
Discrete Models of Diffusion and Vibration

1. Heat Conduction in an Interval

Consider the diffusion of heat energy through a long thin rod G, which we shall
identify with the interval (a, b) in the real number line R. Assume this rod has uniform
cross section S and it is insulated along its length.
Experiment 1. A small section of the rod experiences an increase in the temperature
u(t) during the time interval [t1, t2] when a quantity of heat Q is supplied to it. We find
that this quantity is proportional to the mass and the temperature increment, that is,
for some constant c we have

Q = cρSh(u(t2)− u(t1)) ,

where h is the length, so Sh is the volume of the section, and ρ is the volume-distributed
density. The constant c is a material property called specific heat, and it provides a
measure of the amount of heat energy required to raise the temperature of a unit mass of
the material by a degree. The temperature is then a measure of heat energy. Taking the
limit as t2− t1 → 0, we see the rate at which heat is supplied to this segment is cρShu̇(t).
The superscript dot will be used to denote a time derivative.

We observe that heat (thermal energy) flows from the hotter portions to the cooler
portions of the rod by a process called conduction. The rate of this transfer depends on
the material of the rod.
Experiment 2. The ends x = x1 and x = x2 of a section of the homogeneous rod
of length h = x2 − x1 and cross section S are maintained at temperatures u1 and u2,
respectively. After a period of time (which depends on the material) the temperature
distribution is observed to be linear: the temperature at the position x is given by

u(x) = (
x2 − x

h
)u1 + (

x− x1

h
)u2, x1 ≤ x ≤ x2 .

The quantity of heat per unit time and unit area which flows to the right is called the
flux, and it is observed to be given by

(1) q = −k
u2 − u1

h

for some constant k which is called conductivity. The conductivity is a property of the
material that is a measure of the flow rate per unit area, i.e., the flux q induced by a
given temperature gradient, ∂u

∂x
. The equation (1) defining k is known as Fourier’s law.

The minus sign arises since the heat flow is directed toward the lower temperature.

1



2 DISCRETE MODELS OF DIFFUSION AND VIBRATION

1.1. The Initial-Value Problem. We shall use the two preceding experimental
observations to formulate a discrete model of the flow of heat through the rod. Partition
the rod G = (a, b) into N sections of equal length h, so Nh = b−a. Here we are assuming
that the mesh size h of the partition is so small that we can approximate the temperature
distribution in each section by a constant. Thus, let uj(t) be the temperature in the j-th
section [xj−1, xj] at the time t ≥ 0, where the endpoints are given by xj = a + jh, 0 ≤
j ≤ N . In particular, x0 = a and xN = b. The heat flux past xj is given by

(2a) qj(t) = −k
uj+1(t)− uj(t)

h
, 1 ≤ j ≤ N − 1 .

If we have a source of volume intensity fj(t) in the jth section, this contributes heat at the
rate Shfj(t). The total flux into the jth section from left and right adjoining sections and
the additional heat supply rate from internal sources is given by qj−1(t)−qj(t)+Shfj(t) .
Setting this equal to the rate at which heat is stored, we arrive at the conservation of
energy in the jth section in the form

(2b) cρShu̇j(t) = S(qj−1(t)− qj(t) + hfj(t)) , 1 ≤ j ≤ N .

In order to complete this system, it remains to determine the flux terms q0 and qN at
the ends. The resulting ordinary differential equations are to be supplemented with the
initial conditions

(2c) cρuj(0) = cρuj, 1 ≤ j ≤ N,

where the initial temperatures uj for 1 ≤ j ≤ N are also given. This is an initial-value
problem for the N unknown functions uj(t), 1 ≤ j ≤ N .

Note that we can eliminate the interior flux terms (2a) to obtain an equivalent form
of (2b), the system of ordinary differential equations

(3) cρu̇j(t) =
k

h2
(uj+1(t) + uj−1(t)− 2uj(t)) + fj(t), 2 ≤ j ≤ N − 1.

These will remain the same for any choice of q0 and qN . However the first and last of the
energy equations (2b) will depend on these choices.

