is m-accretive.

Proof. Let f ∈ H and uα the solution for α > 0 of (2.5),

uα + ∂ϕ(uα) +Bα(uα) 3 f .

Thus we have

(2.7) (f −Bα(uα)− uα, v − uα) ≤ ϕ(v)− ϕ(uα) , v ∈ H .

Set v = (I + αB)−1(uα) to get

(f −Bα(uα)− uα,−αBα(uα)) ≤ Cα , α > 0 ,

from which there follows

‖Bα(uα)‖2 ≤ ‖f − uα‖ ‖Bα(uα)‖+ C .

If D(∂ϕ) ∩ D(B) 6= ϕ, then by Lemma 2.2 we are done. In general, it suffices to
set v = v0 ∈ dom(ϕ) ∩D(B) in (2.7) to get

(f −Bα(uα)− uα, v0 − uα) ≤ ϕ(v0)− ϕ(uα) .

Since Bα is accretive we have

(f −Bα(v0)− uα, v0 − uα) ≤ ϕ(v0)− ϕ(uα) ;

since ϕ has an affine lower bound, this shows {uα} is bounded, and we are done.�

Note that if ϕ is the indicator function of the closed, convex, non-empty set

K, ϕ = IK where IK(u) =
{

0 , u ∈ K
+∞ , u /∈ K ,

then (2.6) is equivalent to (I +

αB)−1[K] ⊂ K. For additional characterizations of (2.6), see Proposition 5.4.

Example 2.f: Doubly-Nonlinear Boundary-Value-Problem.
Here we add Examples 2.b and 2.e:

Φ(u) ∼=
∫

Ω

ϕ(u(x)) dx , Ψ(u) =
1
2

∫
Ω

|~∇u|2 dx+
∫

Γ

ψ(γu) ds

It will follow that ∂Φ + ∂Ψ is m-accretive and equal to ∂(Φ + ψ) if we can show

Ψ((I + α∂Φ)−1f) ≤ Ψ(f) , f ∈ H .

But this is immediate since (I + α∂ϕ)−1 is a monotone contraction on R. In
particular, it follows that for every F ∈ L2(Ω) there is a unique

u ∈ H1(Ω) :−∆u+ ∂ϕ(u) + u 3 F in L2(Ω)

∂u+ ∂ψ(γu) 3 0 in L2(Γ)(2.8)

when ψ is quadratically-bounded. (The general case is similar when the boundary
condition is interpreted in B′.) This is a doubly-nonlinear elliptic boundary-value
problem.
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Example 2.g: Cauchy Problem.
This time we add Examples 2.c and 2.d: we let H be a Hilbert space and set

Φ(u) =
∫ 1

0

ϕ(u(t)) dt , A =
d

dt
with u(0) = u0 on H = L2(0, 1;H)

where the function ϕ : H → R+
∞ is convex and LSC as in Example 2.c. Recall from

(2.1) that

(I + αA)−1f(t) = u0e
−t/α + (1− e−t/α)

1
α(1− e−t/α)

∫ t

0

e−(t−s)/αf(s) ds .

From here by convexity of ϕ we get

ϕ((I+αA)−1f(t)) ≤ e−t/αϕ(u0)+(1−e−t/α)
1

α(1− e−t/α)

∫ t

0

e−(t−s)/αϕ(f(s)) ds ,

and integrating this over (0,1) gives

(2.9) Φ((I + αA)−1f) ≤ α(1− e−1/α)ϕ(u0) + Φ(f) .

Thus (2.6) is satisfied with C = ϕ(u0) if u0 ∈ dom(ϕ).
An alternative derivation of (2.9) is as follows. Set uα = (I + αA)−1f so that

α
duα

dt
+ uα = f , uα(0) = u0 ,

and let ϕβ , β > 0, be given by Proposition 1.8. Then we have

ϕβ(f(t))− ϕβ(uα(t)) ≥
(
ϕ′β(uα(t)) , f(t)− uα(t)

)
=
(
ϕ′β(uα(t)), α

duα

dt

)
= α

d

dt
ϕβ(uα(t))

and an integration gives (by Example 2.c above)

Φβ(uα) ≤ Φβ(f) + αϕβ(u0) .

Taking the limit as β → 0 yields (2.6). Thus it follows that if u0 ∈ dom(ϕ) then
A + ∂Φ is m-accretive on L2((0, 1),H). This corresponds to an abstract Cauchy
problem in the Hilbert space H. That is, F ∈ (A+ ∂Φ)(u) is characterized by

du(t)
dt

+ ∂ϕ(u(t)) 3 F (t) , a.e. t ∈ (0, 1) ,

u(0) = u0 .

In particular, if we apply this to Example 2.f by choosing ϕ = Φ+Ψ onH = L2(0, 1)
from Example 2.b and Example 2.e, with the obvious duplicated use of ϕ, it follows
that αI +A+ ∂Φ + ∂Ψ is surjective for each α > 0. Thus, for every

F ∈ L2((0, 1);L2(Ω)) ∼= L2((0, 1)× Ω)
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and u0 ∈ dom(Φ + Ψ) there is a unique u ∈ L2((0, 1),H1(Ω)) such that

αu+
∂u

∂t
−∆u+ ∂ϕ(u) 3 F in L2((0, 1)× Ω) ,(2.10.a)

∂u+ ∂ψ(γu) 3 0 in L2((0, 1)× Γ) ,(2.10.b)

u(0, ·) = u0 in L2(Ω) .(2.10.c)

This is a doubly-nonlinear parablic initial-boundary-value problem.

Remark. If ∂ϕ is strongly-accretive, i.e., if ∂ϕ − αI is accretive for some
α > 0, then the preceding results hold also for α = 0 by a change of notation. More
generally, consider the Cauchy problem in the Hilbert space H

du

dt
+ αu+A(u(t)) 3 f(t) , 0 < t < 1 , u(0) = u0

with an m-accretive A in H. Let v(t) = eαtu(t) to get an equivalent problem

dv

dt
+ eαtA(e−αtv(t)) 3 eαtf(t) , 0 < t < 1 , v(0) = u0 .

Take scalar product with w ∈ L2((0, 1),H) to get at a.e. t ∈ (0, 1)(
dv(t)
dt

, w(t)
)

H

+
(
A(e−αtv(t)), eαtw(t)

)
H

=
(
eαtf(t), w(t)

)
H
.

But in order to exploit the accretive estimates on A we need to multiply by e−2αt

before integrating, and then we have∫ 1

0

(v′(t), w(t))He
−2αt dt+

∫ 1

0

(
A(e−αtw(t)), e−αtw(t)

)
dt

=
∫ 1

0

(
eαtf(t), w(t)

)
e−2αt dt .

Thus in the space H = L2((0, 1),H; e−2αt dt) with the indicated density or weight
e−2αt the operator A(v)(t) = eαtA(e−αtv(t)) is accretive. The results of Example
3 carry over here and thereby one can replace A by A+ αI for any α ∈ R.

It is not difficult to give sufficient additional conditions on an m-accretive op-
erator A which imply that it is surjective. For example, if A is strongly-accretive,
i.e., there is a c > 0 for which

(y1 − y2, x1 − x2) ≥ c‖x1 − x2‖2 , [xj , yj ] ∈ A , j = 1, 2 ,

then A − cI is m-accretive, hence, A = (A − cI) + cI is surjective. For another
example, consider A = ∂ϕ. If f ∈ H and

lim
‖v‖→∞

(ϕ(v)− (f, v)) = ∞ ,

then the convex function ϕ(·)− (f, ·) attains a minimum at some u ∈ H,

ϕ(u)− (f, u) ≤ ϕ(v)− (f, v) , v ∈ H ,
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hence, f ∈ ∂ϕ(u) = A(u). This holds for every f ∈ H if

lim
‖u‖→∞

ϕ(u)
‖u‖

= ∞ .

This is a coercivity condition on ϕ, a convenient sufficient condition for ∂ϕ to be
surjective. More generally we have the following.

Proposition 2.3. Let A be m-accretive and let A−1 be bounded, that is,

lim
‖v‖→∞

‖A0(v)‖ = +∞ .

Then A is surjective: Rg(A) = H.

Proof. Note that Rg(A) is closed, for if yn → y in H with yn ∈ Rg(A), then
there is a sequence xn ∈ A−1(yn) which by assumption is bounded. By passing to
a subsequence, which we denote again by {xn}, we have xn ⇀ x and [x, y] ∈ A by
Proposition 1.6.

Let [x0, y0] ∈ A and y ∈ H. For each α > 0 set xα ≡ (αI +A)−1(y + αx0) and
yα ≡ y+α(x0−xα) ∈ A(xα). Since A is accretive we obtain (yα− y0, xα−x0) ≥ 0
and this shows (yα−y0, y−yα) ≥ 0. Consequently follow ‖yα−y0‖2 ≤ (yα−y0, y−y0)
and ‖yα − y0‖ ≤ ‖y − y0‖. Thus {yα} is bounded and by assumption {xα} is
bounded. This shows yα → y ∈ Rg(A) = Rg(A). �

Proposition 2.3 asserts that for an m-accretive operator A to be surjective, it
suffices to know a-priori estimates on solutions, i.e., if A(u) 3 f , then ‖u‖ ≤ C(‖f‖)
where C : R+ → R+ is a bounded function. Such estimates often occur as a coercive
property of A:

lim
‖u‖→∞

(A0u, u)
‖u‖

= ∞ .

Note that it is not true that A−1 being bounded implies that A is coercive. For
example, the operator A[x1, x2] = [−x2, x1] on R2 is not coercive.

It is not the case that coercivity is preserved by addition. For example, set
A = d

dt on D(A) = {u ∈ H1(0, 1) : u(0) = 0} and B = − d
dt on D(B) = {u ∈

H1(0, 1) : u(1) = 0}. They are both m-accretive and coercive on L2(0, 1), but
A+B = 0. From the calculation ‖(A+B)u‖2 = ‖Au‖2 + ‖Bu‖2 + 2(Au,Bu)H , it
is clear that one needs some control of the “angle” between Au and Bu. This does
occur in the situation of Proposition 2.2.

Corollary 2.1. In the situation of Proposition 2.2, we obtain the estimate

‖B0u‖ ≤ ‖(∂ϕ+B)0u‖+
√
C

Thus (∂ϕ+B)−1 is bounded if B−1 or (∂ϕ)−1 is bounded.

Proof. For w ∈ ∂ϕ(u) we have

ϕ((I + αB)−1u)− ϕ(u) ≥ (w, (I + αB)−1u− u)

and by (2.6) we have αC ≥ (w,−αBαu), α > 0. Thus for u ∈ D(B)∩D(∂ϕ) there
follows

(B0(u), w) ≥ −C , w ∈ ∂ϕ(u) .
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Let f ∈ (∂ϕ+B)(u), that is,

f = v + w , where v ∈ B(u) , w ∈ ∂ϕ(u) .

Then
(B0(u), f) = (B0(u), v) + (B0(u), w) ≥ ‖B0(u)‖2 − C ,

and the desired estimate follows from this. �

Example 2.g (Continued). Since A is coercive it follows that A + ∂Φ +
∂Ψ is coercive on H = L2(0, 1;H) and, hence, (again) we find for every F ∈
L2((0, 1), L2(Ω)) and u0 ∈ dom(Φ + Ψ) there is a unique solution of (2.10) with
α = 0.

We close with some equivalent notions of coercivity for subgradients.

Proposition 2.4 (Brezis). Let ϕ : H → R+
∞ be proper, convex and lower

semi-contin-uous, and set A = ∂ϕ. The following are equivalent:

(a) lim
‖u‖→∞

(ϕ(u)
‖u‖

)
= ∞.

(b) for every u0 ∈ dom(ϕ), lim
‖u‖→∞
[u,f ]∈A

(f, u− u0)
‖u‖

= ∞.

(c) there exists u0 ∈ H such that lim
‖u‖→∞

u∈dom(A)

(A0u, u− u0)
‖u‖

= ∞.

(d) lim
‖u‖→∞

u∈dom(A)

‖A0u‖ = ∞.

(e) A−1 is bounded, hence, Rg(A) = H.

Proof. From the inequality ϕ(u) ≤ ϕ(u0) + (f, u − u0) it follows that (a) ⇒
(b). Clearly (b) ⇒ (c) ⇒ (d) ⇒ (e). To show (e) ⇒ (a), let R > 0 and note that
by (e), for every z ∈ H with ‖z‖ ≤ R there is a v : A(v) 3 z and ‖v‖ ≤ M . Thus
from

ϕ(u)− ϕ(v) ≥ (z, u− v) , u ∈ dom(ϕ) ,

we obtain
(z, u) ≤ ϕ(u) +MR ∀ z ∈ H , |z| ≤ R .

Hence R‖u‖ ≤ ϕ(u) +MR and

ϕ(u)
‖u‖

≥ R− MR

‖u‖
,

and so we obtain

lim inf
‖u‖→∞

ϕ(u)
‖u‖

≥ R

for every R > 0. �
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IV.3. The Cauchy Problem in Hilbert space

Let A be a m-accretive operator in the Hilbert space H. As before we denote
by Jα = (I + αA)−1 the resolvent, by Aα = 1

α (I − Jα) the Yosida approximation,
and by A0 the minimal section of A. We shall study the evolution equation

(3.1)
du

dt
(t) +A

(
u(t)

)
3 0 , 0 < t .

A solution of (3.1) is a continuous function u : [0,∞) → H which is absolutely
continuous on each [a, b], 0 < a < b, hence, u is differentiable a.e. with du

dt ∈
L1(a, b;H), and for a.e. t > 0, u(t) ∈ D(A) and (3.1) holds. The Cauchy problem
is to find a solution of (3.1) with u(0) = u0 given in H. The uniqueness of a solution
of the Cauchy problem is immediate when A is accretive or Lipschitz. Existence
is similarly easy when A is Lipschitz; existence of a solution for the m-accretive
case is the goal of this section. This will be done by replacing A by the Lipschitz
Aα, α > 0, to obtain a sequence of solutions uα of this approximate or regularized
problem and then showing limα→0 uα exists and is a solution of the Cauchy problem
for (3.1).

The Yosida approximation of A in (3.1) and a re-scaled time variable suggest
that we consider the differential equation

(3.2)
du

dt
(t) + u(t)− J

(
u(t)

)
= 0

in which J is Lipschitz.

Lemma 3.1. Assume K is a closed, convex non-empty set in H and J : K → K
is Lipschitz: ‖J(x) − J(y)‖ ≤ L‖x − y‖, x, y ∈ K. Then for each u0 ∈ K there
exists a unique absolutely continuous u : [0,∞) → H which is a solution of (3.2)
with u(t) ∈ K, t > 0, and with u(0) = u0.

Remark. We shall need below only the case K = H in Lemma 3.1. However,
that the equation (3.2) would leave the set K invariant is suggested by the obser-
vation that for each u on the boundary of K the vector J(u)−u is directed into K,
hence, the equation (3.2) implies that the direction of the solution is back into K.

Proof. If u is such a solution then

d

dt

(
etu(t)

)
= etJ

(
u(t)

)
, t > 0 ,

so we find by integrating that

(3.3) u(t) = e−tu0 +
∫ t

0

es−tJ
(
u(s)

)
ds , t ≥ 0 .

Let’s solve (3.3) in the Banach space C([0, T ],H) by a fixed-point theorem. Con-
sider the closed, convex K = {u ∈ C([0, T ],H) : u(t) ∈ K for all t ∈ [0, T ]}, and
define

T(u)(t) = e−tu0 +
∫ t

0

es−tJu(s) ds , 0 ≤ t ≤ T ,
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for u ∈ K. Then T(u) ∈ C([0, T ],H) and the indicated convex combination satisfies

v1(t) =
∫ t

0

es−tJ
(
u(s)

)
ds
/∫ t

0

es−t ds ∈ K , t > 0 .

Note that
∫ t

0
es−t ds = 1− e−t so

T(u)(t) = e−tu0 + (1− e−t)v1(t) ∈ K , t > 0 .

Thus T maps K into K. For any pair u1, u2 ∈ K we have

‖T(u1)(t)− T(u2)(t)‖ ≤ L

∫ t

0

es−t‖u1(s)− u2(s)‖ ds

and this shows, successively,

‖Tu1 − Tu2‖C([0,t],H) ≤ Lt‖u1 − u2‖C([0,T ],H) ,

‖T2
(
u1(t)

)
− T2

(
u2(t)

)
‖ ≤ L

∫ t

0

es−tLs ds‖u1 − u2‖C([0,T ],H)

≤ L2t2

2
‖u1 − u2‖C([0,T ],H)

and by induction we obtain for k ≥ 1

‖Tku1 − Tku2‖C([0,t],H) ≤
(Lt)k

k!
‖u1 − u2‖C([0,T ],H) , 0 ≤ t ≤ T .

Thus, Tk is a strict-contraction for k sufficiently large, so (3.3) has a unique solution
in K. �

Corollary 3.1. If u0 ∈ K and α > 0 there exists a unique solution (as above)
of

(3.4)
du

dt
+

1
α

(
u(t)− J

(
u(t)

))
= 0

with u(t) ∈ K, and it is characterized by

u(t) = e−t/αu0 +
1
α

∫ t

0

e(s−t)/αJ
(
u(s)

)
ds .

Proof. The change-of-variable v(t)=u(αt) shows (3.4) is equivalent to (3.2).�

We shall show the Cauchy problem for (3.1) has a solution if u(0) = u0 ∈ D(A).
For each α > 0 let uα be the solution of

(3.5)
duα

dt
(t) +Aα

(
uα(t)

)
= 0 , t ≥ 0 ,

with uα(0) = u0 as is given in C1([0,∞),H) by Corollary 3.1. If h > 0 then
uα(t+ h) is a solution of (3.5) and since Aα is accretive we obtain

d

dt
‖uα(t+h)−uα(t)‖2 = −2

(
Aα

(
uα(t+ h)

)
−Aα

(
uα(t)

)
, uα(t+ h)− uα(t)

)
H
≤ 0
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so ‖uα(t+h)−uα(t)‖ ≤ ‖uα(h)−uα(0)‖. Letting h→ 0 shows ‖u′α(t)‖ ≤ ‖u′α(0)‖,
hence

(3.6) ‖Aα

(
uα(t)

)
‖ ≤ ‖Aα(u0)‖ ≤ ‖A0u0‖ , t ≥ 0 , α > 0 .

We shall show uα is Cauchy in C([0, T ],H). For α, β > 0

d

dt
‖uα(t)− uβ(t)‖2 = −2

(
Aαuα(t)−Aβuβ(t), uα(t)− uβ(t)

)
H
.

Write uα = αAαuα + Jαuα and likewise for uβ to get

(Aαuα −Aβuβ , uα − uβ)H = (Aαuα −Aβuβ , αAαuα − βAβuβ)H

+ (Aαuα −Aβuβ , Jαuα − Jβuβ)H .

The latter term is non-negative, since A is accretive, so the right side is bounded
below by

α‖Aαuα‖2 + β‖Aβuβ‖2 − (α+ β)(Aαuα, Aβuβ)H

≥ α‖Aαuα‖2 + β‖Aβuβ‖2 − α
(
‖Aαuα‖2 +

1
4
‖Aβuβ‖2

)
− β

(
‖Aβuβ‖2 +

1
4
‖Aαuα‖2

)
≥ −α+ β

4
‖A0u0‖2 .

This shows
d

dt
‖uα(t)− uβ(t)‖2 ≤ α+ β

2
‖A0u0‖2

and, hence,

‖uα(t)− uβ(t)‖ ≤ ‖A0u0‖
(α+ β

2
t
)1/2

, t ≥ 0 .

On each interval, [0, T ], the sequence {uα} is uniformly Cauchy, hence, uniformly
convergent to some u ∈ C([0, T ],H) with

‖uα(t)− u(t)‖ ≤ (αT/2)1/2‖A0u0‖ , 0 ≤ t ≤ T , α > 0 .

From the estimate

‖Jαuα(t)− uα(t)‖ = α‖Aα(uα(t))‖ ≤ α‖A0u0‖ , α > 0

it follows that Jαuα converges in C([0, T ],H) to u. The estimate (3.6) implies
{u′α} is bounded in the Hilbert space L2(0, T ;H) so there is a subsequence which
converges weakly. We take limits in

uα(t) = u0 +
∫ t

0

u′α(s) ds

to find the limit is u′, and by uniqueness of weak limits the original sequence
{u′α} converges weakly to u′. Note that the realization A of A in L2(0, T ;H) is m-
accretive, i.e., A(u)(t) = A(u(t)). Since −u′α ∈ A(Jαuα) it follows from Proposition
1.6 that −u′ ∈ A(u). This proves the first part of the following.
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Proposition 3.1 (Kōmura-Kato). Let A be m-accretive in the Hilbert space
H. For each u0 ∈ D(A) there is a unique absolutely continuous u : [0,∞) → H
such that u(0) = u0 and (3.1) holds at a.e. t > 0. Also, u is Lipschitz with
‖u′‖L∞(0,∞;H) ≤ ‖A0u0‖; at every t ≥ 0, u(t) ∈ D(A) and the right-derivative
satisfies

(3.7) D+u(t) +A0
(
u(t)

)
= 0 ;

and the function t 7→ A0(u(t)) is right-continuous with ‖A0(u(t))‖ decreasing.

Proof (continued). Let t ≥ 0. Since Jα(uα(t)) → u(t) and (3.5) holds,
it follows from Proposition 1.6 that u(t) ∈ D(A). Moreover, some subsequence
Aαn(uαn(t)) converges weakly to a w ∈ A(u(t)) and by weak lower-semi-continuity
of the norm

‖w‖ ≤ lim inf
n→∞

‖Aαn(uαn(t))‖ ≤ ‖A0(u0)‖ .

Thus, we obtain
‖A0(u(t))‖ ≤ ‖A0(u0)‖ , t ≥ 0 .

Let tn ↓ 0 with A0(u(tn)) ⇀ ξ. Then Proposition 1.6 shows ξ ∈ A(u0) and
‖ξ‖ ≤ lim infn→∞ ‖A0(u(tn))‖ ≤ ‖A0(u0)‖, so ξ = A0(u0) and we have shown
w − limn→∞A0(u(tn)) = A0(u0). Furthermore,

‖A0(u0)‖ ≤ lim inf ‖A0(u(tn))‖ ≤ lim sup ‖A0(u(tn))‖ ≤ ‖A0(u0)‖

so limn→∞ ‖A0u(tn)‖ = ‖A0(u0)‖. This shows the strong limit exists and satis-
fies limn→∞A0 u(tn) = A0(u0), so A0u(t) is continuous at t = 0. But for each
t0 ≥ 0, the translate u(t + t0) is the solution of (3.1) with initial data u(t0), so
limn→∞A0(u(tn + t0)) = A0(u(t0)). That is, A0(u(t)) is right-continuous at every
t0 ≥ 0; also ‖A0(u(t+ t0))‖ ≤ ‖A0(u(t0))‖, so ‖A0(u(t))‖ is decreasing.

For all t ≥ 0 and h > 0 we have similarly

‖u(t+ h)− u(t)‖ ≤ h‖A0(u(t))‖

from (3.6), so dividing by h > 0 and taking the limit show

‖u′(t)‖ ≤ ‖A0(u(t))‖ , a.e. t ≥ 0 .

With (3.1) this shows that

u′(t) +A0(u(t)) = 0 , a.e. t ≥ 0 .

Finally, from the representation

u(t) = u0 −
∫ t

0

A0(u(s)) ds , t ≥ 0

and the right-continuity of the integrand we obtain (3.7) at every t ≥ 0. �

We shall next show that the Cauchy problem for (3.1) can be solved with initial
data u0 in D(A) for those operators A which are subgradients. Such operators are
quite special, even within the linear examples, because the solution of (3.1) will
satisfy u(t) ∈ D(A) for t > 0 even though one starts with u(0) ∈ D(A). In
examples with partial differential equations this means u(t) is strictly smoother in
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its spatial variables than is u(0), so this is generally called the regularizing property
of (3.1).

In order to discuss this more easily we define for each t ≥ 0 the function
S(t) : D(A) → D(A) by S(t)u0 = u(t) where u is the solution of the Cauchy
problem for (3.1) with u(0) = u0 in the situation of Proposition 1. By taking
the (uniformly) continuous extension of each S(t) we obtain a family of functions
S(t) : D(A) → D(A) which satisfies

‖S(t)u1 − S(t)u2‖ ≤ ‖u1 − u2‖ , t ≥ 0 , u1, u2 ∈ D(A) ,(3.8.a)
S(t1 + t2) = S(t1) ◦ S(t2) , t1, t2 ≥ 0 ,(3.8.b)

S(·)u0 is continuous on R+ for each u0 ∈ D(A) .(3.8.c)

This gives the (strongly) continuous semigroup of contractions generated by −A.
The regularizing property is that S(t) : D(A) → D(A) for t > 0.

Proposition 3.2 (Brezis). Let ϕ : H → R∞ be proper, convex and lower-
semi-continu-ous; set A = ∂ϕ and let {S(t) : t ≥ 0} be the continuous semigroup of
contractions generated by −A. Then for each u0 ∈ D(A) and t > 0 it follows that
S(t)u0 ∈ D(A) and

(3.9) ‖A0(S(t)u0)‖ ≤ ‖A0v‖+
1
t
‖u0 − v‖ , v ∈ D(A) .

