
Flow and Transport

1. The Transport Equation

We shall describe the transport of a dissolved chemical by water that is
traveling with uniform velocity ν through a long thin tube G with uniform
cross section S. (The very same discussion applies to the description of the
transport of gas by air moving through a pipe.) We identify G with the
open interval (a, b), and the velocity ν > 0 is in the (rightward) positive
direction of the x-axis. Since the tube is very thin, we can assume that
the concentration of the chemical is constant across the cross section S at
each point x ∈ G. Let c(x, t) denote this concentration within the tube at
a point x ∈ G and at time t > 0.

The Conservation Law. The amount of chemical stored in the tube
within a section [x, x + h] of length h > 0 is given by∫ x+h

x

c(s, t)S ds,

The flux q(x, t) at the point x is the mass flow rate of the chemical to
the right per unit area, Equating the rate at which the chemical is stored
within the section [x, x + h] to the rate at which it flows into the section
plus the rate at which the chemical is generated within this section, we
arrive at

d

dt

∫ x+h

x

c(s, t)S ds = S
(
q(x, t)− q(x + h, t)

)
+

∫ x+h

x

F (s, t)S ds

where F (x, t) represents the rate at which chemical is generated per unit
volume. This source term is assumed to be a known function of space and
time. We differentiate the integral on the left side and write the difference
on the right side as an integral of a derivative to obtain∫ x+h

x

∂c(s, t)

∂t
S ds = S

∫ x+h

x

(
−∂q(s, t)

∂x
+ F (s, t)

)
ds.
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Dividing this by Sh and letting h → 0 yield the conservation law

(1)
∂c

∂t
+

∂q

∂x
= F (x, t).

The transport equation. The flux q(x, t) at the point x is given by

(2) q(x, t) = νc(x, t).

This is the mass flow rate of the chemical due to advection, the direct
transport by the moving water. Substituting this into the conservation
law (1) yields the one–dimensional transport equation

(3)
∂c

∂t
+ ν

∂c

∂x
= F (x, t).

This is also known as the first-order wave equation. It is just the differ-
ential form of the conservation equation (1) combined with the constitu-
tive equation (2) of convection. It is assumed here that the velocity ν
is sufficiently large that we can ignore the comparatively smaller effects
of diffusion, i.e., the natural motion of the chemical from areas of high
concentration to those of lower concentration. This will be a major topic
later.

Initial and Boundary conditions. Since the transport equation is
first–order in space and time, one may expect that in order to have a well–
posed problem, one boundary condition and one initial condition should
be specified. We shall see that this is true here. We want to find a solution
of (3) which satisfies an initial condition of the form

c(x, 0) = c0(x), a < x < b,

where c0(·) is given. That is, we need to specify the initial state of the
model. Furthermore we shall specify the value of the concentration at the
left end point where the substance is entering the tube:

c(a, t) = ca(t), t > 0 ,

where ca(·) is given. This type of boundary condition arises when the
value of the concentration at the end point is known, usually from a direct
measurement. Such a condition arises when one sets the boundary con-
centration to a prescribed value, for example, ca(t) = 0 when only pure
water with no chemical is entering the left end of the tube.



1. THE TRANSPORT EQUATION 3

The Solution: introduction of characteristic curve. Consider
the homogeneous transport equation

c = c(x, t) : ct + ν cx = 0 .

If we make a change of variable to the new coordinates ξ, τ which are
defined implicitly by

x = ξ + τ, ν t = ξ − τ,

and use the chain rule,

∂c

∂ξ
=

∂c

∂x

∂x

∂ξ
+

∂c

∂t

∂t

∂ξ
,

we find that the transport equation is equivalent to

c = c(ξ, τ) :
∂c

∂ξ
= 0 .

This shows that the solutions are given by

c(ξ, τ) = f(τ) ,

so the general solution of the transport equation is of the form

c(x, t) = f(x− ν t)

for some function f(·). Now let’s choose this function so that c(·, ·) satisfies
the initial and boundary conditions. The initial condition requires

c(x, 0) = f(x) = c0(x), x ≥ a ,

and the boundary condition likewise requires

c(a, t) = f(a− ν t) = ca(t) , t ≥ 0 ,

so we must have f(s) = ca(
a−s
ν ), s ≤ a. Thus, the solution of the initial-

boundary-value problem is given by

c(x, t) =

{
c0(x− ν t), x ≥ ν t ≥ 0 ,

ca(
a−x+ν t

ν ), a ≤ x ≤ ν t + a ,

Note that the important fact behind these calculations is that the so-
lution was constant along the curves where τ is constant, i.e., along the
curves where x − ν t is constant. It followed from this that the solution
is a pure translation to the right with velocity ν, certainly no surprise in
view of the origin of the transport equation. These special curves are the



4 FLOW AND TRANSPORT

characteristic curves for the transport equation, and they will arise in our
discussions of first–order equations.

Exercise 1. Suppose that ca(·) and c0(·) are continuous. Show that the
solution of the initial-boundary-value problem is continuous if and only if
ca(0

+) = c0(a
+).

Exercise 2. Find the solution of the initial-value problem for the non-
homogeneous transport equation (3) on the region {(x, t) : t ≥ 0} with
the initial condition c(x, 0) = c0(x) on −∞ < x < +∞.