1.2. The Boundary conditions. We consider a number of typical possibilities for
determining the endpoint conditions. The first four of these will be illustrated with
a condition at the right end, xN = b. Note that in each of these cases another such
condition will also be prescribed at the left end, x0 = a. In the last example, the two
conditions each involve data at both endpoints.

1. The value of the temperature could be specified at the end point. To obtain
this situation, we append an additional section which is always at a known temperature,
ub(t). Thus, we have

(4) uN+1(t) = ub(t), t > 0 .

This is the Dirichlet boundary condition, or boundary condition of first type which de-
scribes perfect contact with the boundary value. It arises when the value of the end point
temperature is known, usually from a direct measurement. Special cases can also corre-
spond to fixing the boundary temperature at a prescribed value, for example, ub(t) = 0
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if the end is submerged in ice-water. Note that the Dirichlet condition (4) is equivalent
to supplementing the flux equations (2a) with

qN(t) = −k
ub(t)− uN(t)

h

2. The heat flux into the rod could be specified at the end point:

−qN(t)S = fb(t), t > 0 .

This is the Neumann boundary condition, or boundary condition of second type. It
depends on a given source of heat, fb(t) at the end. The homogeneous conditon with
fb(t) = 0 corresponds to an insulated end point.

3. The end of the rod is exposed to a known outside temperature ub(t), and the
flux is determined by an exchange of heat through the end at a rate proportional to the
difference between inside and outside temperatures:

−qN(t)S + kb(uN(t)− ub(t))S = fb(t), t > 0 .

This is the Robin boundary condition, or boundary condition of third type which describes
partially insulated end points. Here both ub(·) and fb(·) are prescribed. The first is the
outside temperature and the second is a heat source concentrated on the end point.
This model for heat loss determined by the difference uN(t)− ub(t) is called Newton’s
law for cooling. It is merely a discrete form of the Fourier law and defines the effective
conductivity kb. For very large values kb →∞, we obtain formally the Dirichlet boundary
condition, while for very small values kb → 0 we get the Neumann condition. Thus the
effective conductivity kb is a new quantity which interpolates between the first two types.

4. Another type of boundary condition arises if there is a concentrated capacity at
the end point, for instance, if the end of the rod is submerged in an insulated container of
well-stirred fluid, or if the end is attached to a region of very highly conductive material.
Then we introduce a new unknown uN+1(t) for the temperature of the water, or the
temperature of the material, respectively, and we have the dynamic boundary condition

c0u̇N+1(t)S + kb(uN+1(t)− uN(t))S = fb(t), t > 0 ,

together with the flux condition

qN(t) = −kb(uN+1(t)− uN(t)) t > 0 .

This is the boundary condition of fourth type and defines the effective specific heat c0.
This boundary condition must be supplemented with an additional initial condition,

c0uN+1(0) = c0uN+1 .

Note that each of the first three examples led to a system of ordinary differential equations
of size N × N , whereas this fourth example is of size (N + 1) × (N + 1). That is, an
extra differential equation was necessarly introduced to account for the additional energy
storeage at the end point, and its form is independent of the mesh size h.

Each of the preceding examples was a local boundary condition, i.e., it involves only
information at the one end. For each of these, another boundary condition needs to be
prescribed for the other end.
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5. Here is an example of a nonlocal boundary condition. If the rod is bent around and
the ends are joined to form a large ring, we identify the end points x0 = a and xN = b,
and the N -th section is now situated to the left of the 1-st section. Thus at the endpoints
we match the temperature and the flux:

u0(t) = uN(t), t > 0 ,

q0 = qN = −k
u1(t)− uN(t)

h
.

These are periodic boundary conditions. Again, since the first is only naming another
variable, we have a total of two boundary constraints to supplement the initial value
problem.

Exercise 1. The rod above is submerged in a perfectly insulated container of well-
stirred water. It is partially insulated along its length, so there is some limited heat
exchange with the surrounding water along the length, a < x < b. The rod is in perfect
contact with the water at the end points. Find an initial value problem for the discrete
model of this situation. (Hint: The temperature of the water is unknown.)