Proof. From Proposition 1.8 we have Aα = ϕ′α. Let uα denote as before the
solution of (3.5) with uα(0) = u0 ∈ D(A). Fix v ∈ H and α > 0; define

ψ(w) = ϕα(w)− ϕα(v)− (Aαv, w − v)H , w ∈ H

and note ψ′(w) = ϕ′α(w)−Aαv, w ∈ H, minψ = ψ(v) = 0, and

u′α(t) + ψ′(uα(t)) = −Aαv , t ≥ 0 .

Since (ψ′(uα), v − uα) ≤ ψ(v)− ψ(uα) = −ψ(uα) it follows that

ψ(uα(t)) ≤
(
u′α(t) +Aαv, v − uα(t)

)
H

= −1
2
d

dt
‖v − uα(t)‖2 +

(
Aαv, v − uα(t)

)
H
,

so we obtain by an integration

(3.10)
∫ T

0

ψ
(
uα(t)

)
dt ≤ 1

2

(
‖v−u0‖2−‖v−uα(T )‖2

)
+
∫ T

0

(
Aαv, v−uα(t)

)
H
dt .

This is the energy estimate. In order to estimate the derivative, u′α, we take its
scalar-product with its equation above, multiply by t ≥ 0 and integrate to obtain,
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successively,

t‖u′α(t)‖2 + t
d

dt
ψ
(
uα(t)

)
= t

d

dt

(
Aαv, v − uα(t)

)
H
,∫ T

0

t‖u′α(t)‖2 dt+ Tψ
(
uα(T )

)
−
∫ T

0

ψ
(
uα(t)

)
dt

= T
(
Aαv, v − uα(T )

)
H

+
∫ T

0

(
Aαv, uα(t)− v

)
H
dt

We combine this with (3.10) to get∫ T

0

t‖u′α(t)‖2 dt ≤ 1
2
(
‖v − u0‖2 − ‖v − uα(T )‖2

)
+ T

(
Aαv, v − uα(T )

)
H

≤ 1
2
‖u0 − v‖2 +

1
2
T 2‖Aαv‖2 .(3.11)

The function ‖u′α(t)‖ = ‖A0
α(uα(t))‖ is non-increasing in t, so the left side of (3.11)

dominates (T 2/2)‖u′α(T )‖2 and we obtain

‖Aαuα(T )‖2 ≤ 1
T 2
‖u0 − v‖2 + ‖Aαv‖2 .

That is, we have the estimate

(3.12) ‖Aα

(
uα(T )

)
‖ ≤ ‖A0v‖+

1
T
‖u0 − v‖ , α > 0 .

Let’s show uα(T ) → S(T )u0 as α → 0. If v0 ∈ D(A) and vα is the solution of
(3.5) with v(0) = v0, then

‖uα(T )− S(T )u0‖ ≤ ‖uα(T )− vα(T )‖+ ‖vα(T )− S(T )v0‖+ ‖S(T )v0 − S(T )u0‖
≤ 2‖v0 − u0‖+ ‖vα(T )− S(T )v0‖ .

Given ε > 0, choose v0 and then α0 so that 0 < α ≤ α0 implies ‖uα(T )−S(T )u0‖ <
ε. From the estimate (3.12) and

‖Jα

(
uα(T )

)
− uα(T )‖ = α‖Aα

(
uα(T )

)
‖

it is clear that Jα(uα(T )) → S(T )u0. From Proposition 1.6 we obtain (as in the
proof of Proposition 3.1) S(T )u0 ∈ D(A) and some subsequence Aαn(uαn(t)) ⇀
y ∈ A(u(T )), so (3.9) follows from (3.12) by weak lower-semi-continuity of the
norm. �

Corollary 3.2. For each u0 ∈ D(A) there is a unique solution u of (3.1)
with u(0) = u0. This solution satisfies the following:

u(t) ∈ D(A) for every t > 0;
u is Lipschitz on [a,∞) for every a > 0 with

‖du
dt
‖L∞([a,∞),H) ≤ ‖A0v‖+

1
a
‖u0 − v‖ , v ∈ D(A) ;
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and the function ϕ(u(t)) is non-increasing and convex with right-derivative
given at every t > 0 by

(3.13) D+ϕ
(
u(t)

)
= −‖D+u(t)‖2 .

Proof. It remains yet to verify (3.13). From this it will follow that ϕ(u(·)) is
non-increasing; since ‖D+u(t)‖ = ‖A0(u(t))‖ is non-increasing by Proposition 3.1,
ϕ(u(·)) is also convex. Furthermore, the non-increase of ‖D+u‖ gives

‖u(t+ h)− u(t)‖ ≤
∫ t+h

t

‖D+u(s)‖ ds ≤ h‖D+u(a)‖ , t ≥ a , h > 0 .

From (3.7), where A0 ⊂ ∂ϕ, we obtain

−
(
D+u(t+ h), u(t+ h)− u(t)

)
H
≥ ϕ

(
u(t+ h)

)
− ϕ

(
u(t)

)
≥ −

(
D+u(t), u(t+ h)− u(t)

)
H

and this gives with the preceding estimate

|ϕ
(
u(t+ h)

)
− ϕ

(
u(t)

)
| ≤ h‖D+u(a)‖2 , t ≥ a , h > 0 ,

so ϕ(u(·)) is Lipschitz on [a,∞) with right-derivative given by (3.13). �

The behavior of u(t) and ϕ(u(t)) for t near zero is described by the following.

Corollary 3.3. In the situation of Proposition 2, if u0 ∈ D(A) then ϕ(u) ∈
L1(0, a) and

√
tdu(t)

dt ∈ L2(0, a;H). Furthermore we have u0 ∈ dom(ϕ) if and only
if du

dt ∈ L
2(0, a;H) for each a > 0, and in that case

(3.14) ϕ(u0)− ϕ(u(t)) =
∫ t

0

‖du
dt
‖2 , t > 0 ,

so limt→0 ϕ(u(t)) = ϕ(u0) with monotone convergence, and

‖u(t)− u0‖ ≤
√
t
(
ϕ(u0)− ϕ

(
u(t)

))1/2

, t > 0 ,

√
t‖D+u(t)‖ ≤

(
ϕ(u0)− ϕ

(
u(t)

))1/2

.

Proof. Since Jα(uα(t)) → u(t), t > 0, and

ϕ
(
Jα(w)

)
≤ ϕα(w) =

1
2α
‖w − Jαw‖2 + ϕ(Jαw)

we deduce from the energy estimate (3.10) with T = a by Fatou’s Lemma that
ϕ(u) ∈ L1(0, a). From the estimate (3.11) we obtain

√
tdu

dt ∈ L
2(0, a;H) from weak

convergence of the derivative.
Let u0 ∈ dom(ϕ). From the counterpart of (3.13) for the approximate equation

(3.5) follows

ϕα(u0)− ϕα

(
uα(a)

)
=
∫ a

0

‖u′α(s)‖2 ds
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and, therefore, as above

ϕ
(
Jαuα(a)

)
+
∫ a

0

‖u′α(s)‖2 ds ≤ ϕα(u0) ≤ ϕ(u0) .

Since Jαuα(a) → u(a) as α→ 0 we find in the limit

ϕ
(
u(a)

)
+
∫ a

0

‖u′(s)‖2 ds ≤ ϕ(u0) .

Conversely, if du
dt ∈ L

2(0, a;H) then from (3.13) we have

ϕ
(
u(t)

)
= ϕ

(
u(a)

)
+
∫ a

t

‖u′(s)‖2 ds , 0 < t < a ,

and taking the limit t→ 0 shows

ϕ(u0) ≤ ϕ
(
u(a)

)
+
∫ a

0

‖u′(s)‖2 ds

by lower-semi-continuity, and therefore from above follows (3.14). The remaining
estimates follow easily. That is, from (3.14) and the general

‖u(t)− u0‖ ≤
∫ t

0

‖u′‖ ds ≤
√
t
(∫ t

0

‖u′‖2
)1/2

follows the first, and from non-increase of ‖u′‖ follows

t‖u′(t)‖2 ≤
∫ t

0

‖u′(s)‖2 ds

and, hence, the second. �

IV.4. Additional Topics and Evolution Equations

We begin with some Gronwall inequalities that are frequently used in ordinary
differential equations and that were implicit in some of our earlier estimates.

Lemma 4.1. Let a(·), b(·) ∈ L1(0, T ) with b(t) ≥ 0 a.e., and let the absolutely
continuous v : [0, T ] → R+ satisfy

(1− α)v′(t) ≤ a(t)v(t) + b(t)vα(t) , a.e. t ∈ [0, T ] ,

where 0 ≤ α < 1. Then

v1−α(t) ≤ v1−α(0)e
R t
0 a +

∫ t

0

e
R t

s
ab(s) ds , 0 ≤ t ≤ T .

Proof. Replace the non-negative v(t) by v(t)+ ε for some ε > 0, and then di-
vide by (v(t)+ε)α. Setting w(t) = e−

R t
0 a(v(t)+ε)α, we have w′(t) ≤ e−

R t
0 ab(t), and

after integrating this inequality and letting ε→ 0, the desired estimate follows. �

In the situation of Lemma 4.1 with α = 0 we can integrate the assumed estimate
to get a related weaker assumption which leads to the same resulting bound.
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Lemma 4.2. Let a ∈ L1(0, T ) and let B : [0, T ] → R be absolutely continuous;
assume the bounded measurable function v satisfies

v(t) ≤
∫ t

0

a(s)v(s) ds+B(t) , 0 ≤ t ≤ T .

Then we have

v(t) ≤ B(0)e
R t
0 a +

∫ t

0

e
R t

s
aB′(s) ds , 0 ≤ t ≤ T .

Proof. Define w(t) ≡
∫ t

0
a(s)v(s) ds+B(t) and note that for a.e. t ∈ [0, T ]

w′(t) ≤ a(t)w(t) +B′(t) ,

so Lemma 4.1 applies with α = 0. �

Alternatively one can define w(t) =
∫ t

0
a(s)v(s) ds and note that

w′(t) ≤ a(t)w(t) + a(t)B(t) .

Then Lemma 4.1 applies to give the following.

Lemma 4.2′. Let a ∈ L1(0, T ) and B ∈ L∞(0, T ). Assume the bounded mea-
surable function v satisfies a.e.

v(t) ≤
∫ t

0

a(s)v(s) ds+B(t) , 0 ≤ t ≤ T .

Then we have

v(t) ≤ B(t) +
∫ t

0

e
R t

s
aa(s)B(s) ds , 0 ≤ t ≤ T .

Note that the conclusions in Lemma 4.2 and Lemma 4.2′ are equivalent; this follows
from an integration-by-parts.

Next we show that by modifying the proof of Proposition 3.1 we obtain the
corresponding results for the more general equation

(4.1)
du

dt
(t) +A(u(t)) 3 ωu(t) + f(t) .

Theorem 4.1 (Kato). Let A be m-accretive in the Hilbert space H and ω ≥ 0.
For each u0 ∈ D(A) and absolutely continuous f : [0, T ] → H, there is a unique
absolutely continuous u : [0, T ] → H, such that u(0) = u0 and (4.1) holds at a.e.
t > 0. Also, u is Lipschitz continuous and right-differentiable with u(t) ∈ D(A) at
every t ≥ 0.
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Proof. For any two solutions u1, u2 of (4.1) we have

1
2
d

dt
‖u1(t)− u2(t)‖2 ≤ ω‖u1(t)− u2(t)‖2 , t ≥ 0 ,

since A is accretive, and from here follows from Lemma 4.1 with α = 0

‖u1(t)− u2(t)‖ ≤ eωt‖u1(0)− u2(0)‖ , t ≥ 0 .

Uniqueness is now immediate from the initial condition.
To obtain existence, let uα be the unique solution for each α > 0 of

(4.2)
duα

dt
(t) +Aα(uα(t)) = ωuα(t) + f(t) , 0 ≤ t ≤ T ,

with uα(0) = u0. If h > 0, then uα(t + h) is a solution of (4.2) with f(t) replaced
by f(t+ h), and the accretive estimate on Aα gives

1
2
d

dt
‖uα(t+h)−uα(t)‖2 ≤ ω‖uα(t+h)−uα(t)‖2+‖f(t+h)−f(t)‖ ‖uα(t+h)−uα(t)‖ .

Applying Lemma 4.1 with α = 1
2 to the preceding estimate and letting h→ 0 give

(4.3) ‖u′α(t)‖ ≤ eωt‖ −Aα(u0) + ωu0 + f(0)‖+
∫ t

0

eω(t−s)‖f ′(s)‖ ds .

Since ‖Aα(u0)‖ ≤ ‖A0(u0)‖, it follows with (4.2) that u′α, uα, and Aα(uα) are
bounded in C([0, T ],H).

To show {uα} is Cauchy in C([0, T ],H), let α, β > 0 and use (4.2) to obtain

1
2
d

dt
‖uα(t)−uβ(t)‖2 = ω‖uα(t)−uβ(t)‖2− (Aα(uα(t))−Aβ(uβ(t)), uα(t)−uβ(t)) .

Writing uα = αAαuα + Jαuα and similarly for uβ and using the accretive property
of A, we obtain as in the proof of Proposition 3.1

1
2
d

dt
‖uα(t)− uβ(t)‖2 ≤ ω‖uα(t)− uβ(t)‖2 +

α+ β

4
K2 ,

where K ≡ sup{‖Aα(uα(t)‖ : 0 ≤ t ≤ T , α > 0}. Thus we have

‖uα(t)− uβ(t)‖2 ≤ K2α+ β

2
· e

2ωt − 1
2ω

, 0 ≤ t ≤ T ,

so {uα} is uniformly Cauchy and converges to a u ∈ C([0, T ],H) with

(4.4) ‖uα(t)− u(t)‖2 ≤ K2 · α
2
· e

2ωt − 1
2ω

, 0 ≤ t ≤ T , α > 0 ;

from (4.3) it follows that u′ ∈ L∞(0, T ;H). Also uα − Jαuα = αAα(uα) → 0 in
C([0, T ],H). Since Jαuα → u and u′α is bounded in L2(0, T ;H), from Proposition
1.6 we obtain (4.1). The additional properties of this solution are verified just as
in Proposition 3.1. �
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Corollary 4.1. Let A be an operator on H such that for some ω1 ≥ 0,
A + ω1I is m-accretive. Let B : D(A) → H be a Lipschitz function such that for
some ω2 > 0

‖B(u)−B(v)‖ ≤ ω2‖u− v‖ , u, v ∈ D(A) .

Then for each ω ≥ 0, u0 ∈ D(A) and absolutely continuous f : [0, T ] → H, there is
a unique solution (as in Theorem 4.1) of

(4.5)
du

dt
(t) +A(u(t)) +B(u(t)) 3 ωu(t) + f(t)

with u(0) = u0.

Proof. It suffices to add (ω1 + ω2)u(t) to both sides of (4.5), and then note
that B+ω2I is accretive. Thus by Lemma 2.1 we are in the situation of Theorem 4.1
with ω replaced by ω + ω1 + ω2. �

We consider the problem of finding a periodic solution to the equation (4.1),
that is,

du

dt
(t) +A(u(t)) + ωu(t) 3 f(t) , 0 < t < T ,(4.6.a)

u(0) = u(T ) .(4.6.b)

This is equivalent to finding a periodic solution of (4.6.a) on all of R with period
T > 0. Note that there is a solution of (4.6) with A = 0, ω = 0 only if

∫ T

0
f(t) dt = 0,

and in that case any two solutions differ by a constant. Thus, we expect existence
or uniqueness only with additional positivity hypotheses on A+ ωI.

Proposition 4.1. Let A be m-accretive, ω > 0, and f : [0, T ] → H be ab-
solutely continuous. Then there exists a unique absolutely continuous solution of
(4.6).

Proof. We shall consider (4.6) in H = L2(0, T ;H). Thus, let A be the real-
ization of A in H (see Example 2.c) and let L = d

dt with domain D(L) = {u ∈ H :
u′ ∈ H , u(0) = u(T )}. Then A and L are m-accretive on H and the uniqueness
of a solution follows immediately. In order to show the existence of a solution we
consider the approximating problem (cf., (2.5))

(4.7) Luα +Aα(uα) + ωuα = f

By Proposition 2.1 it suffices to show that {Luα} = {u′α} is bounded in H.
Extend each uα and f to R as T -periodic and denote these extensions the same. If
h > 0 we obtain from (4.7)

1
2
d

dt
‖uα(t+h)−uα(t)‖2+ω‖uα(t+h)−uα(t)‖2 ≤ ‖f(t+h)−f(t)‖ ‖uα(t+h)−uα(t)‖ .

Thus for 0 ≤ s < s+ h ≤ T , t = T + s we get from Lemma 4.1

eωt‖uα(t+ h)− uα(t)‖ ≤ eωs‖uα(s+ h)− uα(s)‖+
∫ t

s

eωτ‖f(τ + h)− f(τ)‖ dτ ,
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and since uα is T -periodic this gives

‖uα(s+ h)− uα(s)‖(1− e−ωT )(4.8)

≤
∫ T+s

s

‖f(τ + h)− f(τ)‖ dτ , 0 ≤ s < s+ h ≤ T .

Denote the variation of f on [0, t] by

V (t) = sup
{n−1∑

j=0

‖f(tj+1)− f(tj)‖ : 0 = t0 < t1 < . . . < tn = t

}
,

where the supremum is taken over all partitions of [0, t]; then note

V (τ) + ‖f(τ + h)− f(τ)‖ ≤ V (τ + h) , τ ≥ 0 ,

so from (4.8) follows by monotonicity of V

‖uα(s+ h)− uα(s)‖(1− e−ωT ) ≤
∫ T+s

s

(V (τ + h)− V (τ)) dτ

≤ h(V (T + s+ h)− V (s)) , 0 ≤ s < s+ h ≤ T .

Finally we note that since f is absolutely continuous on [0, T ] and on [T, 2T ] we
have

V (T + s+ h)− V (s) ≤
∫ T

s

‖f ′‖ dτ + ‖f(T )− f(0)‖+
∫ T+s+h

T

‖f ′‖ dτ ,

so we let h↘ 0 above to obtain

(4.9) ‖u′α(s)‖ ≤ (1− e−ωT )−1
(
‖f ′‖L1(0,T ) + ‖f(0)− f(T )‖

)
, a.e. s ∈ [0, T ] .

Thus {u′α} is bounded in H and Proposition 2.1 gives existence. The solution u
of (4.6) satisfies (4.9), so it is Lipschitz continuous; it is a solution of the Cauchy
problem on [τ, T ] for a.e. τ ∈ [0, T ], so it has the additional properties described in
Theorem 4.1. �

We obtained in Theorem 4.1 the existence of a solution of the Cauchy problem

(4.10)
du

dt
+A(u) 3 f + ωu , u(0) = u0 ,

whenever f is absolutely continuous and u0 ∈ D(A). Moreover it follows that if
u1, u2 are solutions of respective Cauchy problems with data f1, f2 in L1(0, T ;H)
and u1

0, u
2
0 in D(A), then from accretivity of A follows

1
2
d

dt
e−2ωt‖u1(t)− u2(t)‖2 ≤ e−2ωt(f1(t)− f2(t), u1(t)− u2(t)) .

This leads directly to

1
2
e−2ωt‖u1(t)− u2(t)‖2 ≤

1
2
e−2ωs‖u1(s)− u2(s)‖2

+
∫ t

s

e−2ωτ (f1 − f2, u1 − u2) dτ , 0 ≤ s ≤ t ≤ T ,(4.11)
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and with Lemma 4.1 it also leads to

e−ωt‖u1(t)− u2(t)‖ ≤ e−ωs‖u1(s)− u2(s)‖

+
∫ t

s

e−ωτ‖f1(τ)− f2(τ)‖ dτ , 0 ≤ s ≤ t ≤ T .(4.12)

The estimate (4.12) with s = 0 leads to the following notion.

Definition. A generalized solution of (4.1) is a function u ∈ C([0, T ],H) for
which there exists a sequence of (absolutely continuous) solutions un of

dun

dt
+A(un) 3 fn + ωun , n ≥ 1

with fn → f in L1(0, T ;H) and un → u in C([0, T ],H).

Since (4.11) and (4.12) are stable with respect to such limits, they hold also
for generalized solutions, and thus we obtain uniqueness for the Cauchy problem
(4.10). Also, we obtain from Theorem 4.1 the following immediate extension.

Theorem 4.1a. If A is m-accretive on H, ω ≥ 0, f ∈ L1(0, T ;H) and u0 ∈
D(A), then there is a unique generalized solution of (4.10) on [0, T ], and any two
generalized solutions of respective problems satisfy the estimates (4.11) and (4.12).

The existence follows by approximating the given f and u0 by a sequence of abso-
lutely continuous {fn} and a sequence {un

0} in D(A), respectively. The estimates
(4.11) and (4.12) hold in the limit as indicated above.

By the same proof we obtain a generalized solution of the Cauchy problem for
(4.5) with the relaxed assumptions on u0 and f .

Corollary 4.1a. With A, B given as in Corollary 1, for each u0 ∈ D(A)
and f ∈ L1(0, T ;H) there is a unique generalized solution of (4.5) with u(0) = u0.

Moreover, one obtains a generalized solution of the periodic problem (4.6) for this
wider class of functions, f .

Proposition 4.1a. Let A be m-accretive, ω > 0, and f ∈ L1(0, T ;H). Then
there exists a unique generalized solution of (4.6).

Proof. This follows directly from Proposition 4.1 by approximating f with a
sequence of absolutely continuous functions.

Alternatively, one can solve (4.6) directly by a fixed-point argument based on
the periodicity condition (4.6.b). For each u0 ∈ D(A) there is a unique generalized
solution u of (4.6.a) with u(0) = u0; define F : D(A) → D(A) by F(u0) = u(T ).
Thus, (4.6) is equivalent to F(u0) = u0, and F is a strict contraction if ω > 0. �

The notion of a generalized solution of (4.1) is based directly on the estimate
(4.12) which implies the solution of Cauchy problem (4.10) depends continuously on
the pair [f, u0] in L1(0, T ;H)×H. We shall show the solution depends continuously
on the triple [A, f, u0] with the appropriate notion of convergence of operators. We
set ω = 0 without loss of generality.
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Theorem 4.2 (Brezis-Pazy-Miyadera-Oharu). Let An, n ≥ 1, and A be
m-accretive in the Hilbert space H, let fn and f in L1(0, T ;H), un

0 ∈ D(An) and
u0 ∈ D(A) be given. Let un, u be the respective generalized solutions of

dun

dt
+An(un) 3 fn , un(0) = un

0 ,

du

dt
+A(u) 3 f , u(0) = u0 .

If un
0 → u0 in H, fn → f in L1(0, T ;H), and if

(4.13) (I + αAn)−1w → (I + αA)−1w , w ∈ H , α > 0 ,

then un → u in C([0, T ],H).

Proof. We shall proceed as follows. For the case of fn = f = 0, we regularize
the initial data to get nearby (absolutely continuous) solutions, regularize the op-
erator to get the Lipschitz case, then estimate directly the Lipschitz case with the
Gronwall type inequalities. The corresponding forced equations, with fn and f as
given, are thereafter easily obtained.

Consider the case fn = f = 0 and let u, vα, wα, wn
α, vn

α, un be the generalized
solutions of the following Cauchy problems with n ≥ 1, α > 0,

du

dt
+A(u) 3 0 , u(0) = u0 ∈ D(A) ,

dvα

dt
+A(vα) 3 0 , vα(0) = (I +

√
αA)−1u0 ∈ D(A) ,

dwα

dt
+Aα(wα) = 0 , wα(0) = (I +

√
αA)−1u0 ,

dwn
α

dt
+An

α(wn
α) = 0 , wn

α(0) = (I +
√
αAn)−1un

0 ,

dvn
α

dt
+An(vn

α) 3 0 , vn
α(0) = (I +

√
αAn)−1un

0 ∈ D(An) ,

dun

dt
+An(un) 3 0 , un(0) = un

0 ∈ D(An) .

Since A and An are accretive we obtain from (4.12)

‖u− vα‖C([0,T ],H) ≤ ‖u0 − J√αu0‖H ,

‖un − vn
α‖C([0,T ],H) ≤ ‖un

0 − Jn√
αu

n
0‖H .

Using the convergence-rate estimate from the proof of Proposition 3.1, and then
observing A√α ⊂ A ◦ J√α, one finds

‖vα − wα‖C([0,T ],H) ≤
(αT

2

)1/2

‖A0(J√αu0‖

≤
(αT

2

)1/2

‖ 1√
α

(I − J√α)u0‖ ,
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and thus we have

‖vα − wα‖C([0,T ],H) ≤
(T

2

)1/2

‖u0 − J√αu0‖ ,

‖vn
α − wn

α‖C([0,T ],H) ≤
(T

2

)1/2

‖un
0 − Jn√

αu
n
0‖ .

