
Flow and Transport

1. The Transport Equation

We shall describe the transport of a dissolved chemical by water that is
traveling with uniform velocity ν through a long thin tube G with uniform
cross section S. (The very same discussion applies to the description of the
transport of gas by air moving through a pipe.) We identify G with the
open interval (a, b), and the velocity ν > 0 is in the (rightward) positive
direction of the x-axis. Since the tube is very thin, we can assume that
the concentration of the chemical is constant across the cross section S at
each point x ∈ G. Let c(x, t) denote this concentration within the tube at
a point x ∈ G and at time t > 0.

The Conservation Law. The amount of chemical stored in the tube
within a section [x, x + h] of length h > 0 is given by∫ x+h

x

c(s, t)S ds,

The flux q(x, t) at the point x is the mass flow rate of the chemical to
the right per unit area, Equating the rate at which the chemical is stored
within the section [x, x + h] to the rate at which it flows into the section
plus the rate at which the chemical is generated within this section, we
arrive at

d

dt

∫ x+h

x

c(s, t)S ds = S
(
q(x, t)− q(x + h, t)

)
+

∫ x+h

x

F (s, t)S ds

where F (x, t) represents the rate at which chemical is generated per unit
volume. This source term is assumed to be a known function of space and
time. We differentiate the integral on the left side and write the difference
on the right side as an integral of a derivative to obtain∫ x+h

x

∂c(s, t)

∂t
S ds = S

∫ x+h

x

(
−∂q(s, t)

∂x
+ F (s, t)

)
ds.
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Dividing this by Sh and letting h → 0 yield the conservation law

(1)
∂c

∂t
+

∂q

∂x
= F (x, t).

The transport equation. The flux q(x, t) at the point x is given by

(2) q(x, t) = νc(x, t).

This is the mass flow rate of the chemical due to convection, the direct
transport by the moving water. Substituting this into the conservation
law (1) yields the one–dimensional transport equation

(3)
∂c

∂t
+ ν

∂c

∂x
= F (x, t).

This is also known as the first-order wave equation. It is just the differ-
ential form of the conservation equation (1) combined with the constitu-
tive equation (2) of convection. It is assumed here that the velocity ν
is sufficiently large that we can ignore the comparatively smaller effects
of diffusion, i.e., the natural motion of the chemical from areas of high
concentration to those of lower concentration. This will be a major topic
later.

Initial and Boundary conditions. Since the transport equation is
first–order in space and time, one may expect that in order to have a well–
posed problem, one boundary condition and one initial condition should
be specified. We shall see that this is true here. We want to find a solution
of (3) which satisfies an initial condition of the form

c(x, 0) = c0(x), a < x < b,

where c0(·) is given. That is, we need to specify the initial state of the
model. Furthermore we shall specify the value of the concentration at the
left end point where the substance is entering the tube:

c(a, t) = ca(t), t > 0 ,

where ca(·) is given. This type of boundary condition arises when the
value of the concentration at the end point is known, usually from a direct
measurement. Such a condition arises when one sets the boundary con-
centration to a prescribed value, for example, ca(t) = 0 when only pure
water with no chemical is entering the left end of the tube.
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The Solution: introduction of characteristic curve. Consider
the homogeneous transport equation

c = c(x, t) : ct + ν cx = 0 .

If we make a change of variable to the new coordinates ξ, τ which are
defined implicitly by

x = ξ + τ, ν t = ξ − τ,

and use the chain rule,

∂c

∂ξ
=

∂c

∂x

∂x

∂ξ
+

∂c

∂t

∂t

∂ξ
,

we find that the transport equation is equivalent to

c = c(ξ, τ) :
∂c

∂ξ
= 0 .

This shows that the solutions are given by

c(ξ, τ) = f(τ) ,

so the general solution of the transport equation is of the form

c(x, t) = f(x− ν t)

for some function f(·). Now let’s choose this function so that c(·, ·) satisfies
the initial and boundary conditions. The initial condition requires

c(x, 0) = f(x) = c0(x), x ≥ a ,

and the boundary condition likewise requires

c(a, t) = f(a− ν t) = ca(t) , t ≥ 0 ,

so we must have f(s) = ca(
a−s
ν ), s ≤ a. Thus, the solution of the initial-

boundary-value problem is given by

c(x, t) =

{
c0(x− ν t), x ≥ ν t ≥ 0 ,

ca(
a−x+ν t

ν ), a ≤ x ≤ ν t + a ,

Note that the important fact behind these calculations is that the so-
lution was constant along the curves where τ is constant, i.e., along the
curves where x − ν t is constant. It followed from this that the solution
is a pure translation to the right with velocity ν, certainly no surprise in
view of the origin of the transport equation. These special curves are the
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characteristic curves for the transport equation, and they will arise in our
discussions of first–order equations.