1.3. Examples: Dirichlet Boundary Conditions. We compute solutions of some
particular cases in order to see if our models are giving solutions which correspond to
our intuition.

Example N = 1. Set α = k
h2cρ

. The system is given by

u̇1(t) + 2αu1(t) = F1(t)

u1(0) = u1

where F1(t) ≡ α(u0(t) + u2(t)) + 1
cρ

f1(t). The solution is given explicitly by

u1(t) = e−2αtu1 +

∫ t

0

e−2α(t−s)F1(s) ds .

Suppose that f1(t) = 0 and consider the following cases.
u0(t) = u2(t) = 0, thus, F1(t) = 0. Then we get u1(t) = e−2αtu1, so the solution

dissipates to zero. The heat has been drained out of the end points.
u0(t) = u0, u2(t) = u2. Then we get

u1(t) = e−2αtu1 +
u0 + u2

2
(1− e−2αt) ,

so the solution approaches the mean value of the endpoint temperatures. Heat has been
lost or gained from the end points.

Example N = 2. The system of equations describing the discrete Dirichlet problem
is given by

u̇1(t) + 2αu1(t)− αu2(t) =
1

cρ
f1(t) + αu0(t) ≡ F1(t), u1(0) = u1

u̇2(t)− αu1(t) + 2αu2(t) =
1

cρ
f2(t) + αu3(t) ≡ F2(t), u2(0) = u2 .
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Assume that Fj(t) = 0 and look for solutions in the form

u1(t) = a1e
−λt, u2(t) = a2e

−λt.

This leads to the linear algebra problem

−λa1 + α(2a1 − a2) = 0,

−λa2 + α(−a1 + 2a2) = 0.

The eigenvalues are given by λ = α, 3α with corresponding eigenvalues

ξ1 ≡
[
1
1

]
, ξ2 ≡

[
1
−1

]
.

A family of solutions of the homogeneous system is given by[
u1(t)
u2(t)

]
= c1e

−αt

[
1
1

]
+ c2e

−3αt

[
1
−1

]
,

that is,
u(t) = c1e

−αtξ1 + c2e
−3αtξ2 .

A solution satisfying the given initial conditions u1, u2 can be obtained by choosing
constants with

c1

[
1
1

]
+ c2

[
1
−1

]
=

[
u1

u2

]
.

This system is solvable because the pair ξ1 , ξ2 is a basis for the plane, R2. This can be
done to match any initial conditions. Note that the second term in the solution decays
at a rate three times as fast as the first. This corresponds to the additional loss of heat
between the two components in the second term, whereas the only loss of heat in the
first term is to the end points.

Let’s review this procedure. Define the matrix and the (column) vector

A = α

(
2 −1
−1 2

)
, u(t) =

[
u1(t)
u2(t)

]
.

Then the system can be written in matrix form

(5) u̇(t) + Au(t) = F(t) .

To look for a solution u(t) = ξe−λt of the homogeneous equation with F(t) = 0, substitute
this into the differential equation to get the eigenvalue problem

(6) Aξ = λξ .

If ξ1, λ1 and ξ2, λ2 are solutions, we obtain the corresponding solutions of the ordinary
differential equation (5) in the form

(7) u(t) = c1e
−λ1tξ1 + c2e

−λ2tξ2.

If the pair ξ1, ξ2 is a basis, we can choose the constants to satisfy any initial condition

u(0) = c1ξ1 + c2ξ2+ = u0 .

It follows that every solution of the system can be obtained this way, so we can say the
representation (7) gives the general solution of the homogeneous equation.
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It is clear how we would like to extend this procedure to larger N ’s. For the case of
Dirichlet boundary conditions, the matrix form of the problem is given by (5) where the
unknown, matrix, and data are given by

u(t) =


u1(t)
u2(t)
u3(t)
. . .

uN−1(t)
uN(t)

 , A = α


2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 −1 2 −1
0 . . . . . . . . 0 −1 2

 ,

F(t) =



1
cρ

f1(t) + αua(t)
1
cρ

f2(t)
1
cρ

f3(t)

. . .
1
cρ

fN−1(t)
1
cρ

fN(t) + αub(t)


.