In order to estimate the remaining link, wα −wn
α, we subtract their corresponding

equations, integrate over the interval [0, t], and then use the Lipschitz continuity of
An

α to obtain

‖wα(t)− wn
α(t)‖ ≤ ‖wα(0)− wn

α(0)‖+
∫ t

0

‖Aα(wα)−An
α(wn

α)‖ ds

≤ ‖wα(0)− wn
α(0)‖+

∫ T

0

‖Aα(wα)−An
α(wα)‖ ds

+
1
α

∫ t

0

‖wα(s)− wn
α(s)‖ ds .

From Lemma 4.2 and the definition of Aα, An
α we get

‖wα − wn
α‖C([0,T ],H) ≤

(
‖J√αu0 − Jn√

αu
n
0‖+

1
α
‖Jαwα − Jn

αwα‖L1(0,T ;H)

)
eT/α .

From (4.13) and the Lebesgue Theorem it follows that ‖Jαwα−Jn
αwα‖L1(0,T ;H) → 0

as n→∞. In summary, we have for every α > 0,

lim sup
n→∞

‖u− un‖C([0,T ],H) ≤ 2
(

1 +
(T

2

)1/2
)
‖u0 − J√αu0‖ ,

so it follows that un → u in C([0, T ],H).
For the case of fn = f = ξ, a constant vector in H, the result follows directly

from above by considering the translated operators A(u)− ξ, An(u)− ξ; one need
only check that (4.13) holds. Thus the result holds also for the case fn = f = g,
where g is a piece-wise constant function in L1(0, T ;H). If v, vn are the generalized
solutions of

dv

dt
+A(v) 3 g , v(0) = u0 ,

dvn

dt
+An(vn) 3 g , vn(0) = un

0 ,

then from (4.13) follows

‖u− un‖C([0,T ],H) ≤ ‖u− v‖+ ‖v − vn‖+ ‖vn − un‖
≤ ‖f − g‖L1(0,T ;H) + ‖v − vn‖C([0,T ],H) + ‖g − fn‖L1(0,T ;H) ,

so we have
lim sup

n→∞
‖u− un‖C([0,T ],H) ≤ 2‖f − g‖

for every piece-wise constant function g. But these are dense in L1(0, T ;H), so the
desired result follows. �
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We consider next those m-accretive operators which are subgradients and the
effects of the regularizing property of (4.1). From Theorem 4.1a we know there is
a unique generalized solution u of (4.1) when u0 ∈ D(A) and f ∈ L1(0, T ;H). It
follows from Theorem 4.1 that if u0 ∈ D(A) and f is absolutely continuous, then
u is absolutely continuous. However, Corollary 3.2 shows that for the case f = 0,
if A is a subgradient, the generalized solution is always absolutely continuous. We
shall extend this last result to the equation (4.1) with f ∈ L2(0, T ;H).

In the proof of Corollary 3.2 we made our estimates on the smooth approxima-
tions to the operator. In order to estimate directly on the equation with general
data, we begin with the following chain rule.

Lemma 4.3. Let ϕ : H → R∞ be proper, convex, and lower-semi-continuous
on the Hilbert space H. Denote the subgradient by ∂ϕ. If u, du

dt ∈ L
2(0, T ;H) and

if there exists a g ∈ L2(0, T ;H) with g ∈ ∂ϕ(u) a.e. on [0, T ], then the function
ϕ ◦ u is absolutely continuous on [0, T ] and

d

dt
ϕ(u(t)) =

(
h(t),

du

dt
(t)
)
, a.e. t ∈ [0, T ]

for any function h with h ∈ ∂ϕ(u) a.e. on [0, T ].

Proof. Set A = ∂ϕ and recall from Proposition 1.9 that Aα = ϕ′α, the Frechet
derivative of the convex ϕα, for each α > 0. By the usual chain rule we have

d

dt
ϕα(u(t)) =

(
Aα(u(t)),

du

dt
(t)
)
, a.e. t ∈ [0, T ] ,

so there follows

ϕα(u(t))− ϕα(u(s)) =
∫ t

s

(
Aα(u),

du

dt

)
dτ , s, t ∈ [0, T ] .

Letting α→ 0 yields

ϕ(u(t))− ϕ(u(s)) =
∫ t

s

(
A0(u),

du

dt

)
dτ , s, t ∈ [0, T ] ,

since the existence of the function g as above shows the integrand belongs to
L1(0, T ;H), so ϕ ◦ u is absolutely continuous. Pick a t ∈ (0, T ) for which u(t) ∈
D(A) and u′(t), (ϕ ◦ u)′(t) exist. For any vector ξ ∈ ∂ϕ(u(t)) we have

(ξ, v − u(t)) ≤ ϕ(v)− ϕ(u(t)) , v ∈ H .

By setting v = u(t± ε), dividing by ε, and letting ε→ 0, we obtain

(ξ, u′(t)) =
d

dt
ϕ(u(t))

as desired. �
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Theorem 4.3 (Brezis). Let ϕ : H → R∞ be proper, convex, and lower-semi-
continuous on the Hilbert space H and set A = ∂ϕ. Let u be the generalized solution
of

du

dt
+A(u) 3 f a.e. on [0, T ] , u(0) = u0

with f ∈ L2(0, T ;H) and u0 ∈ D(A). Then

ϕ ◦ u ∈ L1(0, T ) ,
√
t
du

dt
∈ L2(0, T ;H) , and u(t) ∈ D(A) , a.e. t ∈ [0, T ] .

If in addition u0 ∈ dom(ϕ), then

ϕ ◦ u ∈ L∞(0, T ) ,
du

dt
∈ L2(0, T ;H) .

Proof. We may assume without loss of generality that

ϕ(x0) = 0 = min{ϕ(x) : x ∈ H} .

Otherwise, pick any [x0, y0] ∈ ∂ϕ and set ψ(u) = ϕ(u)−ϕ(x0)− (y0, u−x0). Then
our equation is equivalent to du

dt + ∂ψ(u) 3 f − y0.
We proceed as in Proposition 3.2. At first we assume u0 ∈ D(A) and f ′ ∈

L2(0, T ;H). Since f − u′ ∈ ∂ϕ(u) we have

ϕ(u(t)) ≤ (f(t)− u′(t) , u(t)− x0) , a.e. t ∈ [0, T ] .

so we obtain∫ T

0

ϕ(u(t)) dt ≤ 1
2
‖u0 − x0‖2 +

∫ T

0

‖f(t)‖‖u(t)− x0‖ dt .

Also, by applying u(t)− x0 to our evolution equation and using Lemma 4.1 we get

‖u(t)− x0‖ ≤ ‖u0 − x0‖+
∫ T

0

‖f(t)‖ dt

so this gives with the above

(4.14)
∫ T

0

ϕ(u(t)) dt ≤
(
‖u0 − x0‖+

∫ T

0

‖f‖ dt
)2

.

This is the energy estimate. Next we take the scalar product of our equation with
tu′(t) and use Lemma 4.3 to obtain

t‖u′(t)‖2 + t
d

dt
ϕ(u(t)) = t(f(t), u′(t)) ,

and therefore∫ T

0

t‖u′(t)‖2 dt+ Tϕ(u(T )) =
∫ T

0

t(f(t), u′(t)) dt+
∫ T

0

ϕ(u(t)) dt .

Since ϕ is non-negative this leads to the rate estimate

(4.15)
∫ T

0

t‖u′(t)‖2 dt ≤
∫ T

0

t‖f(t)‖2 dt+ 2
∫ T

0

ϕ(u(t)) dt .
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By combining (4.14) and (4.15) we have

(4.16)
∫ T

0

t‖u′(t)‖2 dt ≤
∫ T

0

t‖f(t)‖2 dt+ 2
(
‖u0 − x0‖+

∫ T

0

‖f(t)‖ dt
)2

.

Assume u0 ∈ D(A) and that f ∈ L2(0, T ;H). Let {un
0} be a sequence in D(A)

with un
0 → u0 in H and let {fn} be a sequence with each f ′n ∈ L2(0, T ;H) and

with fn → f in L2(0, T ;H). Then it follows from (4.12) that the solutions un

corresponding to the data un
0 , fn, converge uniformly to u on [0, T ]. From (4.16)

applied to {un} it follows that {
√
tdun

dt } converges weakly in L2(0, T ;H) to
√
tdu

dt .
Thus u is absolutely continuous on each [δ, T ], δ > 0, and we show as before that
u satisfies the equation (4.1) with ω = 0 in each L2(δ, T ;H) since A = ∂ϕ is
m-accretive in that space.

Finally we assume u0 ∈ dom(ϕ). Take the scalar product of the equation with
u′(t) and use Lemma 4.3 to obtain

‖u′(t)‖2 +
d

dt
ϕ(u(t)) ≤ ‖f(t)‖ ‖u′(t)‖ ,

and therefore at a.e. t ∈ [0, T ]

1
2
‖u′(t)‖2 +

d

dt
ϕ(u(t)) ≤ 1

2
‖f(t)‖2 .

By integrating over [s, t] ⊂ (0, T ] and then letting s→ 0+ we find

max{1
2
‖u′‖L2(0,T ;H) , ‖ϕ ◦ u‖C([0,T ],H)} ≤ ϕ(u0) +

1
2
‖f‖L2(0,T ;H) ,

and this finishes the proof. �

We consider finally the singular-in-time evolution equation

(4.17)
1
b(τ)

dv(τ)
dτ

+ ωv(τ) +A(v(τ)) 3 g(τ) , −∞ ≤ τ0 < τ < τ1 ,

where b is a locally-integrable positive function on the interval (τ0, τ1). The effect
of the singularity at τ0 and at τ1 can be determined from the change-of-variable
t = B(τ) where B is absolutely continuous with B′(τ) = b(τ) a.e. on (τ0, τ1). Thus
v is a solution of (4.17) if and only if the function u = v ◦B−1 satisfies

(4.18)
du(t)
dt

+ ωu(t) +A(u(t)) 3 f(t)

on the interval
(
B(τ0), B(τ1)

)
with f = g ◦ B−1. If b is weakly singular at τ0, i.e.,

if b(·) is integrable at τ0, so B(τ0) > −∞, then the Cauchy problem is appropriate
for (4.17) and one obtains a well-posed problem by specifying initially v(τ0) = v0.
But if b is strongly singular at τ0, so that B(τ0) = −∞, then we are led to a
history-value problem: find a solution of (4.18) on (−∞, 0]. Of course one can use
the preceding results on the Cauchy problem to uniquely extend this solution to all
of (−∞, B(τ1)).

We shall work in the Hilbert space H ≡ L2(−∞, 0;H). Let L be the operator
given by Lu = du

dt on the domain D(L) = {u ∈ H : du
dt ∈ H}.
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Lemma 4.4. L is m-accretive on H and for each u ∈ D(L), limt→−∞ u(t) = 0.
For each α > 0, u+ αLu = f if and only if

(4.19) u(t) =
∫ t

−∞
f(s)

1
α
es−t/α ds , −∞ < t < 0 .

Proof. If (I + αL)u = f , then

et/αu(t)− es/αu(s) =
∫ t

s

f(r)
1
α
er/α dr , s < t ≤ 0 ,

and this gives

‖et/αu(t)− es/αu(s)‖2 ≤
∫ t

s

‖f‖2 dr 1
2α
(
e2t/α − e2s/α

)
.

This shows that limt→−∞ et/αu(t) ≡ h exists in H and that

u(t) = he−t/α +
∫ t

−∞
f(s)

1
α
es−t/α ds , t ≤ 0 .

We shall see below that the second term belongs to H; the first is in H only if
h = 0, so it follows that u(−∞) = 0.

Next let f ∈ H, α > 0, and define u by (4.19). The integral converges because
et/α ∈ H. Note also that ∫ t

−∞

1
α
es−t/α ds = 1

so the convexity of the norm-squared shows that

(4.20) ‖u(t)‖2 ≤
∫ t

−∞
f(s)‖2 1

α
es−t/α ds .

From Fubini’s Theorem we get

‖u‖2H ≤
∫ 0

−∞

∫ 0

s

‖f(s)‖2 1
α
es−t/α dt ds ≤ ‖f‖2H ,

so u ∈ D(L) and L is m-accretive. �

Corollary 4.2. For each u ∈ D(L), α > 0,

sup{‖u(t)‖ : t ≤ 0} ≤ 1√
2α
‖(I + αL)u‖H .

Proof. This is immediate from (4.19). �

Proposition 4.2. Let A be m-accretive on H, A(0) 3 0, and ω > 0. Then for
each f ∈ D(L) there exists a unique u ∈ D(L) for which (4.18) holds at a.e. t ≤ 0,
that is, Lu+ ωu+A(u) 3 f in H.
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Proof. Let Aα be the accretive Lipschitz approximation of A and consider
for each α > 0 the solution uα (guaranteed by Lemma 2.1) of

(4.21) Luα + ωuα +Aα(uα) = f .

From Proposition 2.1 and Lemma 2.2 it follows that (4.18) has a solution if (and
only if) {Luα} is bounded in H. To verify this, let h > 0 and extend f and the
solutions uα to (−∞, h). By the accretive estimate on Aα we obtain successively

1
2
d

dt
‖uα(t+ h)− uα(t)‖2 + ω‖uα(t+ h)− uα(t)‖2

≤
(
f(t+ h)− f(t) , uα(t+ h)− uα(t)

)
H

≤ 1
2

{ 1
ω
‖f(t+ h)− f(t)‖2 + ω‖uα(t+ h)− uα(t)‖2

}
,

and then

‖uα(t+h)−uα(t)‖2eωt ≤ ‖uα(τ+h)−uα(τ)‖2eωτ +
1
ω

∫ t

τ

‖f(s+h)−f(s)‖2eωs ds ,

Since limτ→−∞(uα(τ)eωτ = 0, we get

‖uα(t+ h)− uα(t)‖2 ≤ 1
ω

∫ t

−∞
‖f(s+ h)− f(s)‖2eω(s−t) ds ,

and then by Fubini’s Theorem∫ 0

−∞
‖uα(t+ h)− uα(t)‖2 dt ≤ 1

ω

∫ 0

−∞
‖f(s+ h)− f(s)‖

∫ 0

s

eω(s−t) dt ds

≤ 1
ω2

∫ 0

−∞
‖f(s+ h)− f(s)‖2 ds .

After dividing by h2 and letting h→ 0 we have∥∥∥duα

dt

∥∥∥
H
≤ 1
ω

∥∥∥df
dt

∥∥∥
H
, α > 0 ,

and this completes the proof. �

When the operator A is a subgradient, we can as usual relax the hypotheses
on the data.

Proposition 4.3. Let ϕ : H → R∞ be convex, lower-semi-continuous, and
ϕ(0) = 0 = min{ϕ(x) : x ∈ H}. Then for each ω > 0 and f ∈ H there is a unique
u ∈ D(L) for which (4.18) holds at a.e. t ≤ 0.

Proof. We shall apply Proposition 2.2 to show L+ ∂Φ is m-accretive, where

Φ(u) ≡
∫ 0

−∞
ϕ(u(t)) dt , u ∈ H .

Let u ∈ H and (I + αL)uα = u, α > 0. Using the representation (4.19) and the
convexity of ϕ we get

ϕ(uα(t)) ≤
∫ t

∞
ϕ(u(s))

1
α
e

s−t
α ds .
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From this follows

Φ(uα) ≤
∫ 0

−∞
ϕ(u(s))

∫ 0

s

1
α
e

s−t
α dt ds

by Fubini, and hence Φ(uα) ≤ Φ(u) as desired. �

IV.5. Parabolic Equations and Inequalities

We shall apply the preceding results on the solvability of the abstract Cauchy
problem (4.10) to the case of operators A constructed from monotone operators
which correspond to elliptic boundary-value problems. Many such examples were
given in II.5 and we shall refer to them in the following. As we have seen above,
sharper results are possible for the class of subgradient operators, and we briefly
explore how these are obtained from corresponding subdifferentials; see II.8 and
IV.2 for examples. The results of this section should be compared with those of
III.4; there we resolved the Cauchy problems in somewhat more generality, whereas,
here we shall obtain solutions which are more regular.

Assume V is a reflexive and separable Banach space which is dense and con-
tinuously imbedded in a Hilbert space H. We identify H with its dual H ′ by the
Riesz map and thereby identify H as a subspace of V ′ with

f(v) = (f, v)H , f ∈ H , v ∈ V .

Assume we are given a functionA : V → V ′ which is monotone and demicontinuous.
Then define an operator A on H with domain D(A) = {u ∈ V : A(u) ∈ H} and
values Au = A(u), u ∈ D(A). Since

(Au−Av, u− v)H = 〈Au−Av, u− v〉 , u, v ∈ D(A) ,

and since A is monotone, it follows that A is accretive on H. We define an operator
A on H to be regular accretive if it is so constructed from A, V and H as above.

Lemma 5.1. Let A be regular accretive on H and assume

(5.1) lim
‖v‖→+∞

|v|2H +Av(v)
|v|H

= +∞ .

Then A is m-accretive.

Proof. Let f ∈ H. In order to show that f ∈ Rg(I+A) it suffices by Theorem
II.2.2 to show there is a ρ > 0 such that (I +A)v(v) > (f, v)H for all v ∈ V with
‖v‖ > ρ. Suppose on the contrary that v ∈ V with

|v|2H +Av(v) ≤ |f |H |v|H .

That is,
(
|v|2H + Av(v)

)/
|v|H ≤ |f |H . Then (5.1) shows there is a ρ for which

‖v‖ ≤ ρ. Thus, there is a u ∈ V : u + Au = f , and it is clear that u ∈ D(A), so
(I +A)u = f . �
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Remark. Assume there is a seminorm [·] on V and numbers λ > 0, α > 0
such that

[v] + λ|v|H ≥ α‖v‖ , and

Av(v) ≥ α[v]p − λ|v|H , v ∈ V .

Then (5.1) holds. Recall that these assumptions were used in Proposition III.4.1
and Corollary III.4.1 to resolve the Cauchy problem. Lemma 5.1 leads to the
following result which gives a more regular solution when the data is appropriately
more regular.

Proposition 5.1. If A is regular accretive and (5.1) holds, then for each u0 ∈
D(A) and f ∈ W 1,1(0, T ;H) there exists a unique u ∈ W 1,∞(0, T ;H) with u(t) ∈
D(A) for all 0 ≤ t ≤ T , u(0) = u0, and

(5.2)
du

dt
(t) +A

(
u(t)

)
= f(t) , a.e. t ∈ (0, T ) .

Also, the right-derivative satisfies

D+u(t) +A
(
u(t)

)
= f(t) , t ∈ [0, T ) .

Proof. This follows directly from Lemma 5.1 and Theorem 4.1. �

It is instructive to compare Proposition 5.1 with Proposition III.4.1. In the
latter we are permitted a time-dependent family of operators, but with an explicit
uniform growth rate from V to V ′. With more general data, f ∈ Lp′(0, T ;V ′) and
u0 ∈ H, we obtain from Proposition III.4.1 a solution u ∈ Lp(0, T ;V ) for which
the equation (5.2) holds in Lp′(0, T ;V ). By comparison, we need for Proposition
5.1 more restrictions on the data but we obtain a solution u satisfying stronger
properties; in particular, the equation (5.2) holds in H. The requirement that
u(t) ∈ D(A) is specifically related to boundary conditions when A corresponds to
an elliptic boundary-value problem.

For some examples of initial-boundary-value problems we recall the following
model problem from III.4. Let G be a bounded domain in Rn whose boundary
∂G is a C1 manifold, 2 ≤ p < ∞, for simplicity take a(ξ) = |ξ|p−1 sgn ξ, and let
b ∈ L∞(G), and c ∈ L∞(∂G) be non-negative. Let V be a closed subspace of
W 1,p(G) and define

Au(v) =
∫

G

{ n∑
j=1

a
(
∂ju(x)

)
∂jv(x) + b(x)a

(
u(x)

)
v(x)

}
dx(5.3)

+
∫

∂G

c(s)a
(
γu(s)

)
γv(s) ds , u, v ∈ V .

From Lemma 5.1, its following Remark, and II.5, we find that A is m-accretive on
H = L2(G). Moreover, Au = f ∈ L2(G) if and only if

u ∈ V : Au(v) =
∫

G

fv dx , v ∈ V .
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We shall assume C∞0 (G) ⊂ V , so this implies

(5.4.a) A(u) = −
n∑

j=1

∂ja(∂ju) + ba(u) in D∗ .

Moreover, we shall show below that

(5.5) D(A) = {u ∈ V : A(u) ∈ L2(G) and ∂Au = 0} ,

where ∂A is the abstract boundary operator given by

(5.4.b) ∂Au =
n∑

j=1

a(∂ju)νj + ca(γu)

on smooth functions u ∈ D(A). Here ~ν = (v1, . . . , νn) is the unit outward normal
on ∂G. It follows, then, that the value of Au is determined by the formal operator
(5.4.a), the restriction of A(u) to C∞0 (G), and the domain D(A) is determined
by both the stable boundary conditions imposed by u ∈ V and the variational
boundary conditions ∂Au = 0 obtained from the abstract Green’s formula as the
extension of (5.4.b).

We shall use the abstract Green’s theorem to verify (5.5) and, hence, that the
domain of A consists of those vectors which satisfy both the stable boundary con-
ditions specified by V and the variational or complementary boundary conditions
specified by ∂A. First we recall the Green’s formula from II.5. Let V , B be D
Banach spaces and γ : V → B a strict homomorphism with kernel V0. Then γ is an
abstract trace operator and its dual γ∗ is an isomorphism of B′ onto the annihilator
V ⊥0 in V ′. Let H be a Hilbert space for which we identify H = H ′, let V ⊂ H with
a continuous injection, and let V0 be dense in H. Thus we have H ⊂ V ′ and H ⊂ V ′0
by restriction. Assume A : V → V ′ is given and define the corresponding formal
operator Au = Au |V0 as the indicated restriction. Set D = {u ∈ V : Au ∈ H};
this is the domain of the abstract boundary operator . For each u ∈ D, we find
Au−Au ∈ V ⊥0 , so there is a unique ∂Au ∈ B′ for which Au−Au = γ∗(∂Au) in V ′.
This defines ∂A : D → B′, and we have

(5.6) Au(v) = (Au, v)H + ∂Au(γv) , u ∈ D , v ∈ V .

This is the abstract Green’s formula for A.
Next we use (5.6) to characterize the restriction of A to H. Recall that we

defined D(A) = {u ∈ V : Au ∈ H}. If u ∈ D(A), then there is an f ∈ H for which
Au = f in V ′, hence, by (5.5)

(Au, v)H + ∂Au(γv) = (f, v)H , v ∈ V .

This holds for each v ∈ V0, and V0 is dense in H, so we obtain successively Au = f
in H and ∂Au = 0 in B′. Conversely, if u ∈ D and ∂Au = 0, it follows from (5.5)
that u ∈ D(A) and Au = Au in H. This completes the proof of (5.5).

We illustrate this further with the examples above. V is a subspace of W 1,p(G)
and A : V → V ′ is given by (5.3). Let γ be the trace operator from V into Lp(∂G)
and let B be the range of γ (restricted to V ) with the inherited quotient norm.
Then the kernel of γ is V0 = W 1,p

0 (G), and this contains C∞0 (G) and so is dense
in H = L2(G). Note also that B ↪→ Lp(∂G) and Lp′(∂G) ⊂ B′. The formal part
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of A is computed from (5.3), and it is given by (5.4). The boundary operator is
computed on the sufficiently smooth functions u ∈ D to be given by

∂Au(ψ) =
∫

G

( u∑
j=1

a(∂ju)νj + c(s)a
(
u(s)

))
ψ(s) ds , ψ ∈ Rg(γ) .

This follows directly from (5.3), (5.4) and (5.6). When we apply Proposition 5.1 in
this situation we obtain a generalized solution u of the nonlinear parabolic equation

(5.7.a) ∂tu−
n∑

j=1

∂ja(∂ju) + ba(u) = f , x ∈ G , t > 0 ,

and this solution satisfies u(t) ∈ D(A) at each t ≥ 0. If V = W 1,p
0 (G), then ∂A = 0

so the last condition in (5.5) is vacuous and the boundary conditions are obtained
solely from u(t) ∈ V ; that is,

(5.7.b) u(s, t) = 0 , a.e. s ∈ ∂G , t > 0 .

If V = W 1,p(G), then the boundary conditions are obtained solely from ∂Au(t) = 0,
so we have

(5.7.c)
n∑

j=1

a
(
∂ju(s, t)

)
νj(s) + c(s)a

(
u(s, t)

)
= 0 , a.e. s ∈ ∂G , t > 0 .

Thus, we can solve (5.7.a) subject to the boundary condition (5.7.b) of Dirichlet
type, and we can likewise solve (5.7.a) subject to the Neumann type boundary
condition (5.7.c). Of course, one needs also to specify the appropriate initial data
u0 ∈ D(A) in either problem in order to obtain a well-posed problem. Other types
of boundary conditions, for example, of mixed or non-local type, can be achieved
by a corresponding choice of V . For each such choice, W 1,p

0 ⊂ V ⊂W 1,p, there will
be a pair of boundary constraints implicit in D(A). See II.5 for some examples.