Exercise 1. Suppose that ca(·) and c0(·) are continuous. Show that the
solution of the initial-boundary-value problem is continuous if and only if
ca(0

+) = c0(a
+).

Exercise 2. Find the solution of the initial-value problem for the non-
homogeneous transport equation (3) on the region {(x, t) : t ≥ 0} with
the initial condition c(x, 0) = c0(x) on −∞ < x < +∞.

2. The Porous Medium Equation

We shall describe the diffusion of fluid through the long thin tube G
with uniform cross section S. As before, we identify G with the open
interval (a, b), but here we assume that the tube contains a distribution
of particles which impede the flow of the fluid. The fluid is constrained to
flow in the complementary region of open channels and pores not occupied
by the particles. This is the case for flow of fluids through soil or through
any other such porous and permeable material.

The conservation law. Let ρ(x, t) denote the density of the fluid within
the tube at a point x ∈ G and at time t > 0. The mass of fluid stored in
the section [x, x + h] of length h > 0 is given by∫ x+h

x

φ(s)ρ(s, t)S ds,

where φ(x) is the porosity of the porous medium at x, i.e., the volume
fraction of the medium occupied by the fluid. The fluid velocity ν(x, t) at
the point x is the flow rate to the right per unit area measured in volume
of fluid per unit area per time. Equating the rate at which fluid is stored
within the section to the rate at which fluid flows into the section plus the
fluid source rate within this section, we arrive at the fluid conservation
equation for the section [x, x + h],

∂

∂t

∫ x+h

x

φ(s)ρ(s, t)S ds =

S
(
ρ(x, t)ν(x, t)− ρ(x + h, t)ν(x + h, t)

)
+

∫ x+h

x

f(s, t)S ds ,
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where f(x, t) represents the rate at which fluid is inserted per unit volume.
This source term is assumed to be a known function of space and time.
Dividing by Sh and letting h → 0 yields the fluid conservation equation

(4) φ(x)
∂ρ(x, t)

∂t
+

∂(ρ(x, t)ν(x, t))

∂x
= f(x, t).

Darcy’s law. Let p(x, t) denote the pressure of the fluid in the pores.
This is measured in force per unit area. A fundamental experimental
observation in flow through porous media is that the fluid velocity ν(x, t)
at the point x is proportional to the pressure gradient,

(5) ν(x, t) = −k(x)

µ

∂p(x, t)

∂x
.

The constant µ is the viscosity of the fluid, a measure of its resistance
to shear, and this equation defines the permeability k(x) of the porous
medium at the point x ∈ (a, b). It is a measure of the conductivity of
the medium, i.e., the inverse of resistance of the medium to internal flow.
Since fluid flows in the direction of decreasing pressure, the minus sign is
appropriate. In fact, if we write this in the form

µ

k(x)
ν(x, t) = −∂p(x, t)

∂x
,

it is a balance of forces on the fluid as it flows through the medium, and
the coefficient µ/k(x) is the resistance to flow. By substituting Darcy’s law
(5) into the energy conservation law (1), we obtain the one–dimensional
porous medium equation

(6) φ(x)
∂ρ

∂t
− ∂

∂x

(
ρ

k(x)

µ

∂p

∂x

)
= f(x, t).

It remains to specify the state equation, the relation between density ρ
and pressure p for the particular fluid. If the fluid is slightly compressible,
then we write ρ = ρ0e

c(p−p0) where the constant c is the compressibility of
the fluid. In this case the chain rule shows that ρpx = 1

cρx, so we obtain
the linear diffusion equation for fluid density

(7) cφ(x)
∂ρ

∂t
− ∂

∂x

(
k(x)

µ

∂ρ

∂x

)
= c f(x, t).
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If the fluid is incompressible, i.e., if c = 0, then the density is constant
and we obtain the equation

(8) − ∂

∂x

(
ρ0

k(x)

µ

∂p

∂x

)
= f(x, t).