Example N = 3. For our final example of the discrete Dirichlet problem, consider
the case with N = 3 sections. The matrix is given by

A = α

 2 −1 0
−1 2 −1
0 −1 2

 ,

and the matrix of the eigenvalue problem has the form

A− λI =

2α− λ −α 0
−α 2α− λ −α
0 −α 2α− λ

 ,

so the characteristic equation is

det(A− λI) = (2α− λ)((2α− λ)2 − 2α2) = 0 .

The characteristic values are

λ1 = (2−
√

2)α, λ2 = 2α, λ3 = (2 +
√

2)α ,

and the corresponding vectors are

ξ1 =

 1√
2

1

 , ξ2 =

 1
0
−1

 , ξ3 =

 1

−
√

2
1

 .

Thus, the solution of the system (5) with F(t) = 0 is given by

u(t) = c1e
−λ1tξ1 + c2e

−λ2tξ2 + c3e
−λ3tξ3 ,

where the constants are chosen to satisfy the initial condition

c1ξ1 + c2ξ2 + c3ξ3 = u0 .
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Note that the characteristic values are arranged in increasing magnitude and the corre-
sponding eigenvectors have more and more dissipation of heat between adjacent compo-
nents. This can be quantified by the number of sign changes between adjacent compo-
nents of the successive eigenvalues.

1.4. Examples: Other Boundary Conditions. For all the other boundary condi-
tons, the matrix is changed, but the change occurs only in the first or last row, depending
on whether the condition was changed at x = a or at x = b. For example, with the Dirich-
let condition at the left and the Neumann condition at the right end, this leads to the
system of ordinary differential equations (5) as before, but the matrix is given by

A = α


2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 −1 2 −1
0 . . . . . . . . 0 −1 1

 .

Example N = 3. For the case of Neumann conditions at both ends, the matrix is
given by

A = α

 1 −1 0
−1 2 −1
0 −1 1

 ,

and the matrix of the eigenvalue problem has the form

A− λI =

α− λ −α 0
−α 2α− λ −α
0 −α α− λ

 ,

so the characteristic equation is

det(A− λI) = (α− λ)(3α− λ)λ = 0 .

The characteristic values are

λ1 = 0, λ2 = α, λ3 = 3α ,

and the corresponding vectors are

ξ1 =

1
1
1

 , ξ2 =

 1
0
−1

 , ξ3 =

 1
−2
1

 .

Thus, the solution of the system (5) with F(t) = 0 is given by

u(t) = c1ξ1 + c2e
−αtξ2 + c3e

−3αtξ3 ,

where the constants are chosen to satisfy the initial condition

c1ξ1 + c2ξ2 + c3ξ3 = u0 .

The characteristic value λ = 0 indicates the matrix is singular, and the ‘constant’ vector
ξ1 corresponds to the stationary solution of the heat conduction problem with insulated
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ends. Again note that the characteristic values are arranged in increasing magnitude and
the corresponding eigenvectors have more and more dissipation of heat between adjacent
components. This can be quantified by the number of sign changes between adjacent
components of the successive eigenvalues.

Example N = 3. For the case of periodic boundary conditions, there is an essential
choice to make concerning the number of points to take in the model. If we eliminate
uN+1(t) in order to get an N ×N problem, the first row is 3

2
− 1 0 . . . 0 − 1

2
. However,

if instead we write the problem as an (N + 1) × (N + 1) problem, the matrix takes the
more amenable form

A = α


2 −1 0 0 . . . 0 −1
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 −1 2 −1
−1 0 . . . 0 0 −1 2

 .

The periodic structure of this matrix is clear.

Exercise 2. Write out the matrix A and forcing term F(t) that arise in the system
(5) for each of the boundary conditions of Section 1.2 at both ends.

Exercise 3. Write out the matrix A and forcing term F(t) corresponding to the
boundary conditions of Exercise 1.

Exercise 4. Find the general solution of the homogeneous system (5) for N = 2 and
with Dirichlet condition at x = a and Neumann condition at x = b.

Exercise 5. Find the general solution of the homogeneous system (5) for N = 2 and
with Neumann conditions at both x = a and x = b.