The preceding examples can be easily modified so as to obtain first-order deriva-
tives in the formal operator (5.4). Such examples show that in some sense the
Proposition 5.1 is sharp: the Cauchy problem can be reversible, hence, there exists
a solution only if the initial data u0 belongs to D(A). (See I.5.) By contrast, those
Cauchy problems associated with a derivative (see Proposition III.4.2), or more
generally with a subgradient, are well-posed for any u0 in the space H, hence, they
are non-reversible. This suggests we consider the extension of the notion of regular
accretive operators to those which are multi-valued.

Assume the spaces V and H are given as above and let A be a monotone
relation from V to V ′, i.e., A ⊂ V × V ′. Then we define a relation A on H by
A = A ∩ (V × H), so its domain is D(A) = {u ∈ V : A(u) ∩ H 6= ϕ}. Such an
operator A is accretive on H. An important example is the case that arises from a
subdifferential.

Lemma 5.2. Let V and H be given as above, and let ϕ : V → R∞ be proper,
convex and lower-semi-continuous. Extend ϕ to all of H as ϕ(v) = +∞ if v ∈ H,
v /∈ V . Assume there is a q > 1 such that

(5.8) lim
‖v‖→∞

(
|v|qH + ϕ(v)

)
= +∞ .
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Then domϕ ⊂ V and ϕ is lower-semi-continuous on H.

Proof. The first conclusion is trivial and the second follows easily. If vn → v
in H and ϕ(vn) → a, then (5.8) shows some subsequence of {vn} converges weakly
in V to v. This leads directly to a proof of the second claim. �

The Lemma 5.2 gives easy sufficient conditions for the hypotheses in the fol-
lowing result.

Proposition 5.2. Let the spaces V and H be given as above, and let ϕ : H →
R∞ be convex and lower-semi-continuous with dom ϕ ∩ V 6= ϕ.

(a) If ∂Hϕ is the subgradient and ∂ϕ is the subdifferential of the restriction
ϕ : V → R∞, then

∂Hϕ ∩ (V ×H) ⊂ ∂ϕ ∩ (V ×H) .

(b) If dom(∂Hϕ) ⊂ V , then ∂Hϕ = ∂ϕ∩(V ×H). Thus, for each f ∈ L2(0, T ;H)
and u0 ∈ dom(ϕ), there exists a unique u ∈ C([0, T ],H) which satisfies
u ∈ W 1,2(δ, T ;H) for 0 < δ < T , u(t) ∈ D(A) at a.e. t ∈ (0, T ),

√
tdu

dt ∈
L2(0, T ;H), ϕ(u(·)) ∈ L1(0, T ), u(0) = u0 and

(5.9)
du

dt
(t) + ∂ϕ

(
u(t)

)
3 f(t) , a.e. t ∈ (0, T ) ,

Also, if u0 ∈ dom(ϕ) then u ∈W 1,2(0, T ;H).

Proof.
(a) If f ∈ H, u ∈ V and f ∈ ∂Hϕ(u), then

(f, v − u)H ≤ ϕ(v)− ϕ(u) , v ∈ H

and so it follows, from f ∈ V ′ and by applying this to v ∈ V , that f ∈ ∂ϕ(u).
(b) In this case, ∂Hϕ = ∂Hϕ∩ (V ×H) is maximal accretive and ∂ϕ∩ (V ×H)

is accretive in H, so by part (a) they are equal. The last part follows from
Theorem 4.3. �

The case (b) holds in the situation of Lemma 5.2, and then the subgradient
A = ∂Hϕ is exactly the accretive operator on H obtained from the subdifferential
A = ∂ϕ. In the case where A is a G-differential, we have already obtained such
results as Proposition III.4.2. For examples of parabolic initial-boundary-value
problems which are resolved by Proposition 5.2, we have (5.7) with initial data
any u0 in L2(G). The details follow easily, as was described at the end of III.4.
Moreover, Proposition 5.2 applies to problems with a multi-valued operator A, such
as those described in II.8 and in IV.5. These Cauchy problems are strictly parabolic
in the sense that initial data u0 in the large space dom(ϕ), the closure in H of
dom(ϕ), leads to a solution u whose value u(t) at any t > 0 belongs to the smaller
set D(A) of smoother functions which satisfy the boundary conditions. This is a
regularizing property of the parabolic problem.

We turn now to evolution problems associated with the stationary problem of
Theorem II.4 or Proposition 2.2, that is, for equations of the form

(5.10)
du

dt
(t) +A

(
u(t)

)
+ ∂ϕ

(
u(t)

)
3 f(t) , a.e. t ∈ (0, T ) ,
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where A is a function from V to V ′ and ϕ is a convex function on V . This can be
regarded as a perturbation of either (5.2) or (5.9). First we record the conditions
sufficient to give a solution of (5.10) with f(t) − u′(t) ∈ H at a.e. t ∈ (0, T ).
Then we show that this solution satisfies u(t) ∈ D(A), i.e., A(u(t)) ∈ H, under
hypotheses of compatibility of A and ϕ. This is an abstract regularity result which
has strong implications for various semilinear parabolic equations and for related
variational inequalities. The point here is to separate the operator in (5.10) into
a smoothing or regularizing part and a singular part which does not destroy the
smoothing effect of the other.

Lemma 5.3. Let V and H be given as above, let A : V → V ′ be bounded,
monotone and demicontinuous, let ϕ : V → R∞ be convex, lower-semi-continuous,
assume ϕ(0) = 0 and

(5.11) lim
‖v‖→∞

|v|2H +Av(v) + ϕ(v)
|v|H

= +∞ .

Then (A+ ∂ϕ) ∩ (V ×H) is m-accretive on H.

Proof. The restriction of A + ∂ϕ to H is clearly accretive, so it suffices to
show that for each f ∈ H there is a

u ∈ V : u+Au+ ∂ϕ(u) 3 f .

For this it suffices by Theorem II.4 that there be a R > 0 such that ‖v‖ > R imply
〈v +Av − f, v〉+ ϕ(v) > 0. But f ∈ H, so this follows from (5.11). �

Proposition 5.3. Let the spaces V and H be given as above, and let ϕ : V →
R∞ be convex and lower-semi-continuous with ϕ(0) = 0. Assume A : V → V ′ is
bounded, monotone and demicontinuous.

(a) If (5.11) holds, then for each u0 ∈ V with (Au0 +∂ϕ(u0))∩H 6= ϕ and each
f ∈ W 1,1(0, T ;H) there exists a unique u ∈ W 1,∞(0, T ;H) with u(0) = u0

and (5.10), and we also have

f(t)−D+u(t) ∈
(
A
(
u(t)

)
+ ∂ϕ

(
u(t)

))
∩H , t ∈ [0, T ] .

(b) If A is m-accretive and if

(5.12) 0 ≤ ϕ
(
(I + εA)−1v

)
≤ ϕ(v) , v ∈ V , ε > 0 ,

then u(t) ∈ D(A) for 0 ≤ t ≤ T , hence,

f(t)− du

dt
(t)−A

(
u(t)

)
∈ ∂ϕ

(
u(t)

)
∩H , a.e. t ∈ (0, T ) .

Proof. Part (a) follows from Theorem 4.1, since Lemma 5.3 shows (A+∂ϕ)∩
V ×H is m-accretive on H. To prove (b), it suffices to show that if there exists a
g ∈ (A(u) + ∂ϕ(u)) ∩H, then u ∈ D(A). Thus, let g −A(u) ∈ ∂ϕ(u) with g ∈ H,
i.e.,

u ∈ V : 〈g −Au, v − u〉 ≤ ϕ(v)− ϕ(u) , v ∈ V .
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For each ε > 0, there is a unique uε = (I + εA)−1u, and we set v = uε in the above
to obtain

〈g −Au, uε − u〉 ≤ 0 , ε > 0 .
Since A is monotone, this implies

〈g −Auε, uε − u〉 =
(
g −A(uε),−εA(uε)

)
H
≤ 0 .

This shows |A(uε)|H ≤ |g|H , ε > 0, so (by passing to a subsequence and changing
notation)

|uε − u|H ≤ ε|g|H , A(uε) ⇀ h in H .

Since A is m-accretive, Proposition 1.6 shows that h = A(u), hence, u ∈ D(A) as
desired. �

Remarks. By taking the case of ϕ ≡ 0 we see that Proposition 5.3 contains
Proposition 5.1. However it does not contain Proposition 5.2 since it does not
imply the regularizing property and in fact does apply to some reversible evolution
equations. The estimate (5.12) is the compatibility condition between A and ∂ϕ;
see Lemma 5.4 below for alternative statements of it and compare (2.6).

We shall develop two examples to illustrate the application of Proposition 5.3
to initial-boundary-value problems for nonlinear parabolic partial differential equa-
tions. These examples contain variational inequalities as special cases, and it will
be clear from the constructions that much more general problems could be obtained
similarly. Also see II.8 and IV.2 above.

Example 5.a. Assume G is a bounded domain in Rn, ∂G is a C1 manifold
with unit outward normal ν, 2 ≤ p <∞, and ϕ0 : R → R∞ is non-negative, convex,
lower-semi-continuous, with ϕ(0) = 0. Set V = W 1,p(G) and define

ϕ(v) =
1
p

∫
G

n∑
j=1

|∂jv(x)|p dx+
∫

∂G

ϕ0

(
γv(s)

)
ds , v ∈ V .

The principle part of ϕ is continuous so as in II.8 we can compute the subdifferential
∂ϕ termwise by Proposition II.7.7. The formal operator, obtained by restricting
∂ϕ(u) to C∞0 (G), is

B(u) = −
n∑

j=1

∂ja(∂ju) , u ∈ V ,

where a(ξ) = |ξ|p−1 sgn(ξ). If Bu ∈ H = L2(G), we obtain the boundary condition

∂B(u) + ∂ϕ0(γu) 3 0 in Lp′(∂G)

from the abstract Green’s Theorem, where ∂B is the boundary operator given by

∂Bu =
n∑

j=1

a(∂ju)νj

on smooth functions, and ∂ϕ0 is the realization of ∂ϕ0 ⊂ R× R in Lp′(∂G).
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Let α : R → R be a monotone, continuous function with α(0) = 0 and

|α(ξ)| ≤ C(|ξ|p−1 + 1) , ξ ∈ R .

The operator A : Lp(G) → Lp′(G) defined by

A(u)(x) = α
(
u(x)

)
, a.e. x ∈ G ,

is bounded, continuous and monotone; see II.3 for such substitution or Nemitskyi
operators. It follows that A, the restriction to H, is m-accretive on H; see Propo-
sition II.8.1. From Proposition II.5 follows the estimate( n∑

j=1

‖∂jv‖p
Lp(G)

)1/p

+ ‖v‖L2(G) ≥ c0‖v‖W 1,p(G) , v ∈W 1,p(G) ;

this shows that (5.11) holds. Moreover, (I + εA)−1(v) = (I + εα)−1(v), and (I +
εα)−1 is Lipschitz and monotone, so (5.12) is true and Proposition 3(b) holds.
Assume u0 ∈ V satisfies

B(u0) ∈ L2(G) , −∂B(u0) ∈ ∂ϕ0(γu0) , α(u0) ∈ L2(G) ,

and that f ∈W 1,1(0, T ;L2(G)) is given. Then there exists a unique

u ∈W 1,∞(0, T ;L2(G))

which is a generalized solution of the initial-boundary-value problem

(5.13.a)
∂u

∂t
(x, t)−

n∑
j=1

∂ja
(
∂ju(x, t)

)
+α

(
u(x, t)

)
= f(x, t) , a.e. x ∈ G , t > 0 ,

(5.13.b)
n∑

j=1

a(∂ju)νj(s) + ∂ϕ0

(
u(s, t)

)
3 0 , a.e. s ∈ ∂G , t > 0 ,

(5.13.c) u(x, 0) = u0(x) , a.e. x ∈ G .

The parabolic equation (5.13.a) and the boundary condition (5.13.b) follow from
(5.10); the regularizing effect is that α(u(·, t)) ∈ L2(G) for each t > 0. Hence,
each of the four terms in (5.13(a)) individually belongs to L2(G) at each t > 0, so
(5.13.b) has both terms in Lp′(∂G) ⊂ B′, and it can be interpreted as above by the
abstract Green’s Theorem.

In Example 5.a it is the higher-order operator ∂ϕ through which the additional
regularity is most effective. The operator A is more regular and thereby makes it
easier to verify the compatibility condition (5.12). Much more general Dirichlet
integrands could be used here, as well as other useful and interesting convex func-
tions such as those in II.8. Moreover, we remark that the restrictions on the data,
u0 and f , can be relaxed by using Proposition 5.2. This follows since A + ∂ϕ is
actually a subdifferential in Example 5.a; thus, it suffices for existence of a solution
to require that

u0 ∈ L2(G) , f ∈ L2
(
G× (0, T )

)
.

The first condition follows from the observation that C∞0 (G) ⊂ dom(ϕ)∩D(A) and
C∞0 (G) is dense in L2(G). Therefore (5.13) is a quasilinear parabolic problem with
the regularizing property : at a.e. δ > 0, u(δ) is in the domain of (A+ ∂ϕ)∩ V ×H
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and then Proposition 5.3(b) applies. For this we need only require additionally that
f ∈W 1,1(δ, T ;L2(G)) for every 0 < δ < T .

Remarks.
(1) In the special situation of (5.13) a solution of (5.10) satisfies α(u(·, t)) ∈

Lp′(G) for each t > 0, even without the regularizing effect obtained from
Proposition 5.3(b). Thus we have B(u(t)) ∈ Lp′(G); this is sufficient to
construct the boundary operator ∂B(u(t)) ∈ B′. This follows from the
discussion of II.5 of the Green’s Theorem; we merely choose ‖ · ‖Lp(G) as the
continuous seminorm on V , and thus Lp′(G) is obtained as the pivot space
which determines the domain of the boundary operator.

(2) Variational inequalities are included in Example 5.a. To illustrate this,
consider the convex function

(5.14) ϕ0(x) =
{

0 , x ≥ 0 ,
+∞ , x < 0 .

Its subgradient is given by

r ∈ ∂ϕ0(s) ⇐⇒ s ≥ 0 , r ≤ 0 , rs = 0 .

Thus the boundary condition (5.13.b) is equivalent to

γ(u) ≥ 0 , ∂B(u) ≥ 0 , ∂Bu(γu) = 0 ,

and this has a “pointwise a.e.” characterization since B ⊂ Lp(∂G). This can
be regarded as a boundary control problem in which one seeks to show there
is a non-negative flux, ∂Bu, which will maintain a non-negative boundary
temperature, γu, and for which no heat flux is supplied at those points on
the boundary where the temperature is positive. By taking similar functions
in the Dirichlet integrand defining ϕ, one could also obtain such variational
inequalities with constraints on the gradient, ∇u.

Before considering the next example, we give a useful characterization of the
compatibility condition (5.12) in the special case where ϕ is given on H.

Proposition 5.4 (Brezis-Pazy). Let A be an m-accretive function on H
and ϕ : H → R∞ be proper, convex and lower-semi-continuous. The following are
equivalent:

(i) ϕ((I + εA)−1x) ≤ ϕ(x), x ∈ H, ε > 0.
(ii) (Aεx,w) ≥ 0, w ∈ ∂ϕ(x), ε > 0.
(iii) (Aεx, ϕ

′
α(x)) ≥ 0, x ∈ H, ε > 0, α > 0.

(iv) (Ax,ϕ′α(x)) ≥ 0, x ∈ D(A), α > 0.
(v) ϕα((I + εA)−1x) ≤ ϕα(x), x ∈ H, α > 0.

Proof. Assume (i). If w ∈ ∂ϕ(x) then

−ε(Aεx,w) =
(
(I + εA)−1x− x,w

)
≤ ϕ

(
(I + εA)−1x

)
− ϕ(x) ≤ 0

so (ii) holds. Assume (ii). Since Aε is monotone

(Aεx−Aε

(
(I + α∂ϕ)−1x

)
, x−

(
(I + α∂ϕ)−1

)
≥ 0 ,
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and x− (I + α∂ϕ)−1x = αϕ′α(x), we obtain

(
Aεx, ϕ

′
α(x)

)
≥
(
Aε

(
(I + α∂ϕ)−1x

)
, ϕ′α(x)

)
≥ 0

from ϕ′α(x) ∈ ∂ϕ((I + α∂ϕ)−1x) and (ii). Letting ε → 0 shows that (iii) implies
(iv). For any x ∈ H we have for y = (I + εA)−1x

ϕα(x)− ϕα(y) ≥ (ϕ′α(y), x− y) = (ϕ′α(y), εAεx)

= ε(ϕ′α(y), Ay) ≥ 0

by (iv), so (iv) implies (v). Finally, note that (i) follows by letting α→ 0 in (v).�

We have already seen examples of such estimates in Example 2.f and Example
2.g, and in Proposition II.9.3 where A is a linear elliptic operator in divergence
form, and ϕ is a convex integrand on Lp(G). This can be extended to nonlinear A
as we illustrate with the following simple case.

Example 5.b. Assume that the domain G, the functions a(·), ϕ0, and the
spaces V = W 1,p(G), H = L2(G) are just as given in Example 5.a. Assume
b ∈ L∞(G) and c ∈ L∞(∂G) are both non-negative, and define A : V → V ′ by
(5.3). Furthermore, define the convex integrand

ϕ(v) =
∫

G

ϕ0

(
v(x)

)
dx if ϕ0(v) ∈ L1(G) , +∞ otherwise ,

as in Proposition II.8.1. To check that (5.12) is satisfied, it suffices by Proposi-
tion 5.4(iv) to verify that(

Au, σ(u)
)
L2(G)

≥ 0 , u ∈ D(A)

for any monotone Lipschitz function σ : R → R with σ(0) = 0. Recall that the
Yosida approximation σ = (ϕ0)α has such properties; see Proposition 1.9. But for
u ∈ D(A) ⊂ V we have v = σ(u) ∈ V , and in (5.3) we obtain

(
Au, σ(u)

)
L2(G)

=
∫

G

{ n∑
j=1

(∂ju)pσ′
(
u(x)

)
+ b(x)

(
u(x)

)p}
dx

+
∫

∂G

c(s)
(
γu(s)

)p
ds ≥ 0 .

The estimate (5.1) holds, so A is m-accretive by Lemma 5.1 and we have the
situation of Proposition 5.3(b). Assume u0 ∈ V satisfies

A(u0) ∈ L2(G) , ∂A(u0) = 0 , u0 ∈ dom(∂ϕ0) ,
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and that f ∈ W 1,1(0, T ;L2(G)) is given. Then there exists a unique generalized
solution u ∈W 1,∞(0, T ;L2(G)) of the initial-boundary-value problem

∂u

∂t
(x, t)−

n∑
j=1

∂ja
(
∂ju(x, t)

)
+ b(x)a

(
u(x)

)
+ v(x, t) = f(x, t) ,(5.15.a)

v(x, t) ∈ ∂ϕ0

(
u(x, t)

)
, a.e. x ∈ G , t > 0 ,(5.15.b)

n∑
j=1

a(∂ju)νj(s) + c(s)a
(
γu(s)

)
= 0 , a.e. s ∈ ∂G , t > 0 ,(5.15.c)

u(x, 0) = x0(x) , a.e. x ∈ G .(5.15.d)

From the fact that the solution of (5.10) satisfies u(t) ∈ D(A), with D(A) given
by (5.5), we obtain the boundary condition (5.15.c) from (5.4.b). This also implies
that (5.15.b) holds with v(·, t) ∈ L2(G) for each t ≥ 0. (From Proposition 5.3(a)
we could only have deduced that v(t) ∈ V ′, and then ∂A(u(t)) and (5.15.c) would
be meaningless.) Finally we note that the operator A above is actually a (sub)
differential, so we can apply Proposition 5.2 and obtain a solution from more general
data, u0, f .

For an example of a variational inequality we choose ϕ0 as in (5.14). Then
(5.15.b) is equivalent to

u(x, t) ≥ 0 , v(x, t) ≤ 0 , u(x, t)v(x, t) = 0 , a.e. x ∈ G , t > 0 .

As before this can be regarded as a distributed control problem in which a non-
negative source, −v(x, t), will maintain a non-negative temperature, u(x, t), and
the source is active (non-zero) only where the temperature is zero.

It is clear that there can be many different ways to obtain a specific initial-
boundary-value problem in the abstract form (5.10). For example, each of (5.13)
and (5.15) can be modified slightly to contain the other if ∂ϕ0 is a function of
the form of α. In Example 5.b the regularity, u(t) ∈ D(A), is effective on both
operators: on the higher-order A because it gives meaning to (5.15.c), and on ∂ϕ
because (5.15.b) contains functions with a pointwise meaning. The compatibility
condition (5.12) is easy to verify because of the simple pointwise form of ϕ. It
is clear that more general operators A could have been used. For example, with
appropriate boundary conditions one could introduce first-order derivatives in A;
see Proposition II.9.3 for an example of linear A of second-order elliptic type with
first-order derivatives.

IV.6. Semilinear Degenerate Evolution Equations

We have previously considered implicit evolution equations, i.e., those in which
the solution is not necessarily differentiated, or even differentiable, but rather some
function of the solution is differentiated in the equation. Such equations were
resolved directly in III.3 and III.6. Here we give an algebraic construction which
directly extends the preceding results to a rather large and very useful class of such
equations.

Let E be a real vector space and denote its algebraic dual space by E∗. Let
B : E → E∗ be linear, symmetric and non-negative, i.e., monotone. This determines
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a semi-scalar-product

b(x, y) = Bx(y), x, y ∈ E ,

and we denote the corresponding seminorm space by Eb. Its continuous dual E′b
is a Hilbert space. Finally, let A ⊂ E × E′b be a relation with domain D = {x ∈
E : A(x) 6= ϕ}; this will be regarded as a multi-valued operator as before, i.e.,
[x,w] ∈ A if and only if w ∈ A(x). A solution of the semilinear equation in E′b

(6.1)
d

dt

(
Bu(t)

)
+A

(
u(t)

)
3 f(t) , 0 < t < T ,

is a function u : [0, T ] → E for which Bu ∈ C([0, T ], E′b), Bu(·) is absolutely
continuous on each [δ, T ], 0 < δ < T , hence, differentiable a.e., and (6.1) holds a.e.
on (0, T ). The Cauchy problem for (6.1) is to find a solution u for which (Bu)(0) =
w0 is specified in E′b. We shall show that (6.1) is equivalent to the standard evolution
equation (4.1) and, from this correspondence, determine conditions on B, A, f and
w0 for which the Cauchy problem is well-posed.

For the moment let’s consider the special case in which b(·, ·) is a scalar-product
and Eb is complete, i.e., Eb is a Hilbert space. Then B is the Riesz isomorphism
onto E′b. Furthermore if A is monotone then any two solutions u1, u2 of (6.1) with
respective data f1, f2 satisfy

d

dt

1
2
‖u1(t)− u2(t)‖2b ≤ ‖f1(t)− f2(t)‖E′

b
‖u1(t)− u2(t)‖b , 0 ≤ t ≤ T ,

and thus Lemma 4.1 implies that

‖u1(t)− u2(t)‖b ≤ ‖u1(0)− u2(0)‖b +
∫ t

0

‖f1(s)− f2(s)‖E′
b
ds , 0 ≤ t ≤ T .

This estimate shows that when A is monotone Eb is the appropriate space in which
solutions are estimated, hence, the space in which to seek solutions. Also, the
solution of the Cauchy problem should be represented by a semigroup which is
generated by some realization of −B−1A. These observations will be developed
below. Note that if we identify Eb

∼= E′b then B is the identity and (6.1) is the
standard evolution equation studied previously.

In this special case where Eb is Hilbert space, (6.1) is equivalent to the equation
in Eb

du

dt
+ B−1 ◦A(u(t)) 3 B−1f(t) , 0 < t < T ,

so we are led to ask whether the composite operator A ≡ B−1 ◦A is m-accretive on
Eb. Here we define [x, y] ∈ A if and only if By = w for some [x,w] ∈ A, and then
we have

(y, z)Eb
= b(y, z) = By(z) = 〈w, z〉 , z ∈ E .

From here it follows that A is accretive in Eb if A is monotone in E×E′b. Also the
range condition, Rg(I +A) = Eb, is fulfilled if and only if Rg(B + A) = E′b. Thus
from Theorem 4.1 it follows that for each absolutely continuous f : [0, T ] → E′b
and each u0 ∈ D there is a unique absolutely continuous solution u : [0, T ] → Eb of
(6.1) with u(0) = u0.



204 IV. ACCRETIVE OPERATORS AND NONLINEAR CAUCHY PROBLEMS

We give two examples to illustrate this situation where B is a Riesz isomor-
phism.

Example 6.a Pseudoparabolic Equation. Let V = W 1,p
0 (G), p ≥ 2, and

suppose the given operator A : V → V ′ is monotone and continuous. Let b(·) ∈
L∞(G) with b(x) ≥ 0, a.e. x ∈ G, and define

〈Bu, v〉 =
∫

G

(u(x)v(x) + b(x)∇u(x) · ∇v(x)) dx, u, v ∈ V .