Of course, either of these must be supplemented with appropriate initial
and boundary conditions to get a well posed problem which determines
the density and pressure along the length of the tube, and then these
determine the Darcy velocity (5). This may be then used as data for the
transport equation (3).

3. Dynamics of Chemical Adsorption

We consider next the effect of an adsorbing medium that is distributed
throughout the length of the tube. This material occurs as a distribution
of small particles or fibres, such as a porous medium. In equilibrium
conditions, the concentration a(x) of the chemical that is adsorbed onto
the material at a point x is a specific function of the concentration d(x)
within the pores of the material. The quantities a and d are related by a
given function

a = a(d)

called the adsorption isotherm. That is, a(d) is the concentration of chem-
ical adsorbed in the medium which is at the concentration d. In dynamic
conditions, the concentration d in the medium can be different from the
concentration c in the surrounding water. The relation of the adsorbed
concentration a(x, t) to the external water concentration c(x, t) is given
by

(9)
∂a(d)

∂t
= β(c− d) ,

where d(x, t) is the internal concentration of the chemical in the medium.
The relation (9) is the equation of kinetic adsorption, and it describes
the dynamic response of the adsorbed concentration to a changing con-
centration in the surrounding pores. The constant β is called the kinetic
coefficient of the process.

The simplest form for the adsorption isotherm is the linear relationship
a(d) = α d called the Henry isotherm in which the coefficient α is called
the Henry coefficient. It is a reasonable assumption in regions for which
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the variations of concentrations remain small. In this case, the kinetic
adsorption equation then takes the form

α
∂d

∂t
+ β(d− c) = 0 ,

for which the solution is given explicitly by

d(t) = e−
β
α td(0) +

∫ t

0

β

α
e−

β
α (t−τ)c(τ) dτ .

Thus, the internal medium concentration d follows the true pore concen-
tration exponentially with time constant β

α . In particular, in the limiting
case β →∞, we have instantaneous equilibrium and d ≡ c.

Exercise 3. Note that the kernel appearing above is of the form k(t−
τ), where the function k(t) = β

αe−
β
α (t) satisfies

(1) k(t) ≥ 0,
(2)

∫∞
0 k(t) dt = 1.

Sketch k(·) for very large values of β.

Transport with Adsorption. Consider again the transport of a chem-
ical by water that is traveling with uniform velocity ν through a long thin
tube G with uniform cross section S as before, but now the tube is filled
with the adsorbing material. We let c(x, t) be the concentration of chemi-
cal in the pores surounding the adsorbing material and a(x, t) the concen-
tration of chemical that is adsorbed onto the material. The chemical in the
pores is carried by the water, but the adsorbed chemical is held stationary
at the adsorption site. Thus, the flux is given exactly as before, but the
total concentration of chemical at x ∈ G is given by c(x, t) + a(x, t), so
the conservation law leads to the transport equation with adsorption,

(10)
∂

∂t

(
c + a(d)

)
+ ν

∂c

∂x
= F (x, t).

In the case of instantaneous adsorption rates, β → ∞, we have c = d in
the limit, and the adsorption equation becomes

(11)
∂

∂t

(
c + a(c)

)
+ ν

∂c

∂x
= F.
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This is a quasi-linear partial differential equation of first-order. More gen-
erally, the model of transport with kinetic adsorption leads to the system

∂c

∂t
+ ν

∂c

∂x
+ β(c− d) = F ,(12a)

∂a(d)

∂t
+ β(d− c) = 0 ,(12b)

for the two unknown functions c(x, t), d(x, t). The appropriate initial and
boundary conditions for this system are

c(x, 0) = c0(x), d(x, 0) = d0, a < x < b,

c(a, t) = ca(t), t > 0 .

Note that the condition on d(x, 0) is equivalent to specifying a correspond-
ing condition on the adsorbed concentration, a(x, 0).

In the linear case of the Henry isotherm, we obtain the linear system
of first–order partial differential equations

∂c

∂t
+ ν

∂c

∂x
+ β(c− d) = F ,(13a)

α
∂d

∂t
+ β(d− c) = 0 .(13b)

A Second–order Wave Equation. We continue with an additional
assumption, namely, that the concentration of chemical in the pores is
much less than the amount adsorbed in the material. This amounts to
assuming that most of the available volume in the tube is occupied by
the adsorbing material, and it means that c << a, and so we approximate
c+a ≈ a. Thus, we drop c from the sum c+a in the conservation equation
to obtain in the linear case

ν
∂c

∂x
+ β(c− d) = F ,(14a)

α
∂d

∂t
+ β(d− c) = 0 .(14b)

Exercise 4. Eliminate d above to obtain a single equation of second
order for the unknown c:

(15)
1

β
cxt +

1

ν
ct +

1

α
cx =

1

να
F +

1

νβ
Ft .