The completion of V under the continuous seminorm 〈B·, ·〉 1
2 defines the space Eb,

and the imbeddings H1
0 (G) ↪→ Eb ↪→ Lp(G) are continuous. It follows that V ↪→ Eb

is continuous and dense and that E′b ⊂ (H1
0 )′ = H−1. We will have Rg(B+A) ⊃ E′b

if B+A : V → V ′ is onto, and this is the case here since B+A is type M, bounded
and coercive. It follows from Theorem 4.1 that the Cauchy problem for (6.1) has a
unique solution for each u0 ∈ Eb with A(u0) ∈ E′B , i.e., for each u0 ∈ dom(A).

The operator B : V → D(G)∗ is given by Bu = u−∇·b(·)∇u. A solution u(t) of
the Cauchy problem for (6.1) corresponds to a solution of the the mixed parabolic-
pseudoparabolic partial differential equation with initial and first type boundary
conditions

u(t) ∈W 1,p
0 (G) :

∂

∂t
(u(t)−∇ · b(·)∇u(t)) +A(u(t)) = f(t), t ∈ (0, T ),

u(x, 0) = u0(x).

Here the initial condition u0(·) is given as above, and the equation holds in
L∞(0, T ;E′b). The operator A can be chosen as in Example II.5.A, and correspond-
ing problems with boundary conditions of other types can as easily be treated. See
Example III.6.A. Note that the equation here holds in the much smaller space E′b,
i.e., A(u(·)) ∈ L∞(0, T ;E′b), and this is a regularity result for the solution. The
condition on the initial data above will be relaxed in Theorem 6.1 below when A
is a subdifferrential.

Example 6.b Porous Medium Equation. We saw in Example III.6.C how
to choose the spaces and operators to realize the porous medium equation III.6.10.
We repeat the construction here in order to use Theorem 4.1 to obtain the H−1-
solution in a more general setting. Let G be a bounded domain in Rn and assume
2n

n+2 ≤ p < ∞. Let ϕ : R → R∞ be proper, convex, lower semi-continuous and
define the convex integrand Φ : Lp(G) → R∞, 1 ≤ p <∞, by

Φ(u) =
∫

G

ϕ
(
u(x)

)
dx if ϕ(u) ∈ L1(G) , +∞ otherwise.

According to Proposition II.8.1, the function Φ is proper, convex, lower semi-
continuous, and its subdifferential is given by f ∈ ∂Φ(u) if and only if

f ∈ Lp′(G) , u ∈ Lp(G) and f(x) ∈ ∂ϕ
(
u(x)

)
, a.e. x ∈ G .

Define V = Lp(G) and set

A(u) = ∂Φ(u), u ∈ Lp(G) .
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The Riesz mapR : H1
0 → H−1 is the isomorphism defined by the scalar product

Rϕ(ψ) = (ϕ,ψ)H1
0
≡
∫

G

∇ϕ · ∇ψ dx ,

so we have R = −∆. The corresponding scalar product on H−1 is given by

(f, g)H−1 ≡ (R−1f,R−1g)H1
0
, f, g ∈ H−1 ,

and it satisfies

(f, g)H−1 = 〈f,R−1g〉 = 〈R−1f, g〉 , f, g ∈ H−1.

Define
Bu(v) = (u, v)H−1 , u, v ∈ H−1.

The completion of V under the continuous seminorm 〈B·, ·〉 1
2 determines the space

Eb = H−1. We have the continuous imbedding V ↪→ Eb , i.e., E′b = H1
0 (G) ↪→

Lp′(G) = V ′ by the Sobolev imbedding Theorem II.4.3 since p′ ≤ 2n/(n− 2).
The multi-valued operator A is monotone, so the composition A = B−1 · A is

accretive, and it remains to show that Rg(B + A) = Eb. That is, for each f ∈ Eb

we want to solve
u ∈ H−1 : Bu+A(u) 3 f in H1

0 ,

and this is equivalent to solving

w ∈ H1
0 : A−1(w)−∆w 3 −∆f in H−1 .

Now if the monotone graph A−1(·) is a function which satisfies the growth condition

|A−1(ξ)| ≤ K(1 + |ξ|p
′−1), ξ ∈ R,

then the methods of Section II.5 suffice to show that Rg(A−1(·)−∆) = H−1. More
generally, if the convex function ϕ satisfies a lower bound

ϕ(ξ) ≥ K(
|ξ|p

p
− 1), ξ ∈ R,

then the conjugate convex function ϕ∗, whose subgradient is A−1, satisfies the dual
upper bound

ϕ∗(ξ) ≤ K∗(
|ξ|p′

p′
+ 1), ξ ∈ R.

The corresponding convex integrand on Lp′(G) is then continuous, and the methods
of Section II.8 suffice. Note that either condition implies that A(·) is necessarily
onto.

We shall assume that F ∈W 1,∞(0, T ;H−1(G)) and define

f ∈W 1,∞(0, T ;H1
0 (G))

by

f(t)(v) =
∫

G

((−∆)−1F )(x, t)v(x) dx , v ∈ V .
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Assume that u0 ∈ Lp(G) and there is a w ∈ A(u0) ∩H1
0 (G). From the preceding

discussion and Theorem 4.1 we obtain a solution u : [0, T ] → Lp(G) of the porous
medium equation

∂u(t)
∂t

−∆w(t) = F (t) in H−1(G) , w(t) ∈ ∂Φ(u(t)) for a.e. t ∈ (0, T ) ,

w ∈ L∞(0, T ;H1
0 (G) , lim

t→0
u(t) = u0 in H−1(G) ,

with each term of the evolution equation in L∞(0, T ;H−1). This procedure requires
more of the initial function than does Example III.6.C, but it yields a somewhat
stronger solution.

Next, let B be as originally given above, i.e., linear, symmetric and monotone
on the vector space E. From the Cauchy-Schwartz inequality

|b(x, y)|2 ≤ b(x, x)b(y, y) , x, y ∈ E

it follows that B is continuous from Eb into E′b. Denote the kernel of B by

K = {x ∈ E : Bx = 0} = {x ∈ E : b(x, x) = 0}

and the corresponding quotient space by E/K. Thus, each element of E/K is a
coset, x̃ = x + K = {x + y : y ∈ K}, and we can define a scalar-product on this
space by

(6.2) b̃(x̃, ỹ) = b(x, y) , x, y ∈ E .

The completion of E/K with the corresponding norm is a Hilbert space W whose
scalar product is an extension of b̃(·, ·). Let q denote the canonical quotient map,
q(x) = x̃, x ∈ E. Then q is a strict homomorphism of Eb into W , with a dense
range, and so its dual map q′ : W ′ → E′b, given by

q′(g)(x) = g
(
q(x)

)
, g ∈W ′ , x ∈ Eb ,

is an isomorphism. Let B0 : W →W ′ be the Riesz isomorphism given by

B0v(w) = (v, w)W , v, w ∈W .

For each pair x, y ∈ Eb we have by (6.2)

Bx(y) = B0

(
q(x)

)(
q(y)

)
= q′B0q(x)(y) ,

so we have factored the given operator into the form

(6.3) B = q′B0q .

This will play a fundamental role below.
To obtain a similar factorization of the (possibly multi-valued) operator

A : D → E′b we define A0 ⊂W ×W ′ by

g ∈ A0(x̃) if and only if there exists

an x ∈ D with q(x) = x̃ and q′(g) ∈ A(x) .
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Thus, we obtain a relation A0 with domain q[D] = {x̃ : x ∈ D} for which

(6.4) A = q′A0q .

Note that q is not one-to-one, so A0 need not be single-valued, even if A is a
function! The connections between these operators are given as follows.

Lemma 6.1.
(a) For each x̃ = q(x) ∈ W , q′(g) ∈ A(x) if and only if g ∈ A0(x̃), and in this

case, we have q′(g)(x) = g(x̃).
(b) The inclusion q′(g) ∈ (B +A)(x) holds if and only if g ∈ (B0 +A0)(x̃).

Corollary 6.1.
(a) A : D → E′b is monotone if and only if A0 : q[D] →W ′ is monotone.
(b) q′ is a bijection of Rg(B0 +A0) onto Rg(B +A).

Let the operators B and A be given as in Lemma 6.1 and suppose that u is a
solution of (6.1). Since q′ is an isomorphism of W ′ onto E′b, it follows from (6.3)
and (6.4) that ũ ≡ q · u is a solution of

(6.5)
d

dt

(
B0ũ(t)

)
+A0

(
ũ(t)

)
3 f̃(t) , 0 < t < T ,

where f̃(t) = (q′)−1f(t). Conversely, if ũ is a solution of (6.5), then for a.e. t ∈
(0, T ), ũ(t) ∈ q[D], so there is a u(t) ∈ D with q

(
u(t)

)
= ũ(t). Since q′ is an

isomorphism and Bu(t) = q′B0ũ(t), 0 < t < T , it follows that u is a solution of
(6.1). This proves the following.

Lemma 6.2. A function u : [0, T ] → E is a solution of (6.1) if and only if
ũ = q · u : [0, T ] →W is a solution of (6.5).

From Theorem 4.1 and the correspondence between the operators in (6.1) and
(6.5) and between the solutions of these equations as given in Lemma 6.1 and
Lemma 6.2, we obtain the first two parts of our main result.

Theorem 6.1. Let the linear, symmetric and monotone operator B be given
from the real vector space E to its algebraic dual E∗, and let E′b be the Hilbert space
which is the dual of E with the seminorm

|x|b = Bx(x)1/2 , x ∈ E .

Let A ⊂ E × E′b be a relation with domain D = {x ∈ E : A(x) 6= ϕ}.
(a) Assume A is monotone. If uj is a solution of

d

dt

(
Buj(t)

)
+A

(
uj(t)

)
3 fj(t) , 0 < t < T ,

for j = 1, 2, then it follows that

|u1(t)− u2(t)|b ≤ |u1(0)− u2(0)|b(6.6)

+
∫ t

0

‖f1(s)− f2(s)‖E′
b
ds , 0 ≤ t ≤ T .
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If f1 = f2 and if Bu1(0) = Bu2(0) then Bu1(t) = Bu2(t) for all 0 ≤ t ≤ T .
Furthermore, if B+A is strictly monotone then there is at most one solution
of the Cauchy problem for (6.1).

(b) Assume A is monotone and Rg(B + A) = E′b. Then, for each u0 ∈ D and
each f ∈W 1,1(0, T ;E′b), there is a solution u of (6.1) with

Bu ∈W 1,∞(0, T ;E′b) , u(t) ∈ D , all 0 ≤ t ≤ T , and Bu(0) = Bu0 .

(c) Let A be the subdifferential, ∂ϕ, of a convex lower-semi-continuous function
ϕ : Eb → [0,+∞] with ϕ(0) = 0. Then for each u0 in the Eb-closure of
dom(ϕ) and each f ∈ L2(0, T ;E′b) there is a solution u of (6.1) with

ϕ ◦ u ∈ L1(0, T ),
√
t
d

dt
Bu(·) ∈ L2(0, T ;E′b) , u(t) ∈ D , a.e. t ∈ [0, T ] ,

and Bu(0) = Bu0. If in addition u0 ∈ dom(ϕ) then

ϕ ◦ u ∈ L∞(0, T ) ,
d

dt
Bu ∈ L2(0, T ;E′b) .

Proof. In view of the preceding development it suffices to show that part (c)
follows from Theorem 4.3. Now ϕ is lower-semi-continuous on Eb so it follows that
ϕ is constant on each coset x̃ ∈ E/K. This means that a function ϕ̃ : W → [0,∞] is
defined implicitly by ϕ = ϕ̃◦q and the effective domain of ϕ̃ is dom(ϕ̃) = q[dom(ϕ)].
It is a direct consequence of the definitions that

(6.7) ∂ϕ = q′ ◦ ∂ϕ̃ ◦ q .

Specifically, f ∈ ∂ϕ(x) if and only if f = q′(g) with g ∈ ∂ϕ̃(x̃). Thus, comparing
(6.4) and (6.7) we find A0 = ∂ϕ̃. The proof now follows from the preceding case.�

Next we describe how the situation of Theorem 1 can be attained by operators of
the type determined by nonlinear elliptic boundary-value problems. The following
is typical.

Definition. Assume X is a reflexive Banach space, A : X → X ′ is monotone
and demicontinuous, B : X → X ′ is continuous, linear, symmetric and monotone.
Then B, A is a regular pair on X.

For such a pair it follows from Theorem II.2.2 that if f ∈ X ′ and there is an
R > 0 such that

Bv(v) +Av(v) > f(v)
for all v with ‖v‖ > R, then f ∈ Rg(B+A). This proves the following result, which
yields the situation of Theorem 1(b).

Lemma 6.3. If B, A is a regular pair on X, and if

(6.8) lim
‖v‖X→∞

Bv(v) +Av(v)
Bv(v)1/2

= +∞ ,

then Rg(B+A) ⊃ E′b, where Eb is the space X with the seminorm |v|b = Bv(v)1/2,
v ∈ X.

To obtain the situation of Theorem 1(b), we define D = {v ∈ X : A(v) ∈ E′b} and
A(x) = A(x) for x ∈ D.



IV.6. SEMILINEAR DEGENERATE EVOLUTION EQUATIONS 209

Proposition 6.1. Assume B, A is a regular pair on X and (6.8) holds. Then
for each u0 ∈ D and f ∈ W 1,1(0, T ;E′b) there exists a solution u of (6.1) with
Bu ∈W 1,∞(0, T ;E′b), u(t) ∈ D for all t ∈ [0, T ], and Bu(0) = Bu0.

A typical application of Proposition 6.1 would be elliptic-parabolic initial-
boundary-value problems of the form III.6.9 where B corresponds to multiplication
by a function b(x) ≥ 0. When X = W 1,p(G), such a B is continuous if b ∈ Lq∗(G),
where q∗ = p∗/(p∗ − 2) and W 1,p(G) ↪→ Lp∗(G) is continuous.

The boundedness of B can be relaxed as follows.

Lemma 6.4. Assume V is a reflexive Banach space, A : V → V ′ is monotone
and demicontinuous; Eb = {E, b(·, ·)} is a semi-scalar-product space, and B : E →
E′b is the canonical operator, Bu(v) = b(u, v); and E ∩ V is dense in V and dense
in Eb. Set X = E ∩ V , ‖v‖X = ‖v‖V + b(v, v)1/2, v ∈ X. If X is complete, then
B, A is a regular pair on X.

Proof. Since the embeddings V ′ ↪→ X ′, E′b ↪→ X ′, X ↪→ V , X ↪→ Eb are all
continuous, it suffices to show X is reflexive. Consider the map x 7→ [x, x̃] : X →
V ×W , where W is the completion of Eb/K as in the proof of Theorem 6.1. This
is an isomorphism of X onto a closed subspace of a product of reflexive spaces, so
X is reflexive. �

Corollary 6.2. If Eb is complete then B, A is a regular pair on X.

Proof. Let X0 be the completion of X. Then the imbeddings X0 ↪→ V and
X0 ↪→ Eb are continuous, so X0 ⊂ V ∩ Eb = X and X is complete. �

We consider a related class of second-order evolution equations. Let Va be a
semi-scalar-product space whose semi-scalar-product is given by the linear symmet-
ric A : Va → V ′a and whose seminorm is |x|a = Ax(x)1/2. Similarly let C : Vc → V ′c
be the linear symmetric operator determined by the semi-scalar-product on Vc,
and denote the seminorm by |x|c = Cx(x). Set W = Va ∩ Vc with seminorm
|x|W ≡ (A+ C)x(x)1/2. We shall assume

W is dense in Va and in Vc

so we can identify V ′a ↪→ W ′ and V ′c ↪→ W ′ by restriction. Suppose we are given a
relation B from W to W ′, i.e., B ⊂ W ×W ′, and a pair of functions fa : [0, T ] →
V ′a, fc : [0, T ] → V ′c . Then we consider the evolution system

d

dt
Au(t)−Av(t) = fa(t) , 0 < t < T ,(6.9.a)

d

dt
Cv(t) +Au(t) +B(v(t)) 3 fc(t) .(6.9.b)

A solution of (6.9) is a pair of functions u : [0, T ] → Va, v : [0, T ] → W such that
each of Au : [0, T ] → V ′a and Cv : [0, T ] → V ′c are continuous on [0, T ], absolutely
continuous on [δ, T ] for each 0 < δ < T , and (6.9) holds at a.e. t ∈ (0, T ). Note
that necessarily v(t) ∈ dom (B) and that Au(t) + B(v(t)) contains an element of
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V ′c at each such t ∈ (0, T ). The Cauchy problem for (6.9) is to find a solution for
which

Au(0) = w1 ∈ V ′a , Cv(0) = w2 ∈ V ′c
where w1 and w2 are given. We shall obtain the following result as a direct conse-
quence of Theorem 6.1.

Theorem 6.2. Let the spaces Va, Vc, W , the linear, symmetric, monotone
operators A, C, and the relation B be given as above.

(a) Assume B is monotone. If uj, vj are solutions of

d

dt
Auj(t)−Avj(t) = f j

a(t)(6.10.a)

d

dt
Cvj(t) +Auj(t) +B(vj(t)) 3 f j

c (t) , 0 < t < T(6.10.b)

for j = 1, 2, then it follows that

(6.11) (|u1(t)− u2(t)|2a + |v1(t)− v2(t)|2c)1/2

≤ (|u1(0)− u2(0)|2a + |v1(0)− v2(0)|2c)1/2

+
∫ t

0

(|f1
a (s)−f2

a (s)|2V ′
a
+ |f1

c (s)−f2
c (s)|2V ′

c
)1/2 ds , 0 ≤ t ≤ T .

If uj, vj are solutions of (6.9) for j = 1, 2 and if Au1(0) = Au2(0), Cv1(0) =
Cv2(0), then for a.e. t ∈ [0, T ] we have

(6.12) Au1(t) = Au2(t) , Av1(t) = Av2(t) , Cv1(t) = Cv2(t)

and the selections wj(t) = fc(t) − (Cvj(t))′ − Auj(t) ∈ B(vj(t)) satisfy
〈w1(t)−w2(t), v1(t)− v2(t)〉 = 0. Thus, if A+B + C is strictly-monotone,
then v1(t) = v2(t), and if A is strictly-monotone, then also u1(t) = u2(t).

(b) Assume B is monotone, that the seminormed space Va is complete, and
Rg(A + B + C) = W ′. Then for each pair w1 ∈ V ′a, u2 ∈ W with (w1 +
B(u2)) ∩ V ′c non-empty, and each pair fa : [0, T ] → V ′a, fc : [0, T ] → V ′c of
absolutely-continuous functions, there exists a solution of (6.9) with

Au(0) = w1 , Cv(0) = Cu2 .

Proof. In order to obtain Theorem 6.2 as a consequence of Theorem 6.1, set
E = Va×Vc, the indicated product space, and define B~u = [Au , Cv] ∈ V ′a×V ′c = E′b
for ~u = [u, v] ∈ E. Next define the relation A ⊂ E × E′b by ~g ∈ A(~u) if for some
w ∈ B(v), ~g = [−Av ,Au+ w] ∈ V ′a × V ′c . Thus the domain of A is

D = {~u ∈ Va × Va : Au+B(v)) ∩ V ′c is non-empty } .

In case (a) it is clear that A is monotone so (6.11) follows from (6.6). The first and
last equalities in (6.12) follow from (6.11), and the second follows from (6.10.a).
This finishes the proof of (a).

To prove (b) we need to verify the range condition on B+A. For this purpose,
note the equivalence of the equation

~u ∈ D : (B +A)~u 3 ~f , ~f ∈ E′b
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and the system
v ∈W : (A+B + C)v = fc − fa ∈W ′ ,

u ∈ Va : Au = Av + fa ∈ V ′a .
The first has a solution by the range condition, and the second is solvable because
Va is complete, hence, Rg(A) = V ′a. Note that any such solution u, v satisfies Au+
B(v) 3 fc − Cv ∈ V ′c , so [u, v] ∈ D. Thus (b) is obtained from the corresponding
part of Theorem 6.1.

The system (6.9) is actually equivalent to a single equation of second-order. By
eliminating the first component we obtain the equation

(6.13)
d

dt

( d
dt
Cv(t) +Bv(t)− fc(t)

)
+Av(t) = fa(t) , 0 < t < T .

A solution of (6.13) is a function v : [0, T ] → Vc such that Cv : [0, T ] → V ′c is
absolutely continuous with v(t) ∈ D(B) at a.e. t ∈ [0, T ], d

dtCv + B(v) − fc :
[0, T ] → Va is absolutely continuous and (6.13) holds at a.e. t ∈ (0, T ). The Cauchy
problem for (6.13) is to find a solution for which

Cv(0) = v1 ∈ V ′c ,
( d
dt
Cv +B(v)− fc)

)∣∣∣
t=0

= v2 ∈ V ′a

are specified. It is clear that the Cauchy problems for (6.9) and for (6.13) are
equivalent, so Theorem 6.2 gives the following.

Corollary 6.3. Let the spaces Va, Vc,W , the linear operator A, C and the
relation B be given as above.

(a) If B is monotone and A+B+ C is strictly monotone, then there is at most
one solution of the Cauchy problem for (6.13).

(b) If B is monotone, Va is complete, and Rg(A+B + C) = W ′, then for each
pair w0 ∈ W , v0 ∈ V ′a with (v0 + B(w0)) ∩ V ′c non-empty, and each pair
fa : [0, T ] → V ′a, fc : [0, T ] → V ′c of absolutely continuous functions, there
exists a solution of (6.13) with

Cv(0) = Cv0 ,
( d
dt

(Cv) +B(v)− fc

)
(0) = vo .

Remarks. If v1 and v2 are solutions of (6.13) corresponding to two pairs of
data

wj
0, v

j
0 , f j

a , f
j
c , j = 1, 2 ,

then an estimate like (6.11) holds for

|v1(t)− v2(t)|2c +
∣∣∣ d
dt
C(v1(t)− v2(t)) +B0v1(t)−B0v2(t) + (f2

c (t)− f1
c (t)

∣∣∣2
V ′

a

where B0vj(t) denotes the selection from B(vj(t)) determined by the solution vj .
Theorem 6.1 is obtained as the special case of Corollary 6.3 or Theorem 6.2

that results from the choice of A = 0. Thus the three results are equivalent!

In the special case where A is an isomorphism, i.e., the Riesz map of the
Hilbert space Va onto its dual, we obtain an equivalent second-order equation which
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characterizes (essentially) the first component u in (6.9). This is a smoother notion
of solution and requires correspondingly smoother data for existence. A solution of

(6.14)
d

dt

(
C
(dw
dt

))
+B

(dw
dt

)
+Aw(t) = fa(t) + fc(t) , 0 < t < T

is an absolutely continuous w : [0, T ] → Va such that dw
dt (t) ∈ Vc at a.e. t ∈ [0, T ],

C(dw
dt ) : [0, T ] → V ′c is absolutely continuous and (6.14) holds at a.e. t ∈ (0, T ). The

Cauchy problem for (6.14) is to find a solution of (6.14) which satisfies

w(0) = w0 , C
(dw
dt

)
(0) = Cw1

where w0 ∈ Va and w1 ∈ Vc are given. From the change-of-variable

w(t) = u(t)−A−1fa(t) , fa(t) =
d

dt
fa(t)

we obtain the following.

Corollary 6.4. Let the spaces Va, Vc,W , the linear operators A, C and rela-
tion B be given as above.

(a) If B is monotone and A+B+ C is strictly-monotone, then there is at most
one solution of (6.14).

(b) If Va is Hilbert space, so A is isomorphism, B is monotone, and Rg(A+B+
C) = W ′ then for each pair w0 ∈ Va, w1 ∈ D(B) with (Aw0+B(w1)+fa(0))∩
V ′c non-empty and each pair fa[0, T ] :→ V ′a with d

dt fa absolutely continuous
and fc : [0, T ] → V ′c absolutely continuous, there exists a solution of the
Cauchy problem for (6.14).

IV.7. Accretive Operators in Banach Space

Here we begin by extending the notion of accretive operators from Hilbert
space to Banach space. Many of the properties of such operators hold in this more
general setting, and we list some of them. Then we briefly indicate how the proofs
of existence and uniqueness given previously in Hilbert space for the evolution
equation carry over to those special Banach spaces for which the duality map plays
the role of the scalar product, namely, those Banach spaces whose dual is uniformly
convex. The well-posedness of the Cauchy problem in a general Banach space is a
much more difficult topic, and we shall develop it in Section 8.

Let X be a real Banach space. For any non-empty subset C of X we define
|C| ≡ inf{‖x‖ : x ∈ C}. A relation or graph on X is a subset of X ×X. If A is a
relation on X, we define its domain D(A) = {x : [x, y] ∈ A}, range Rg(A) = {y :
[x, y] ∈ A} and inverse A−1 = {[y, x] : [x, y] ∈ A}. Such a relation can be regarded
as a function into the subsets of X with A(x) = {y : [x, y] ∈ A}, and then A is a
(graph of a) function exactly when A(x) is single-valued. We define the usual linear
combinations by

λA = {[x, λy] : [x, y] ∈ A}
A+B = {[x, y + z] : [x, y] ∈ A and [x, z] ∈ B} .
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Definition. The relation A on X is accretive if [xj , yj ] ∈ A for j = 1, 2 implies

‖x1 − x2‖ ≤ ‖(x1 + αy1)− (x2 + αy2)‖

for all α > 0.

This is clearly equivalent to requiring that Jα ≡ (I + αA)−1 be a contraction on
Rg(I + αA) for each α > 0. We shall also define Aα ≡ 1

α (I − Jα) on Rg(I + αA).

Proposition 7.1. Let A be accretive and α > 0.
(a) Aα is Lipschitz with constant 2

α and accretive on Rg(I + αA).
(b) Aα(x) ∈ A ◦ Jα(x) for x ∈ Rg(I + αA).
(c) ‖Aα(x)‖ ≤ |A(x)| , x ∈ D(A) ∩Rg(I + αA).
(d) lim

α→0+
Jα(x) = x , x ∈ D(A) ∩

⋂
α>0

Rg(I + αA)

Proof.
(a) For j = 1, 2 let yj = (I + βAα)(xj). Then yj = (I + β

α (I − Jα))(xj) so

y1 − y2 +
β

α
(Jαx1 − Jαx2) =

(
1 +

β

α

)
(x1 − x2) ,

hence, (
1 +

β

α

)
‖x1 − x2‖ ≤ ‖y1 − y2‖+

β

α
‖Jαx1 − Jαx2‖ ,

and we need only note that Jα is a contraction.
(b) Aαx ∈ 1

α ((I + αA)Jαx− Jαx) = A(Jαx).
(c) Aα(x) = 1

α (Jα(I + αA)x− Jαx) = 1
α (Jα(x+ αy)− Jα(x)) for each y ∈

Ax, so ‖Aαx‖ ≤ ‖y‖.
(d) ‖Jαx−x‖ = α‖Aαx‖ ≤ α|Ax| for x ∈ D(A)∩Rg(I+αA). The convergence

extends by uniform continuity to x ∈ D(A). �

Lemma 7.1. If A is accretive, then Rg(I + αA) = X for all α > 0 if it holds
for some α > 0.

Proof. If Rg(I + αA) = X for some α > 0 and β > α/2, then for w ∈ X
we have (I + βA)x 3 w, or equivalently, (I + αA)x 3 α

βw + (1 − α
β )x, and this is

equivalent to T (x) = x for the strict contraction

T (x) ≡ (I + αA)−1

(
α

β
w +

(
1− α

β

)
x

)
, x ∈ X .

Thus Rg(I + βA) = X for all β > α/2 and by induction for all β > 0. �

We define the relation A to be m-accretive if it is accretive and the above range
condition holds.

Proposition 7.2. Let A be m-accretive. Then (a) A is maximal accretive,
(b) A is closed, and (c) if xα → x and Aαxα → y, then [x, y] ∈ A.
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Proof.
(a) Suppose [x0, y0] ∈ X ×X and

‖x0 − x‖ ≤ ‖(x0 + αy0)− (x+ αy)‖ , α > 0 , [x, y] ∈ A .

Choose [x, y] ∈ A such that x + y = x0 + y0. Then x0 = x and y0 = y, so
[x0, y0] ∈ A.

(b) Let A 3 [xn, yn] → [x0, y0] in X ×X. Since ‖xn − x‖ ≤ ‖(xn + αyn)− (x+
αy)‖ , α > 0 , [x, y] ∈ A, we have ‖x0−x‖ ≤ ‖(x0+αy0)−(x+αy)‖ , α >
0 , [x, y] ∈ A. Part (a) then shows [x0, y0] ∈ A.

(c) Since {Aαxα} is bounded, Jαxα → x. But Aαxα ∈ A(Jαxα), so the result
follows by (b). �

The accretiveness of the relation A on X can be determined by the normalized
duality map J : X → X ′. Indeed, comparing Proposition II.8.4 with Proposition
II.8.6, we find that A is accretive if and only if [xj , yj ] ∈ A for j = 1, 2 implies
there is an f ∈ J(x1 − x2) such that f(y1 − y2) ≥ 0. By definition of J , this f is
characterized by

f ∈ X ′ : f(x1 − x2) = ‖f‖2 = ‖x1 − x2‖2 .

This characterization clearly extends the Hilbert space case where J is the identity
with the identification H ∼= H ′, and it permits the following extension of Theorem
4.1 to the case of uniformly convex X ′.

Theorem 7.1 (Kato). Let A be m-accretive on the Banach space X, and
assume that X ′ is uniformly convex. Let u0 ∈ D(A), f ∈ W 1,1(0, T ;X), and
ω ∈ R. Then there exists a unique function u ∈W 1,∞(0, T ;X) for which u(0) = u0

and

(7.1)
du

dt
(t) +A(u(t)) 3 ωu(t) + f(t) , a.e. t ∈ [0, T ] .

Proof. Suppose u1 and u2 are both solutions of (7.1); then we have

d

dt
(u1(t)− u2(t)) +Au1(t)−Au2(t) 3 ω(u1(t)− u2(t)) .

By Proposition II.8.5 the function ϕ(t) ≡ ‖u1(t)− u2(t)‖ is differentiable a.e., and

‖u1(t)− u2(t)‖ ·
d

dt
‖u1(t)− u2(t)‖ = f(u′1(t)− u′2(t)) , f = J(u1(t)− u2(t)) .

(See Lemma 7.2 below for a direct proof.) Thus applying f to the difference above
yields

‖u1(t)− u2(t)‖ ·
d

dt
‖u1(t)− u2(t)‖ ≤ ω‖u1(t)− u2(t)‖2 ,

and from here we get

‖u1(t)− u2(t)‖ ≤ eωt‖u1(0)− u2(0)‖ , t ≥ 0 ;

this implies uniqueness.

The following is a direct verification of the differentiation-of-norm rule used
above.
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Lemma 7.2. Let u be weakly-differentiable at s, i.e., d
dtf(u(t))|t=s = f(u′(s))

for every f ∈ X ′, and assume t 7→ ‖u(t)‖ is G-differentiable at t = s. Then

‖u(s)‖ d
ds
‖u(s)‖ = f(u′(s)) for each f ∈ J(u(s)) .

Proof. For each h > 0 we have

f (u(s+ h)− u(s)) ≤ (‖u(s+ h)‖ − ‖u(s)‖) ‖f‖ , f ∈ J(u(s)) .

Since u is weakly differentiable at s1 we obtain

f(u′(s)) ≤
(
d

ds
‖u(s)‖

)
‖u(s)‖ ;

the reverse inequality follows similarly. �

We continue with the proof of existence of a solution of (7.1). Consider the
approximate equations

(7.2)
duα

dt
(t) +Aα(uα(t)) = ωuα(t) + f(t) , 0 ≤ t ≤ T

with uα(0) = u0 for each α > 0. Here Aα is prescribed by Proposition 7.1; specif-
ically, each Aα is Lipschitz continuous on all of X, so (7.2) has a unique solution
uα ∈ C1([0, T ];X) with the indicated initial value.

Let α, β > 0 be given. From Lemma 7.2 we obtain

1
2
d

dt
‖uα(t)−uβ(t)‖2 +J(uα(t)−uβ(t)) (Aαuα(t)−Aβuβ(t)) = ω‖uα(t)−uβ(t)‖2 ,

and this gives

‖uα(t)− uβ(t)‖2 ≤ −2
∫ t

0

e2ω(t−s)J(uα − uβ)(Aαuα −Aβuβ) ds .

Since Aαuα ∈ A(Jαuα) and A is accretive, we get

‖uα(t)− uβ(t)‖2

≤ −2
∫ t

0

e2ω(t−s) (J(uα − uβ)− J(Jαuα − Jβuβ)) (Aαuα −Aβuβ) ds

and, hence,

(7.3)
‖uα(t)− uβ(t)‖2

≤ 2
∫ t

0

e2ω(t−s)‖J(uα − uβ)− J(Jαuα − Jβuβ‖ · ‖Aαuα −Aβuβ‖ ds .

On the other hand, by differentiating (7.2) we get

d2

dt2
uα +

d

dt
Aαuα = ω

d

dt
uα +

df

dt
, a.e. on [0, T ] .
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The accretiveness of A yields J(duα

dt )( d
dtAαuα) ≥ 0, so applying J(duα

dt ) to this
equation leads to

1
2
d

dt
‖u′α(t)‖2 ≤ ω‖u′α(t)‖2 + ‖u′α(t)‖ · ‖f ′(t)‖ .

Applying Lemma 4.1 then gives

(7.4) ‖duα(t)
dt

‖ ≤ eωt‖duα(0)
dt

‖+
∫ t

0

eω(t−s)‖f ′(s)‖ ds .

From (7.2) at t = 0 and ‖Aα(u0)‖ ≤ |A(u0)| it follows that for some k > 0,
‖Aαuα(t)‖ ≤ k for 0 ≤ t ≤ T . Thus

‖uα(t)− Jαuα(t)‖ = α‖Aαuα(t)‖ ≤ αk ,

so {uα(t) − Jαuα(t)} converges to zero uniformly on [0, T ]. Since J is uniformly
continuous on bounded sets, (7.3) then shows that u(t) = limα→0 uα(t) exists in
C(0, T ;X). Also (7.4) shows that u is Lipschitz on [0, T ], hence, absolutely contin-
uous.

It remains to show that u is a solution of (7.1). Let [x, y] ∈ A and set xα =
x+ αy, so y = Aα(xα). Since Aα is accretive it follows from (7.2) that

‖uα(t)− xα‖2 ≤ ‖uα(t0)− xα‖2 + 2
∫ t

t0

J(uα(s)− xα)(ωuα(s) + f(s)− y) ds .

By letting α→ 0 we get

(7.5) ‖u(t)− x‖2 − ‖u(t0)− x‖2 ≤ 2
∫ t

t0

J(u(s)− x)(ωu(s) + f(s)− y) ds .

Note that for any pair v, w ∈ X we have

J(v)(w − v) ≤ ‖w‖‖v‖ − ‖v‖2 ≤ 1
2
(‖w‖2 − ‖v‖2) ,

so from (7.5) we obtain

J(u(t0)− x)
(
u(t)− u(t0)

t− t0

)
≤ 1
t− t0

∫ t

t0

J(u(s)− x)(ωu(s) + f(s)− y) ds .

Now if t0 is a point in (0, T ) at which du
dt (t0) exists, then by letting t→ t0 we obtain

J(u(t0)− x)
(
−du
dt

(t0) + ωu(t0) + f(t0)− y

)
≥ 0 .

Since this holds for any [x, y] ∈ A and A is maximal accretive by Proposition 7.2.a,
we have

−du
dt

(t0) + ωu(t0) + f(t0) ∈ A(u(t0)) .

Since u is differentiable at a.e. t0 ∈ [0, T ] we have (7.1). �

Lemma 7.3. If A is m-accretive and B is accretive and Lipschitz, then A+B
is m-accretive.
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Proof. Since B is single-valued, the characterization of accretive by the nor-
malized duality map shows that A+B is accretive. To show A+B is m-accretive,
it suffices to solve

x+ αBx+ αA(x) 3 y for y ∈ X and some α > 0 .

We may choose α such that αB is a strict contraction. But a solution of this
equation is characterized by x = (I +αA)−1(y−αB(x)), the fixed point of a strict
contraction, so there always exists such a solution. �

Corollary 7.1. Let X be a Banach space with uniformly convex dual, X ′.
Let A be a relation on X such that for some ω1 ≥ 0, A + ω1I is m-accretive. Let
B be a Lipschitz function: for some ω2 > 0

‖B(x)−B(y)‖ ≤ ω2‖x− y‖ , x, y ∈ X .

Then for each u0 ∈ D(A), f ∈ W 1,1(0, T ;X) and ω ∈ R there exists a unique
u ∈W 1,∞(0, T ;X) for which u(0) = u0 and

(7.6)
du

dt
(t) +A(u(t)) +B(u(t)) 3 ωu(t) + f(t) , a.e. t ∈ [0, T ] .

Proof. Add (ω1 + ω2)u(t) to both sides of (7.6) and note that B + ω2I is
accretive. �

One can also resolve the periodic problem when the operator is strongly accre-
tive.

Proposition 7.3. Let X be a Banach space with uniformly convex dual, X ′.
Let A be an m-accretive relation on X for which A−ωI is accretive for some ω > 0.
Then for each f ∈W 1,1(0, T ;X), there is a unique solution u ∈W 1,∞(0, T ;X) of

du

dt
(t) +A(u(t)) 3 f(t) , a.e. t ∈ [0, T ] ,(7.7)

u(0) = u(T ) .

Proof. Define K : D(A) → D(A) by K(u0) = u(T ) where u is the solution
of (7.7) with u(0) = u0 given by Theorem 7.1. Then K is a strict contraction with
‖K(u1) − K(u2)‖ ≤ e−ωT ‖u1 − u2‖, so it extends by continuity to all of D(A).
Moreover, it has a unique fixed point u0 ∈ D(A). Furthermore, there is a sequence
un ∈ W 1,∞(0, T ;X) of solutions of (7.7) for which un → u in C(0, T ;X) and
u(0) = u(T ) = u0.

We shall show that u is a solution of (7.7). Since A− ωI is accretive, for each
n we have for h > 0

‖un(t+ h)− un(t)‖ ≤ e−ωt‖un(h)− un(0)‖+
∫ t

0

e−ω(t−s)‖f(s+ h)− f(s)‖ ds .

By taking the limit as n→∞ we get

(7.8) ‖u(t+ h)− u(t)‖ ≤ e−ωt‖u(h)− u(0)‖+
∫ t

0

e−ω(t−s)‖f(x+ h)− f(s)‖ ds
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for all t ∈ [0, T ) and h > 0 with t+ h ∈ [0, T ]. By extending f and u to t ∈ (T, 2T ]
by f(t− T ) and u(t− T ), respectively, we obtain

‖u(T + h)− u(T )‖ ≤ e−ωT ‖u(h)− u(0)‖

+
∫ T−h

0

e−ω(T−s)‖f(s+ h)− f(s)‖ ds

+
∫ T

T−h

e−ω(T−s)‖f(s+ h)− f(T ) + f(0)− f(s)‖ ds .

due to the jump in variation of f at T . The periodicity of u then gives

(1− e−ωT )‖u(h)− u(0)‖ ≤
∫ T

0

e−ω(T−s)‖f(s+ h)− f(s)‖ ds

+ ‖f(T )− f(0)‖1− e−ωh

ω
,

and using this in (7.8) yields

‖u(t+ h)− u(t)‖ ≤ e−ωt(1− e−ωT )−1

{∫ T

0

e−ω(T−s)‖f(s+ h)− f(s)‖ ds

+ ‖f(T )− f(0)‖1− e−ωh

ω

}
+
∫ t

0

e−ω(t−s)‖f ′(s)‖ ds .

Thus u is absolutely continuous on [0, T ] with

‖u′(t)‖ ≤ e−ωt(1− e−ωT )−1

{∫ T

0

e−ω(T−s)‖f ′(s)‖ ds

+ ‖f(T )− f(0)‖

}
+
∫ t

0

e−ω(t−s)‖f ′(s)‖ ds .

This shows u ∈W 1,∞(0, T ;X), and the technique of the proof of Theorem 7.1 will
show that it is a solution of (7.7). �

We shall apply the preceding results to semilinear evolution equations of the
form

du

dt
+Au+ α(u) 3 f

in which A is a linear operator on Lp(G) and α is a maximal monotone graph in
R × R. This is a direct application of the results in II.9 which were motivated by
the example of the elliptic operator

(7.9) A1u = −
n∑

i,j=1

∂j(aij∂iu) +
n∑

i=1

∂i(aiu) + au

with Dirichlet boundary conditions.
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In order to show that the operator “A + α” is m-accretive in Lp(G), we need
to consider the corresponding stationary problem

u+ ε(Au+ v) = f , v ∈ α(u)

for each ε > 0. In order to apply Theorem II.9.5, we shall assume the following:
(i) G is a bounded domain in Rn and A : D(A) → L1(G) is linear, D(A) is

dense in L1(G), and (I + λA)−1 is a contraction on L1(G) for every λ > 0.
(ii) For each f ∈ L1(G) and λ > 0,

sup
G

(I + λA)−1f ≤ (sup
G
f)+ .

(iii) α is a maximal monotone graph in R× R with 0 ∈ α(0).
In this situation it follows by Theorem II.9.5 that for each ε > 0 and f ∈ L1(G)
there is a unique pair u ∈ D(A), v ∈ L1(G) such that

(7.10) u+ ε(Au+ v) = f , v(x) ∈ α(u(x)) , a.e. x ∈ G .

Moreover we can apply Proposition II.9.3 to obtain estimates on any such solution.
If f ∈ Lp(G), 1 < p < ∞, and if u is the solution of (7.10), then we multiply the
equation by σp(u(x)), where σp(s) = |s|p−1 sgn(s) is the monotone duality map for
Lp(G), and integrate to obtain ‖u‖p

Lp ≤ ‖f‖Lp‖u‖p−1
Lp , hence, ‖u‖Lp(G) ≤ ‖f‖Lp(G).

Similarly, multiply by σp(v) ∈ (σp ◦ α)(u) and note that σp ◦ α is maximal
monotone so from Proposition II.9.3 we obtain ‖v‖Lp(G) ≤ ‖f‖Lp(G). We conclude
that if f ∈ Lp(G), the solution u satisfies

u ∈ D(A), Au ∈ Lp(G), and for some v ∈ Lp(G)v(x) ∈ α(u(x)) , a.e. x ∈ G .

We define D(A + α)p to be the set of all such u. Suppose f1, f2 ∈ Lp(G), ε > 0,
and uj , vj are the corresponding solutions of (7.10) for j = 1, 2. Subtracting the
equations, multiplying by σp(u1 − u2), and integrating the products shows that
‖u1− u2‖Lp(G) ≤ ‖f1− f2‖Lp(G). This shows that the operator A+α with domain
D(A+ α)p is m-accretive on Lp(G).

Example. Let G be a bounded domain in Rn, 1 < p < ∞, and let A = A1,
the operator (7.9) in L1(G) constructed in Proposition II.9.1 with domain D(A) =
{u ∈ W 1,1

0 (G) : A1u ∈ L1(G)}. Then u ∈ Lp(G) ∩D(A) and A1u ∈ Lp(G) imply
that u ∈W 1,p

0 (G) ∩W 2,p(G). According to Theorem 7.1, for each u0 ∈ D(A+ α)p

and f ∈W 1,1(0, T ;Lp(G)) there is a unique solution u ∈W 1,∞(0, T ;Lp(G)) of the
semilinear parabolic initial-boundary-value problems

∂u(t)
∂t

+A1u(t) + v(t) = f , v(t) ∈ α(u)(t)) in Lp(G)(7.11.a)

u(t) ∈W 1,p
0 (G) ∩W 2,p(G) , a.e. t ∈ (0, T ) ,(7.11.b)

u(0) = u0 in Lp(G) .(7.11.c)

This provides a rather strong notion of solution, even though α is very general.
One can similarly apply Proposition 7.3 to get periodic solutions of (7.11.a) and
(7.11.b) if a(x)I + α(·) is strongly monotone, i.e., there is an ω > 0 for which

a(x)(r − s)2 + (ξ − η)(r − s) ≥ ω(r − s)2 , [r, ξ], [s, η] ∈ α .
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IV.8. The Cauchy Problem in General Banach Space

Let A be an operator in the Banach space X, possibly multi-valued, and let
f ∈ L1(a, b;X). We shall consider the evolution equation

(8.1) u′(t) +A(u(t)) 3 f(t) , a < t < b .

Definition. An ε-solution of (8.1) is a discretization

D ≡ {a = t0 < t1 < . . . < tN = b; f1, f2, . . . , fN ∈ X}

and a step function v(t) =
{
v0 , t = t0

vj , t ∈ (tj−1, tj ]
for which

tj − tj−1 ≤ ε for 1 ≤ j ≤ N ,

N∑
j=1

∫ tj

tj−1

‖f(t)− fj‖ dt < ε , and

vj − vj−1

tj − tj−1
+A(vj) 3 fj , 1 ≤ j ≤ N .

We note that if A is m-accretive, then v is determined by D.

Definition. A C0-solution of (8.1) is a u ∈ C([a, b], X) such that for every
ε > 0 there is an ε-solution D, v of (8.1) with

‖u(t)− v(t)‖ ≤ ε , a ≤ t ≤ b .

Proposition 8.1.
(a) If u is a C0-solution on [a, b] and [c, d] ⊂ [a, b], then u is a C0-solution on

[c, d].
(b) If u ∈ C([a, b], X) is a C0-solution on [a, c] and on [c, b], then u is a C0-

solution on [a, b].
(c) If u is a C0-solution in X, and X is continuously embedded in the Banach

space Y , then u is a C0-solution in Y .
(d) If each un is a C0-solution of (8.1) with fn, if un → u in C([a, b], X) and

fn → f in L1(a, b;X), then u is a C0-solution of (8.1) with f .
(e) If u is a C0-solution of (8.1) with A1, and A1 ⊂ A2, then u is a C0-solution

of (8.1) with A2.
(f) Let A be the closure of A in X ×X. If u is a C0-solution of (8.1) with A,

then u is a C0-solution of (8.1) with A.

Proof. Parts (a) through (e) are straightforward. To prove (f), let v(t) be an
ε-solution, i.e.,

vj − vj−1

tj − tj−1
+A(vj) 3 f j ,

N∑
j=1

∫ tj

tj−1

‖f(t)− f j‖ < ε .

From the definition of A we obtain [vj , wj ] ∈ A such that

‖vj − vj‖ < ε , ‖wj −
(
f j −

vj − vj−1

tj − tj−1

)
‖ < ε .
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Set fj ≡ wj + vj−vj−1
tj−tj−1

. Then we have

‖fj − f j‖ ≤ ‖wj − f j +
vj − vj−1

tj − tj−1
‖+ ‖vj − vj−1 − (vj − vj−1)

tj − tj−1
‖ < ε+

2ε
tj − tj−1

,

and this gives
N∑

j=1

∫ tj

tj−1

‖fj − f j‖ < ε(b− a) + 2ε ,

so we have
N∑

j=1

∫ tj

tj−1

‖f(t)− fj‖ dt < ε(b− a) + 3ε .

If we have ‖u(t) − v(t)‖ < ε, then ‖u(t) − v(t)‖ < 2ε. Since ε is arbitrary, we are
done. �

Definition. A strong solution of (8.1) is a u ∈ W 1,1(a, b;X) such that (8.1)
holds at a.e. t ∈ (a, b).

We note that from the definition of L1(a, b;X) it follows that any g ∈ L1(a, b;X)
is the L1-limit of measurable step functions. Specifically, for any ε > 0 there is a
partition {tj} with each tj − tj−1 < ε and selections τj ∈ [tj−1, tj ] with

N∑
j=1

∫ tj

tj−1

‖g(t)− gj‖ dt < ε , gj = g(τj) , 1 ≤ j ≤ N .

Moreover, we can achieve this with τj = tj .

Proposition 8.2. Every strong solution is a C0-solution.

Proof. Let ε > 0. By the preceding remark with g = f − u′, we choose a
partition {tj} and selections {fj}, {wj} in X with

N∑
j=1

∫ tj

tj−1

(‖f(t)− fj‖+ ‖u′(t)− wj‖) dt < ε , wj +A(u(tj)) 3 fj , 1 ≤ j ≤ N .

Set vj = u(tj) and

gj = fj +
1

tj − tj−1

∫ tj

tj−1

(u′(t)− wj) dt .

Then we have
vj − vj−1

tj − tj−1
+A(vj) 3 gj , 1 ≤ j ≤ N ,

and ∫ tj

tj−1

‖f(t)− gj‖ dt ≤
∫ tj

tj−1

‖f(t)− fj‖ dt+
∫ tj

tj−1

‖u′(t)− wj‖ dt < ε ,

so v is an ε-solution on D = {{tj}, {gj}}. Also, since u is uniformly continuous,

‖u(t)− v(t)‖ = ‖u(t)− u(ti)‖ → 0 , tj−1 ≤ t ≤ tj ,

uniformly in t, j as the mesh converges to zero, so u is a C0-solution. �
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We have previously considered the differentiability of the norm, ϕ(x) = ‖x‖, in
a general Banach space. For example, for Lemma II.8.2 we observed that the map
t 7→ 1

t (ϕ(x+ ty)− ϕ(x)) is monotone in t > 0 and it is bounded,

−‖y‖ ≤ 1
t

(ϕ(x+ ty)− ϕ(x)) ≤ ‖y‖ ,

so the directional derivative

ϕ′(x, y) ≡ lim
t→0+

‖x+ ty‖ − ‖x‖
t

= inf
t>0

‖x+ ty‖ − ‖x‖
t

exists at every x and in every direction y. Moreover, in Proposition II.8.4 we noted
that ϕ′(x, y) ≥ 0 if and only if

‖x‖ ≤ ‖x+ ty‖ , t > 0 ,

so it follows that the operator A on X is accretive if and only if for [uj , vj ] ∈ A, j =
1, 2, we have

ϕ′(u1 − u2, v1 − v2) ≥ 0 .
Additional properties of ϕ′ are collected here.