What are the appropriate initial and boundary conditions for this equation?
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Exercise 5. Eliminate d from the system (13) to obtain a single equa-
tion of second order for the unknown c. What are the appropriate initial
and boundary conditions for this equation?

4. Longitudinal Vibrations

We describe the longitudinal vibrations in a long narrow cylindrical
rod of cross section area S. The rod is located along the x−axis, and we
identify it with the interval (a, b) in R. The rod is assumed to stretch
or contract in the horizontal direction, and we assume that the vertical
plane cross-sections of the rod move only horizontally. Denote by u(x, t)
the displacement in the positive direction from the point x ∈ [a, b] at the
time t > 0. The corresponding displacement rate or velocity is denoted by
v(x, t) ≡ ut(x, t).

Let σ(x, t) denote the local stress , the force per unit area with which
the part of the rod to the right of the point x acts on the part to the left
of x. Since force is positive to the right, the stress is positive in conditions
of tension. For a section of the rod, x1 < x < x2, the total (rightward)
force acting on that section due to the remainder of the rod is given by(

σ(x2, t)− σ(x1, t)
)
S .

If the density of the rod at x is given by ρ0 > 0, the momentum of this
section is just ∫ x2

x1

ρ0 ut(x, t) S dx .

If we let F (x, t) denote any external applied force per unit of volume in
the positive x−direction, then we obtain from Newton’s second law that

d

dt

∫ x2

x1

ρ0 ut(x, t) S dx =
(
σ(x2, t)− σ(x1, t)

)
S +

∫ x2

x1

F (x, t) S dx

for any such x1 < x2. For a sufficiently smooth displacement u(x, t), we
obtain the conservation of momentum equation

(16) ρ0 utt(x, t)− σx(x, t) = F (x, t) , a < x < b, t > 0 .

The stress σ(x, t) is determined by the type of material of which the rod
is composed and the amount by which the neighboring region is stretched
or compressed, i.e., on the elongation or strain, ε(x, t). In order to define
this, first note that a section [x, x + h] of the rod is deformed by the
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displacement to the new position [x + u(x), (x + h) + u(x + h)]. The
elongation is the limiting increment of the change in the length due to the
deformation as given by

lim
h→0

[u(x + h) + (x + h)]− [u(x) + x]− h

h
=

d u(x)

dx
,

so the strain is given by ε(x, t) ≡ ux(x, t).
The relation between the stress and strain is a constitutive law, usually

determined by experiment, and it depends on the type of material. In
the simplest case, with small displacements, we find by experiment that
σ(x, t) is proportional to ε(x, t), i.e., that there is a constant k called
Young’s modulus for which

(17) σ(x, t) = k ε(x, t) .

The constant k is a property of the material, and in this case we say
the material is purely elastic. The partial differential equation for the
longitudinal vibrations of the rod is obtained by substituting (17) into
(16) to obtain

(18) ρ0 utt − kuxx = F (x, t) , a < x < b, t > 0 .

This is the second-order wave equation.
A rate-dependent component of the stress-strain relationship arises

when the force generated by the elongation depends not only on the mag-
nitude of the strain but also on the speed at which it is changed, i.e.,
on the strain rate εt(x, t) = vx(x, t). The simplest such case is that of a
visco-elastic material defined by the linear constitutive equation

σ(x, t) = k ε(x, t) + µ εt(x, t) ,

in which the material constant µ is the viscosity or internal friction of the
material. In terms of displacement, this has the form

(19) σ(x, t) = kux(x, t) + µuxt(x, t) .

The partial differential equation for the longitudinal vibrations of the
visco-elastic rod is obtained by substituting (19) into (16) to obtain

(20) ρ0 utt − µuxxt − kuxx = F (x, t) , a < x < b, t > 0 .
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For µ > 0 this is the viscous wave equation. In order to see the character
of this equation, note that the highest order terms are of the form

ρ0 vt − µvxx

for the velocity v = ut, so this equation can be expected to be similar to the
diffusion equation. For this reason, (20) is also called the strongly-damped
wave equation.