Lemma 8.1.
(a) ϕ′(x, ax) = a‖x‖, a ∈ R, and

ϕ′(ax, y) = ϕ′(x, y), ϕ′(x, ay) = aϕ′(x, y), a > 0.
(b) ϕ′(x, y1 + y2) ≤ ϕ′(x, y1) + ϕ′(x, y2) ,

|ϕ′(x, y1)− ϕ′(x, y2)| ≤ ‖y1 − y2‖.
(c) ϕ′(x1, x2 − x1) ≤ ‖x2‖ − ‖x1‖ ≤ −ϕ′(x2, x1 − x2).
(d) If xn → x, yn → y in X, then

lim sup
n→∞

ϕ′(xn, yn) ≤ ϕ′(x, y) .

(e) −‖y‖ ≤ −ϕ′(x,−y) ≤ ϕ′(x, y) ≤ ‖y‖.

Proof. Parts (a), (b) and (c) follow directly from the definition of ϕ′. For
(d), note that for t > 0 we have

ϕ′(xn, yn) ≤ 1
t
(‖xn + tyn‖ − ‖xn‖

so we obtain

lim sup
n→∞

ϕ′(xn, yn) ≤ 1
t
(‖x+ ty‖ − ‖x‖) , t > 0 .

Finally, part (e) follows from the successive estimates

2‖x‖ ≤ ‖x+ ty‖+ ‖x− ty‖ ,

−‖y‖ ≤ ‖x‖ − ‖x− ty‖
t

≤ ‖x+ ty‖ − ‖x‖
t

≤ ‖y‖ . �

We note that the lower limit

lim
t→0−

1
t
(‖x+ ty‖ − ‖x‖) = lim

t→0+

1
t
(‖x‖ − ‖x− ty‖) = −ϕ′(x,−y)
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is the left derivative and this corresponds to estimates that are stronger than ac-
cretive. Finally, corresponding to Proposition II.8.5 we have the following.

Lemma 8.2. If u : [0, T ] → X is right-differentiable (left-differentiable) at
t ∈ (0, T ), then ‖u(·)‖ is also right (respectively, left)-differentiable at t and

D+‖u(t)‖ = ϕ′(u(t), D+u(t)) ,

respectively, D−‖u(t)‖ = −ϕ′(u(t),−D−u(t)).

Corollary 8.1. If u ∈W 1,1(0, T ;X), then ‖u(·)‖ ∈W 1,1(0, T ) and

d

dt
‖u(t)‖ = ϕ′(u(t), u′(t)) = −ϕ′(u(t),−u′(t)) , a.e. t ∈ (0, T ) .

Proof. A composition of Lipschitz and absolutely continuous functions is then
absolutely continuous, hence a.e. differentiable, and there the left and right deriva-
tives agree. �

This leads to the fundamental a-priori estimate for strong solutions of (8.1).

Proposition 8.3. Assume A is accretive on X and that for j = 1, 2 we have

uj ∈W 1,1(0, T ;X) , fj ∈ L1(0, T ;X)

u′j(t) +A(uj(t)) 3 fj(t) , a.e. t ∈ (0, T ) .

Then ‖u1(·)− u2(·)‖ ∈W 1,1(0, T ) and

(8.2)
d

dt
‖u1(t)− u2(t)‖ ≤ ϕ′(u1(t)− u2(t), f1(t)− f2(t) , a.e t ∈ (0, T ) .

Proof. Set vj(t) = fj(t) − u′j(t) ∈ A(uj(t)) so that ϕ′(u1(t) − u2(t), v1(t) −
v2(t)) ≥ 0. From Corollary 8.1 and Lemma 8.1(b) we obtain

d

dt
‖u1(t)− u2(t)‖ = −ϕ′ (u1(t)− u2(t),−(u′1(t)− u′2(t)))

≤ ϕ′
(
u1(t)− u2(t), f1(t)− f2(t)

)
− ϕ′

(
u1(t)− u2(t), v1(t)− v2(t)

)
.

a.e. on (0, T ), so the estimate follows. �

Corollary 8.2. If u1, u2 are strong solutions of (8.1) on [0, T ] with data
f1, f2, respectively, then

‖u1(t)− u2(t)‖ ≤ ‖u1(0)− u2(0)‖+
∫ t

0

‖f1(s)− f2(s)‖ ds , 0 ≤ t ≤ T .

We can obtain a discrete version of (8.2) in the following form.
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Proposition 8.4. Assume A is accretive on X and that an ε-solution of (8.1)
is given by

v(t) = vj ,

tj−1 < t ≤ tj ,

vj − vj−1

tj − tj−1
+A(vj) 3 fj , 1 ≤ j ≤ N .

Then we have for each [x, y] ∈ A

(8.3)
‖vj − x‖ − ‖vj−1 − x‖

tj − tj−1
≤ ϕ′(vj − x, fj − y) , 1 ≤ j ≤ N .

Proof. From Lemma 8.1 we have successively

‖vj − x‖ − ‖vj−1 − x‖
tj − tj−1

≤ −ϕ′(vj − x, vi−1 − vi)
tj − tj−1

= −ϕ′(vj − x,
vj−1 − vj

tj − tj−1
+ fj − y − (fj − y))

≤ −ϕ′
(
vj − x,

(
vj−1 − vj

tj − tj−1
+ fj

)
− y

)
+ ϕ′(vj − x, fj − y)

≤ 0 + ϕ′(vj − x, fj − y) . �

Next we develop an integral version of (8.2).

Lemma 8.3. For ε > 0 let there be given a pair of real-valued step functions

V ε(t) = V ε
j , F ε(t) = F ε

j , tj−1 < t ≤ tj ,

where the mesh of the partition 0 < t1 < t2 < . . . < tNε = T goes to zero with ε.
Assume V ε → V in C[0, T ], |F ε| ≤ g ∈ L1(0, T ), F (t) = lim supε→0 F

ε(t), and
that

V ε
j − V ε

j−1

tj − tj−1
≤ F ε

j , 1 ≤ j ≤ Nε .

Then we have

V (t)− V (s) ≤
∫ t

s

F , 0 ≤ s ≤ t ≤ T .

Proof. By an easy induction there follows

V ε
m − V ε

n ≤
m∑

j=n+1

F ε
j (tj − tj−1) , 1 ≤ n ≤ m ≤ Nε ,

so the desired estimate follows by dominated convergence. �

Now apply Lemma 8.3 to (8.3). Since ϕ′ is upper-semi-continuous this leads to the
following.
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Corollary 8.3. Assume A is accretive on X, f ∈ L1(0, T ;X) and u is a
C0-solution of (8.1). Then for each [x, y] ∈ A we have

(8.4) ‖u(t)− x‖ ≤ ‖u(s)− x‖+
∫ t

s

ϕ′(u(τ)− x, f(τ)− y) dτ , 0 ≤ s ≤ t ≤ T .

Proposition 8.5. Assume A is accretive on X, fj ∈ L1(0, T ;X), and uj is a
C0-solution of (8.1) with fj for j = 1, 2. Then we have

∫ b

a

(‖u1(t)− u2(σ)‖ − ‖u1(s)− u2(σ)‖) dσ

+
∫ t

s

(‖u1(τ)− u2(b)‖ − ‖u1(τ)− u2(a)‖) dτ(8.5)

≤
∫ b

a

∫ t

s

ϕ′(u1(τ)− u2(σ) , f2(τ)− f2(σ)) dτ dσ ,

for 0 ≤ s < t < T , 0 ≤ a < b ≤ T .

Proof. Choose D = {0 = t0 < t1 < · · · < tN = T ; f1, · · · fN ∈ X} and a
corresponding ε-solution v(t) = vj on (tj−1, tj ] for the equation

u′2 +A(u2) 3 f2 .

From Corollary 8.3 with u = u1 and f = f1 we obtain from (8.4)

‖u1(t)− vj‖ − ‖u1(s)− vj‖ ≤
∫ t

s

ϕ′
(
u1(τ)− vj , f1(τ)− fj +

vj − vj−1

tj − tj−1

)
dτ

≤
∫ t

s

(
ϕ′
(
u1(τ)− vj , f1(τ)− fj) + ϕ′(u1(τ)− vj ,

vj − vj−1

tj − tj−1

))
dτ .

The latter term in this integrand is bounded by

‖u1(τ)− vj−1‖ − ‖u1(τ)− vj‖
tj − tj−1

,

so we obtain

‖u1(t)− vj‖ − ‖u1(s)− vj‖+
∫ t

s

‖u1(τ)− vj‖ − ‖u1(τ)− vj−1‖
tj − tj−1

dτ

≤
∫ t

s

ϕ′(u1(τ)− vj , f1(τ)− fj) dτ ,

0 ≤ s < t ≤ T , 1 ≤ j ≤ N .
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Multiply by tj − tj−1 and sum for j = n+ 1, n+ 2, . . . ,m to obtain∫ tm

tn

(‖u1(t)− v(σ)‖ − ‖u1(s)− v(σ)‖) dσ

+
∫ t

s

(‖u1(τ)− v(tm)‖ − ‖u1(τ)− v(tn)‖) dτ

≤
∫ tm

tn

∫ t

s

ϕ′(u1(τ)− v(σ), f1(τ)− f(σ)) dτ dσ

where f(σ) = fj for σ ∈ (tj−1, tj). Letting ε→ 0 with v ≡ vε → u2 and f = fε →
f2 leads to (8.5). �

Remark. Define the functions

u(t, s) ≡
{ ‖u1(t)− u2(s)‖ , 0 ≤ s ≤ t ≤ T

0 , 0 ≤ t ≤ s ≤ T

F (t, s) ≡
{
ϕ′(u1(t)− u2(s) , f1(t)− f2(s)) , 0 ≤ s ≤ t ≤ T ,
0 , 0 ≤ t ≤ s ≤ T

for which we can write (8.5) in the form∫ b

a

(u(t, σ)− u(s, σ)) dσ +
∫ t

s

(u(τ, b)− u(τ, a)) dτ

≤
∫ b

a

∫ t

s

F (τ, σ) dτ dσ .(8.5′)

If it were true that u(·, ·) is absolutely continuous in each variable, then this would
imply that

∂u

∂t
+
∂u

∂s
≤ F (t, s) ,

hence, d
dσu(σ, σ) ≤ F (σ, σ) and then

u(t, t) ≤ u(s, s) +
∫ t

s

F (σ, σ) dσ .

This suggests the proof of the following.

Theorem 8.1 (Benilan-Crandall-Evans). Assume that A is accretive on
X, fj ∈ L1(0, T ;X), and that uj is a C0-solution of (8.1) with fj for j = 1, 2.
Then we have

(8.6) ‖u1(t)− u2(t)‖ ≤ ‖u1(s)− u2(s)‖

+
∫ t

s

ϕ′ (u1(σ)− u2(σ) , f1(σ)− f2(σ)) dσ , 0 ≤ s ≤ t ≤ T ,

and therefore

‖u1 − u2‖C(0,T ;X) ≤ ‖u1(0)− u2(0)‖X + ‖f1 − f2‖L1(0,T ;X) .
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Proof. The plan is to obtain (8.6) from (8.5′) by regularization. For this we
choose a

ρ ∈ C∞0 (−1, 1) : 0 ≤ ρ(x) ,
∫ 1

−1

ρ(x) dx = 1

and define ρε(x) = 1
ερ(

x
ε ) for ε > 0. In R2 we define convolutions

uε(t, σ) =
∫ ∫

R2
ρε(ξ)ρε(η)u(t− ξ, σ − η) dξ dη ,

Fε(τ, σ) =
∫ ∫

R2
ρε(ξ)ρε(η)F (τ − ξ, σ − η) dξ dη .

Then we obtain∫ b

a

(uε(t, σ)− uε(s, σ)) dσ +
∫ t

s

(uε(τ, b)− uε(τ, a)) dτ

=
∫∫

R2
ρε(ξ)ρε(η)

{∫ b

a

(u(t− ξ, σ − η)− u(s− ξ, σ − η)) dσ

+
∫ t

s

(u(τ − ξ, b− η)− u(τ − ξ, a− η)) dτ
}
dξ dη

=
∫∫

R2
ρε(ξ)ρε(η)

{∫ b−η

a−η

(u(t− ξ, σ)− u(s− ξ, σ)) dσ

+
∫ t−ξ

s−ξ

(u(τ, b− η)− u(τ, a− η)) dτ
}
dξ dη

≤
∫∫

R2
ρε(ξ)ρε(η)

{∫ b−η

a−η

∫ t−ξ

s−ξ

F (τ, σ) dτ dσ
}
dξ dη

=
∫∫

R2
ρε(ξ)ρε(η)

{∫ b

a

∫ t

s

F (τ − ξ, σ − η) dτ dσ

}
dξ dη

=
∫ b

a

∫ t

s

Fε(τ, σ) dτ dσ ,

0 < ε ≤ a ≤ b ≤ T , 0 < ε ≤ s ≤ t ≤ T ,

where the inequality above follows from (8.5′). Now let λ > 0 and set

Fλ(t, σ) =
1
λ

(‖u1(t) + λf1(t)− (u2(σ) + λf2(σ))‖ − ‖u1(t)− u2(σ)‖)

and note that F (t, σ) ≤ Fλ(t, σ), hence, their convolutions satisfy

Fε(t, σ) ≤ Fλ
ε (t, σ) .

By applying our Remark to the estimate above we obtain

uε(t, t) ≤ u2(s, s) +
∫ t

s

Fλ
2 (σ, σ) dσ , 0 < ε ≤ s ≤ t ≤ T .
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Since u is continuous, uε(t, t) → u(t, t) as ε→ 0. Once we show that∫ t

s

Fλ
ε (σ, σ) dσ →

∫ t

s

Fλ(σ, σ) dσ

then (8.6) will follow and we are done.
But Fλ is of the form of the difference of two functions ‖g1(τ) − g2(σ)‖ with

gj ∈ L1(0, T ;X), so it suffices to consider

∣∣∣ ∫ t

s

(‖g1(σ)− g2(σ)‖ε − ‖g1(σ)− g2(σ‖) dσ
∣∣∣

=
∣∣∣ ∫∫

R2

∫ t

s

ρε(ξ)ρε(η)(‖g1(σ − ξ)− g2(σ − η)‖ − ‖g1(σ)− g2(σ)‖) dσ dξ dη
∣∣∣

≤
∫∫

R2

∫ t

s

ρε(ξ)ρε(η)‖g1(σ − ξ)− g1(σ)− g2(σ − η) + g2(σ)‖ dσ dξ dη

≤
∫

R

∫ t

s

ρε(ξ)‖g1(σ − ξ)− g1(σ)‖ dσ dξ

+
∫

R

∫ t

s

ρε(η)‖g2(σ − η)− g2(σ)‖ dσ dη ,

and each of these converges to zero by standard results on the mollifier in L1. �

We turn now to the question of existence of a C0-solution of (8.1) and begin
with the Cauchy problem for the corresponding homogeneous equation

(8.7) u′(t) +A(u(t)) 3 0 , 0 < t < T , u(0) = u0

with m-accretive A and u0 ∈ D(A). For this case we shall show that the linear
interpolants of ε-solutions for a uniform partition of [0, T ] are Cauchy in C(0, T ;X).
The non-homogeneous equation will be easily resolved then by Proposition 8.1
applied to step-functions approximating a given f ∈ L1(0, T ;X).

Given T > 0 and an integer M ≥ 1, consider the sequence defined by

um = (I + sA)−mu0 , 0 ≤ m ≤M , s = T/M .

That is, we have equivalently

um + sam = um−1 , am ∈ A(um) , 1 ≤ m ≤M .

Let a0 ∈ A(u0). The following two estimates are basic.

Lemma 8.4 (Lipschitz).

‖um − um−1‖ ≤ s‖a0‖ , ‖um − u0‖ ≤ ms‖a0‖ , m = 1, 2, . . . ,M .
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Proof. For m = 1 we note

u1 − u0 + s(a1 − a0) = −sa0

so ‖u1 − u0‖ ≤ s‖a0‖. For m > 1 we have

um − um−1 + s(am − am−1) = um−1 − um−2

from which ‖um − um−1‖ ≤ ‖um−1 − um−2‖ follows by accretiveness again. �

Lemma 8.5 (Comparison). Let um be as above and

vn = (I + τA)−nu0 , 0 ≤ n ≤ N , τ = T/N ,

where N > M , hence θ ≡ τ/s ∈ (0, 1). Then

‖um−vn‖ ≤ θ‖um−1−vn−1‖+(1−θ)‖um−vn−1‖ , 1 ≤ m ≤M , 1 ≤ n ≤ N .

Proof. From the inclusions

um−vn ∈ um−1−vn−1−sAum+τAvn = um−1−vn−1−τ(Aum−Avn)−(s−τ)Aum

and
(s− τ)Aum 3 s− τ

s
(um−1 − um) ,

we have

um − vn + τ(Aum −Avn) 3 um−1 − vn−1 − (1− θ)(um−1 − um)
= θ(um−1 − vn−1) + (1− θ)(um − vn−1) .

This yields the desired estimate. �

Now set am,n ≡ ‖um−vn‖ andK = ‖a0‖. According to the preceding estimates,
we are in the situation of the following.

Proposition 8.6. Consider the rectangular grid

R ≡ {0, 1, 2, . . . ,M} × {0, 1, 2, . . . , N}

with boundary grid

∂R ≡ {0} × {0, 1, . . . , N} ∪ {0, 1, . . . ,M} × {0} .

If the function a : R→ R+ satisfies

am,0 ≤ msK , 0 ≤ m ≤M ,

a0,n ≤ nτK , 0 ≤ n ≤ N , and

am,n ≤ θam−1,n−1 + (1− θ)am,n−1 , 0 < m ≤M , 0 < n ≤ N ,

with θ = τ/s ∈ (0, 1), then

(8.8) am,n ≤ K
[
nτ(s− τ) + (ms− nτ)2

]1/2
.
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Let u, v ∈ C(0, T ;X) be the piece-wise linear functions for which u(ms) = um

and v(nτ) = vn. Then for each t ∈ [0, T ] we have

t = ms+ ξ = nτ + η , 0 ≤ ξ < s , 0 ≤ η < τ ,

and furthermore

u(t) = um + (um+1 − um)
ξ

s
, v(t) = vn + (vn+1 − vn)

η

τ
.

It follows, then, from (8.8) that

‖u(t)− v(t)‖ ≤ ‖um − vn‖+ ‖um+1 − um‖+ ‖vn+1 − vn‖
≤ ‖a0‖[T (s− τ) + (ξ − η)2]1/2 + ‖a0‖(s+ τ)(8.9)

≤ ‖a0‖[T (s− τ) + s2]1/2 + ‖a0‖(s+ τ) ,

and this goes uniformly to zero as s = 1
M ≥ τ = 1

N → 0. Thus, the piece-wise
linear interpolants of {um} converge uniformly to some u ∈ C(0, T ;X). Since the
corresponding step functions converge uniformly to u, it is a C0-solution of (8.7),
and it is Lipschitz continuous with

‖u(t)− u(s)‖ ≤ |t− s| inf{‖a‖ : a ∈ A(u0)} .

Except for the proof of Proposition 8.6, this gives the following.

Proposition 8.7. Let A be m-accretive on the Banach space X and u0 ∈
D(A). There is a unique u ∈ C([0,∞), X) such that, for every T > 0, u is a
C0-solution of (8.7) on [0, T ] and u is Lipschitz.

The following is an immediate extension of Proposition 8.7.

Theorem 8.2 (Crandall-Liggett). Assume A is accretive on the Banach
space X and that Rg(I + λA) ⊃ D(A) for every λ > 0. Let u0 ∈ D(A). Then
u(t) ≡ limm→∞(I + t

mA)−mu0 exists uniformly on each [0, T ], and u is the unique
C0-solution of (8.7).

Proof. For each ε > 0 there is a [u, v] ∈ A with ‖u− u0‖ < ε. Set

um(t) = (I + sA)−mu , um(t) = (I + sA)−mu0

for t = ms+ ξ, 0 ≤ ξ < s. Then from (8.9) we obtain

‖um(t)− un(t)‖ ≤ ‖v‖
√
Ts+ s2 = ‖v‖T

√
1
M

+
1
M2

, n ≥ m ≥M ,

so we have

‖um(t)− un(t)‖ ≤ ‖v‖T
√

1
M

+
1
M2

+ 2ε .

This shows um → u in C(0, T ;X). Note that um is the 1
M -solution for the dis-

cretization D = {0, 1
M , 2

M , . . . , T ; 0, . . . , 0}. �
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Remark. The function u is not necessarily Lipschitz, but we have the estimate

‖um(t)− u(t)‖ ≤ 2‖u0 − u‖+ T‖v‖
√

1
M

+
1
M2

, m ≥M , [u, v] ∈ A .

Corollary 8.4. Assume A is m-accretive in the Banach space X. For each
u0 ∈ D(A) and f ∈ L1(0, T ;X) there is a unique C0-solution of the Cauchy problem

(8.10) u′(t) +A(u(t)) 3 f(t) , 0 < t < T , u(0) = u0 .

Proof. If f is a constant, then A(·) − f is m-accretive and Theorem 8.2
applies. If f is a stepfunction, we get a C0-solution on each interval on which f is
constant, then Proposition 8.1.b gives a solution on [0, T ]. Finally, if f = limn→∞ fn

in L1(0, T ;X) where each fn is a stepfunction, then the corresponding solutions
satisfy limn→∞ un = u in C([0, T ], X) by Theorem 8.1, and from Proposition 8.1.d
it follows that u is a C0-solution. �

We consider next the dependence of the solution u on the operator A. Let’s
begin with the following notion of convergence of operator.

Definition. Let A and An, n ≥ 1, be operators in X. Then {An} is graph-
convergent to A if for every [u, v] ∈ A there are [un, vn] ∈ An, n ≥ 1, with [un, vn] →
[u, v] in X ×X.

Proposition 8.8. Let A and each An, n ≥ 1, be m-accretive in X. Then {An}
is graph-convergent to A if and only if (I+An)−1f → (I+A)−1f for every f ∈ X.

Proof. If we have graph-convergence, then let f ∈ X and set un = (I +
An)−1f , u = (I + A)−1f , so [u, f − u] ∈ A. Then there exist [un, vn] ∈ An with
un → u, vn → f − u, and un = (I +An)−1(un + vn). By accretivity of A,

‖un − un‖ ≤ ‖un + vn − f‖ → 0 .

Since un → u we have un → u.
Conversely, let [u, v] ∈ A, hence, u = (I + A)−1(u + v), and set un ≡ (I +

An)−1(u+ v). Then un → u, vn ≡ u+ v − un → v, and [un, vn] ∈ An, n ≥ 1. �

Corollary 8.5. We have

lim
n→∞

(I + λAn)−1f = (I + λA)−1f , f ∈ X

for some λ > 0 if and only if for all λ > 0.

Corollary 8.6. For each integer m ≥ 1,

lim
n→∞

(I +An)−mf = (I +A)−mf , f ∈ X .
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Proof. Suppose this holds for m = k ≥ 1. Then

‖(I +An)−k−1f − (I +A)−k−1f‖ =

‖(I +An)−1(I +An)−kf ∓ (I +An)−1(I +A)−kf − (I +A)−1(I +A)−kf‖
≤ ‖(I +An)−kf − (I +A)−kf‖+ ‖(I +An)−1f − (I +A)−1f‖ ,

so the result follows by induction on m. �

This leads to the continuous dependence of the C0-solution of (8.10) on the
operator A as well as u0 and f .

Theorem 8.3 (Benilan). Let A and each An, n ≥ 1, be m-accretive in
the Banach space X. Assume {An} is graph-convergent to A. Assume fn → f

in L1(0, T ;X) and let u0, un
0 ∈ D(A) with un

0 → u0 in X. Then un → u in
C([0, T ], X), where u is the C0-solution of (8.10) and each un is the corresponding
C0-solution with An, fn, un

0 , n ≥ 1.

Proof. Consider first the case fn = f = 0. For M > 1 and s = T/M ,
ms ≤ t < (m+ 1)s, m = 0, 1, . . . ,M − 1, we obtain

‖un(t)− u(t)‖ ≤ ‖un(t)− (I + sAn)−mun
0‖

+ ‖(I + sAn)−mun
0 − (I + sAn)−mu0‖

+ ‖(I + sAn)−mu0 − (I + sA)−mu0‖
+ ‖(I + sA)−mu0 − u(t)‖

≤

(
2‖un

0 − un‖+

√
2
M
T‖vn‖

)
+ ‖un

0 − u0‖

+ ‖(I + sAn)−mu0 − (I + sA)−mu0‖

+

(
2‖u0 − u‖+

√
2
M
T‖v‖

)
for any sequence [un, vn] ∈ An and any [u, v] ∈ A. Pick [u, v] as above so that
‖u0 − u‖ is small, then pick [un, vn] so that un → u, vn → v, hence, for large n,
‖un

0 − un‖ is small while ‖vn‖ is bounded. Choose M so large that all terms are
small, except possibly the third. Then letting n get large makes this last one also
arbitrarily small by Corollary 8.6. �

We have established the desired result for the case fn = f = 0, and it easily
follows for any constant, hence, for any step function g = fn = f . Let v, vn be the
solutions of the corresponding problems for u, un but with f, fn replaced by the
step function g. By our preceding remark, vn → v in C([0, T ], X). But we have

‖un − u‖L∞ ≤ ‖un − vn‖L∞ + ‖vn − v‖L∞ + ‖v − u‖L∞

≤ ‖fn − g‖L1 + ‖vn − v‖L∞ + ‖g − f‖L1

and this shows lim supn→∞ ‖un − u‖L∞ ≤ 2‖f − g‖L1 . But g is arbitrary so we
have un → u in C([0, T ], X).
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Finally, we return to the proof of Proposition 8.6. Let R denote the rectangular
grid with boundary ∂R as before.

Lemma 8.6. If the functions a, b from R to R+ satisfy

(8.11.a) am,n ≤ θam−1,n−1 + (1− θ)am,n−1 ,

(8.11.b) bm,n = θbm−1,n−1 + (1− θ)bm,n−1 , 1 ≤ m ≤M , 1 ≤ n ≤ N ,

and a ≤ b on ∂R, then a ≤ b on R.

Proof. This is proved by induction on max(M,N), the size of the grid R. If
max(M,N) = 1 then the only value in question is a1,1, all other points being on
∂R. However, this follows immediately from the calculation,

a1,1 ≤ θa0,0 + (1− θ)a0,1

≤ θb0,0 + (1− θ)b1,0 = b1,1 .

Assuming the result for grids of size less than max(M,N) it suffices to show the
result for the column {1}×{1, 2, . . . , N} and row {1, 2, . . . ,M}×{1}, since this is
the boundary of the smaller (M − 1)× (N − 1) grid {1, 2, . . . ,M} × {1, 2, . . . , N}.
The calculation

am+1,1 ≤ θam,0 + (1− θ)am+1,0

≤ θbm,0 + (1− θ)bm+1,0 = bm+1,1 ,

shows that the first row satisfies the result. The first column is shown to satisfy
the inequality by observing that a1,1 ≤ b1,1, since it is also in the first row, and
assuming that a1,n ≤ b1,n the relation

a1,n+1 ≤ θa1,n + (1− θ)a1,n

≤ θb1,n + (1− θ)b1,n = b1,n+1 ,

shows the next element in the first row satisfies the same inequality. �

The preceding induction argument can also be used to show that given bound-
ary values on ∂R extend to a function on R satisfying scheme (8.11.b). Then
Lemma 8.6 shows this extension to be unique.

Corollary 8.7. If the functions a, b : R → R+ satisfy (8.11) and ap ≤ b on
∂R for some p ≥ 1, then ap ≤ b on R.

Proof. By the convexity of xp,

ap
m+1,n+1 ≤ (θam,n + (1− θ)am+1,n)p

≤ θap
m,n + (1− θ)ap

m+1,n ,

so ap satisfies (8.11.a). �

Lemma 8.7. Let cm,n = K2|ms− nτ |2 on ∂R. Then its extension to all of R
satisfying scheme (8.11.b) satisfies

cm,n ≤ K2
[
(nτ)(s− τ) + |ms− nτ |2

]
.
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Proof. Define dm,n = cm,n −K2|ms− nτ |2 so that

dm+1,n+1 = am+1,n+1 −K2|ms− nτ |2

= θam,n + (1− θ)am+1,n −K2|(m+ 1)s− (n+ 1)τ |2

= θdm,n + (1− θ)dm+1,n −K2|(m+ 1)s− (n+ 1)τ |2

+ θK2|ms− nτ |2 + (1− θ)K2|(m+ 1)s− nτ |2 .

Putting β = (ms− nτ) enables the last three terms in the above to be written

θ|β|2 + (1− θ)|β + s|2 − |β + (s− τ)|2 = τ(s− τ) ,

where the definition θ = τ/s was used to accomplish this simplification. Using this
in the first estimate yields

dm+1,n+1 = θdm,n + (1− θ)dm+1,n +K2τ(s− τ)

implying
max

0≤m≤M
dm,n+1 ≤ max

0≤m≤M
dm,n +K2τ(s− τ) .

Summing on n from zero to n− 1 gives

dm,n ≤ max
0≤m≤M

dm,n

≤ max
0≤m≤M

dm,0 +K2(nτ)(s− τ)

≤ K2(nτ)(s− τ)

where the identity dm,0 = 0 was used in the last step. Inserting the definition of
dm,n into the last estimate finishes the proof. �

Proof of Proposition 8.6. First check to see that am,n ≤ K|ms− nτ | for
(m,n) ∈ ∂R. Define b : R → R+

0 to be the extension satisfying scheme (8.11.b)
of the boundary data bm,n = K|ms − nτ |, (m,n) ∈ ∂R. Then b2 = c on ∂R
where c : R→ R+

0 is the function defined in Lemma 8.7. Lemmas 8.6 and 8.7 then
guarantee

am,n ≤ bm,n

≤ (cm,n)1/2

≤ K
[
nτ(s− τ) + (ms− nτ)2

]1/2
. �

IV.9. Evolution Equations in L1

We present here a collection of examples of the many applications of Theorem
8.2. These include a scalar conservation law, the porous medium equation, and
some systems which contain either of them. Each of these equations or systems will
be regarded as an abstract Cauchy problem in L1(G) of the form

(9.1)
u′(t) + A(u(t)) 3 f(t) in L1(G), t ∈ [0, T ],

u(0) = u0,
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where A is the realization of an appropriate m-accretive operator in L1(G).
The following result is very useful in the construction of these examples, and

we repeat it here with a change of notation for reference.

Theorem II.9.2 (Brezis-Strauss). Let α be a maximal monotone graph in
R× R and 0 ∈ α(0). Let A : D(A) → L1(G) be linear and satisfy the following:

(i) D(A) is dense and (I + λA)−1 is a contraction in L1 for each λ > 0;
(ii) supG(I + λA)−1f ≤ (supG f)+ = ‖f+‖L∞ for f ∈ L1 and λ > 0;
(iii) there is a c > 0 such that

c‖u‖L1 ≤ ‖Au‖L1 for u ∈ D(A).

Then for each f ∈ L1 there is a unique pair u ∈ L1, v ∈ D(A) such that

u+Av = f and v(x) ∈ α
(
u(x)

)
, a.e x ∈ G .

If u1, v1 and u2, v2 are solutions corresponding to f1, f2 as above, then

‖(u1 − u2)+‖L1 ≤ ‖(f1 − f2)+‖L1 , ‖(u1 − u2)−‖L1 ≤ ‖(f1 − f2)−‖L1 ,

and, hence,
‖u1 − u2‖L1 ≤ ‖f1 − f2‖L1 .

If f1 ≥ f2 a.e. then u1 ≥ u2 a.e. on G.

Example 9.a Scalar Conservation Law. The first problem to be discussed
here is an initial-boundary-value problem for a scalar conservation law : find a pair
of functions, u(·, ·), v(·, ·), on (a, b)× (0, T ) which satisfy

(9.2)

∂u

∂t
+
∂v

∂x
= f, v ∈ α(u) in (a, b)× (0, T ) ,

v(a, t) = cv(b, t) for t ∈ (0, T ) ,
u = u0 on [a, b]× {0} ,

where a < b and 0 ≤ c < 1 are given.
The first order spatial operator is the L1 realization of Example I.4.b. Set

D(A) = {v ∈ W 1,1(a, b) : v(a) = cv(b)}. Define A = ∂ on D(A). We show that
it satisfies the hypotheses in Theorem II.9.2. It is easy to check that there is a
solution u ∈ D(A) of (I + λA)(u) = f for each f ∈ L1(a, b) and λ > 0. This
resolvent equation is a simple problem for an ordinary differential equation, and
we can solve it directly. For any such solution, we multiply the equation by sgn(u)
and integrate to get ‖u‖L1(a,b) ≤ ‖f‖L1(a,b), so (i) holds. Multiply the identity

u(x)− k + λAu(x) = f(x)− k

by sgn+(u(x)− k), integrate, and set k = ‖f+‖L∞(a,b) to obtain

‖(u− k)+‖L1(a,b) + (u(b)− k)+ − (cu(b)− k)+ ≤ 0 .

Since k ≥ 0, c ≥ 0 and the positive part function (·)+ is monotone, we have

(u(b)− k)+ − (cu(b)− k)+ ≥ (u(b)− k)+ − (cu(b)− ck)+

≥ (1− c)(u(b)− k)+ ≥ 0 ,
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so (u−k)+ = 0 and we have (ii). To check (iii), we let Au = f . Multiply by sgn(u)
and integrate to get

|u(x)| ≤ |u(a)|+ ‖f‖L1(a,b) , a ≤ x ≤ b .

Integrating Au = f and using the boundary condition give u(a) = c
1−c‖f‖L1(a,b),

so with the above we obtain (iii) from

|u(x)| ≤ 1
1− c

‖f‖L1(a,b) , a ≤ x ≤ b .

Theorem II.9.2 asserts that for any maximal monotone α in R×R with 0 ∈ α(0), the
operator A = A◦α is m-accretive in L1(a, b). Specifically, if λ > 0 and f ∈ L1(a, b)
there is a unique pair

u ∈ L1(a, b) , v ∈W 1,1(a, b) ,

for which v(a) = cv(b) and

u(x) + λ∂v(x) = f(x) , v(x) ∈ α(u(x)) , a.e. x ∈ (a, b) ,

and the mapping f 7→ u is an L1(a, b)-contraction.
From Theorem 8.2 it follows that there is a unique C0 solution of the initial-

boundary-value problem (9.2), and that it is obtained as the limit of solutions of
the corresponding problem with the backward difference approximations of the time
derivative. It is easy to show by examples that such partial differential equations do
not admit smooth solutions, not even continuous solutions, even if α(·) is a smooth
invertible function and the initial data u0(·) is smooth. For the case of a smooth
function α(·) the equation has the form

∂u

∂t
+ α′(u)

∂u

∂x
= f,

where α′(u) is the signal speed . Thus, any solution u is constant along a trajectory
x(t) with the signal speed x′(t) = α′(u(x(t), t)), and this speed depends on the value
of the solution, u. In particular, if α′(u) is increasing and positive, then waves move
rightward and get steeper until they cease to be functions. However, it is known
that the solution obtained here is the entropy solution of the scalar conservation
law.

Example 9.b Porous Medium Equation. We consider the Dirichlet initial-
boundary-value problem for the porous medium equation: find a pair of functions,
u(·, ·), v(·, ·), on G× (0, T ) for which

ut −∆v = f, v ∈ α(u) in G× (0, T ) ,(9.3.a)
v = 0 on ∂G× (0, T ) ,(9.3.b)
u = u0 on G× {0} ,(9.3.c)

where α(·) is a maximal monotone graph as above, G is a bounded domain in Rm,
and T > 0 denotes the length of the time interval.
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We record here a special case of Proposition II.9.1. Define D(A) = {v ∈
W 1,1

0 (G) : Av ∈ L1(G)}, where Av = f ∈ L1(G) means

v ∈W 1,1
0 (G) :

∫
G

∇v · ∇w =
∫

G

fw , w ∈W 1,∞
0 (G) .

Thus, Av = −∆v ∈ L1(G) with Dirichlet boundary conditions. Let α be given as
above. Then for each λ > 0 and f ∈ L1(G) there is a unique pair

u ∈ L1(G) , v ∈W 1,1
0 (G)

for which the Laplacian ∆v ∈ L1(G), and

u(x)− λ∆v(x) = f(x) , v(x) ∈ α(u(x)) , a.e. x ∈ G .

The mapping f 7→ u is a contraction in L1(G). The operator A = A◦α corresponds
to the stationary problem for the porous medium equation, and the above shows that
it is m-accretive in L1(G). Thus, Theorem 8.2 gives the existence and uniqueness
of the C0 solution of (9.3) in L1(G) for each appropriate choice of initial data,
uo, and source term, f . One can construct similar operators by varying either the
linear elliptic part, −∆, as in Proposition II.9.1, or the boundary conditions. It is
not difficult to add perturbations, such as β(u), especially if β is continuous and
monotone, but more generality leads to some difficulties, especially if both α and
β are multi-valued.

There is a wealth of information on the regularity of solutions of the porous
medium equation, and it is intimately dependent on the form of the function (or
graph), α. One can show by examples that the derivative ∂u

∂t need not even exist
without further assumptions on α. In particular, it is known that if α is Lipschitz
continuous, then the component v of the solution of (9.3) is continuous; if α−1 is
Lipschitz continuous, then u is continuous and ∂u

∂t ∈ L2(G). The first case occurs
in the example of the Stefan Problem in which the function has the degenerate
form α(s) = s− + (s − 1)+, and the singular case arises in problems of partial
saturation in which α−1(s) = 1 + (s − 1)−. Even the sense in which the partial
differential equation is satisfied can be an issue. If α is continuous and u is bounded,
then it follows that the equation holds in the sense of generalized functions, i.e., in
D(G)∗. If α is onto, then it can be shown that the L1 solution is also the (strong)
H−1−solution and thereby satisfies the partial differential equation in D(G)∗.

We can give an explicit example for the case in which the graph α satisfies
α(0) ⊃ [0, 1] and α(x) = {1} for x ∈ [0, 1]. Thus, neither α nor α−1 is continuous.
It is easy to check that the pair of functions given on t < 1

8 by

u(x, t) = H(x−
√

2t)−H(x− 1 +
√

2t)

v(x, t) = min
x√
2t,

1,
1− x√

2t

for x ∈ G ≡ (0, 1), and u = v = 0 on t > 1
8 , is the unique solution of (9.3)

with u0 = 1 and f = 0. Note that this solution u is continuous into L1(0, 1) and
differentiable into H−1(0, 1).
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Example 9.c Evolution Equations with Hysteresis. We consider a sys-
tem consisting of a parabolic partial differential equation and an ordinary differ-
ential equation which are nonlinearly coupled by the difference of the unknowns.
This system has the form

∂

∂t
α(u(x, t))−∆u(x, t)− γ(v(x, t)− u(x, t)) 3 f(x, t) ,(9.4.a)

∂

∂t
β(v(x, t)) + γ(v(x, t)− u(x, t)) 3 g(x, t) , x ∈ G , t ∈ (0, T ] ,(9.4.b)

u(s, t) = 0 , s ∈ ∂G ,(9.4.c)

in which u = u(x, t) and v = v(x, t) are functions defined on a bounded domain G
in Euclidean space Rm, and T > 0. The component (9.4.a) contains a generalized
porous medium equation, and we make no assumptions of strict monotonicity of
α(·). In particular, we allow the degenerate case α(·) ≡ 0, and this reduces (9.4) to
a pseudoparabolic equation.

When each of α(·), β(·) and γ(·) is a monotone (non-decreasing) function, the
inclusion symbols, 3, are replaced by the corresponding equality symbol. Such sys-
tems arise in many contexts, for example, in the diffusion of chemicals through a
saturated porous medium in which (9.4.b) models adsorbtion onto immobile non-
diffusive sites. In that case, u is the concentration of a chemical species in the fluid
which occupies the pores and v is the concentration on the surface of the medium.
These are called first order kinetic models, and they can be regarded as a degen-
erate case of corresponding parallel flow models which contain an additional term
−∆v(x, t) in (9.4.b). This diffusion term has been deleted because of the immobility
of the concentration in the adsorbtion sites.

We set B = L1(G)× L1(G) and define an operator A on B by A([u, v]) 3 [f, g]
if u ∈W 1,1

0 (G), v ∈ L1(G) satisfy

−∆u = g + f, g ∈ γ(v − u).

The Dirichlet Laplace, −∆, was defined in the previous Example 9.B. The operator
equation [u, v] +A([u, v]) 3 [f, g] in B is equivalent to the system

u ∈W 1,1
0 (G), u−∆u− ξ = f,

v ∈ L1(G), v + ξ = g, ξ ∈ γ(v − u),

for some ξ ∈ L1(G). This system is equivalent to

u−∆u+ (v − u)− (g − u) = f,

v − u+ ξ = g − u, ξ ∈ γ(v − u),

and likewise to

u−∆u+ [(I + γ)−1 − I](g − u) = f,

v − u = (I + γ)−1(g − u).

The second line defines v after u is obtained as the solution of the first line, a
monotone Lipschitz perturbation of an m-accretive operator, so this system always
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has a solution. It is easy to check directly that A is accretive (see below), so it
follows that A is m-accretive on B.

Assume for simplicity that the monotone functions α(·) and β(·) are Lipschitz
continuous. Then the corresponding operators on L1(G) are continuous and ac-
cretive, so it follows that the sum is m-accretive. Thus, for each ε > 0 and each
[f, g] ∈ B there is a unique solution of the system

εuε + α(uε)−∆uε − ξε = f,(9.5.a)
εvε + β(vε) + ξε = g, ξε ∈ γ(vε − uε).(9.5.b)

Now define the composite operator A in B by A([U, V ]) 3 [f, g] if there exist

u ∈W 1,1
0 (G), v ∈ L1(G) : U = α(u), V = β(v)

−∆u = g + f, g ∈ γ(v − u),

that is, A([u, v]) 3 [f, g] in B and U = α(u), V = β(v) in L1(G). The equation

[U, V ] + A([U, V ]) 3 [f, g]

is just the system

U = α(u), α(u)−∆u− ξ = f,

V = β(v), β(v) + ξ = g, ξ ∈ γ(v − u).

In order to show that A is accretive on B, let [f1, g1], [f2, g2] ∈ B and let [U1, V1],
[U2, V2] be corresponding solutions. Subtract the respective equations to get

(U1 − U2)−∆(u1 − u2)− (ξ1 − ξ2) = f1 − f2,

(V1 − V2) + (ξ1 − ξ2) = g1 − g2,

ξ1 ∈ γ(v1 − u1), ξ2 ∈ γ(v2 − u2).

Multiply the first equation by sgn0(U1−U2 +u1−u2), the second by sgn0(V1−V2 +
v1−v2), integrate over G and add. Note that sgn0(U1−U2+u1−u2) ∈ sgn(U1−U2)
and sgn0(U1 − U2 + u1 − u2) ∈ sgn(u1 − u2), and similar inclusions hold for the
second component. Using Theorem 8.2 and the monotonicity of α(·), β(·) and γ(·),
we obtain

‖U1 − U2‖L1 + ‖V1 − V2‖L1 ≤ ‖f1 − f2‖L1 + ‖g1 − g2‖L1 .

The same procedure holds with A replaced by εA for any ε > 0, so A is accretive
in B.

The sum I + A will be onto B if we can show that for each pair [f, g] ∈ B there
is a unique solution of the system

(9.6)
α(u)−∆u− ξ = f,

β(v) + ξ = g, ξ ∈ γ(v − u).

To this end, for each ε > 0 let uε, vε be the solution of (9.5). As above, we obtain
the estimates

ε‖uε‖L1 + ε‖vε‖L1 + ‖Uε‖L1 + ‖Vε‖L1 ≤ ‖f‖L1 + ‖g‖L1 .
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From (9.5.b) we get a bound on ‖ξε‖L1 and then from (9.5.a) a bound on ‖∆uε‖L1

and on ‖uε‖L1 . We shall assume additionally that β−1 is a continuous function and
that

|s| ≤ C(|β(s)|+ 1), s ∈ R,
for some constant 0 < C. Then Nemytskii’s Theorem II.3.2 shows that β−1 gives
a continuous operator on L1, and this gives a bound on ‖vε‖L1 . Thus, uε, vε is a
solution of (9.6) with right side given by

fε ≡ f − εuε → f, gε ≡ g − εvε → g.

Since A is accretive, we obtain, as before, Cauchy-type estimates which imply that

Uε → U, Vε → V, uε → u, ∆uε → ∆u, ξε → ξ

in L1, by the continuity of β−1 that vε → v, and then that U = α(u), V =
β(v), ξ ∈ γ(v − u). Thus, we obtain a solution of (9.6), and it follows that A is
m-accretive. From Theorem 8.2 it follows that there is a unique C0 solution of
the initial-boundary-value problem (9.4) for each appropriate choice of initial data,
α(u0), β(v0), and source terms, f, g.

Here we have permited γ(·) to be multi-valued. This generalization includes
a very elegant treatment of parabolic problems with variational inequalities. For
example, if we define

γ(s) =
{

0 , s < 0,
[0,∞) , s = 0,

then the solution of (9.4.b) with g = 0 satisfies the Signorini conditions

u(t) ≥ v(t),
∂

∂t
β(v(t)) ≤ 0, (u(t)− v(t))

∂

∂t
β(v(t)) = 0,

in which the exchange term is a unilateral constraint . In particular we obtain such
equations with hysteresis nonlinearities. These appear the form

∂

∂t
(α(u) +H(u))−∆u = f

in which H denotes a rate-independent hysteresis functional, that is, its value de-
pends not only on the current value of the input, u, but also on the history of the
input, and it does not depend on the rate of the input. For a more interesting
example, a simple play hysteresis functional, we choose γ ≡ sgn−1. Then for a
given input, u(t), the output is the solution w(t) ≡ H(u)(t) of the equation

∂

∂t
β(v(t)) + γ(v(t)− u(t)) 3 0,

and it is given by w(t) = β(v(t)), where |v(t)− u(t)| ≤ 1 and
w′(t) ≥ 0 if v(t) = u(t)− 1,
w′(t) = 0 if |v(t)− u(t)| < 1,
w′(t) ≤ 0 if v(t) = u(t) + 1.

By replacing the Dirichlet operator −∆ in (9.4) by an appropriate first-order oper-
ator such as in Example 9.A, we can as well include scalar conservation laws with
unilateral constraints or hysteresis functionals.
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Example 9.d Dynamic Boundary Conditions. A problem with the same
formal structure is the initial-boundary-value problem

∂

∂t
α(u)−∆u 3 f , x ∈ G ,(9.7.a)

∂

∂t
β(v) +

∂u

∂ν
3 g and(9.7.b)

∂u

∂ν
∈ γ(v − u) , s ∈ Γ ,(9.7.c)

for t > 0 with initial values specified at t = 0 for α(u) and β(v). At each t > 0,
u(t) is a function on the bounded domain G in Rm with smooth boundary Γ = ∂G,
and v(t) is a function on Γ. Each of α(·), β(·), γ(·) is a maximal monotone graph
in R×R. Thus, the system (9.7) consists of a generalized porous medium equation
in the interior of G subject to a nonlinear dynamic constraint on the boundary Γ.

A remarkable variety of boundary conditions are included in (9.7). For example,
if β ≡ 0 we have an explicit Neumann boundary condition, and if γ ≡ 0 it is
homogeneous. If β−1 = 0, then v ≡ 0 and we have a nonlinear Robin constraint,
and if γ−1 = 0 we get v = u on Γ, and this satisfies the nonlinear dynamic boundary
condition

∂

∂t
β(u) +

∂u

∂ν
3 g in L1(Γ).

If β−1 = 0 and γ−1 = 0 we have the homogeneous Dirichlet boundary condition
u = 0. Additionally we have seen in the previous Example 9.C that (9.7.b) and
(9.7.c) can represent boundary hysteresis. That is, the map u 7→ β(v) 7→ ∂u

∂ν is a
hysteresis functional. Adsorption in porous media may be governed by conditions
on the surfaces of the solid material that are of hysteresis type. If one assumes that
the process is governed by certain thresholds, the adsorption rate shows a hysteresis
phenomenon of the kind discussed above.

We can show that the problem (9.7) can be realized in the form (9.1) on the
Banach space L1(G)×L1(Γ). In order to illustrate the types of estimates that are
involved for the problem (9.7), we shall do this for simplicity in the special case of
single valued functions, α(·), β(·), γ(·). The operator A is constructed so that the
resolvent equation, (I + εA)([U, V ]) 3 [f, g] with ε > 0, takes the form

U = α(u), U − ε∆u 3 f in L1(G) ,

V = β(v), V + ε
∂u

∂ν
3 g, ∂u

∂ν
∈ γ(v − u), in L1(Γ) .

In order to show how one obtains the essential estimates that are needed, multiply
the respective equations by appropriate functions ϕ on G and ψ on Γ and integrate
to obtain∫

G

(
α(u)ϕ+ ε~∇u · ~∇ϕ

)
dx+

∫
Γ

(
β(v)ψ+ εγ(v−u)(ψ−ϕ)

)
ds =

∫
G

fϕ dx+
∫

Γ

gψ ds .

This suggests the appropriate variational formulation and leads to the essential
a-priori estimates. For example, if we choose ϕ = sgn(u), ψ = sgn(v) and can
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obtain simultaneously ϕ = sgn(α(u)), ψ = sgn(β(v)) as before, then we obtain the
stability estimate

‖α(u)‖L1(G) + ‖β(v)‖L1(Γ) ≤ ‖f‖L1(G) + ‖g‖L1(Γ) .

By estimating similarly the differences of solutions, we establish that the resolvent
map [f, g] 7→ [u, v] 7→ [α(u), β(v)] is a contraction, and this is the accretiveness of
the operator A. Under quite general conditions on the monotone graphs α(·), β(·),
and γ(·), we find that A is m-accretive as desired. Our examples above show that
it is worthwhile to retain as much generality as possible. As before, the Dirichlet
operator −∆ in (9.4) can be replaced by a first-order operator as in Example 9.A
in order to include scalar conservation laws with unilateral constraints or hysteresis
functionals.
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