
Contents

Eigenvalue Problems and Fourier Series 3
1. The Finite-Dimensional Case 3
2. Heat Conduction in an Interval 5
3. Transverse Displacement of Loaded String 8
4. The Eigenvalue Problem 9
5. Dynamic Heat Conduction 13
6. The Porous Medium Equation 16
7. The Eigenfunction Expansion, I 18
8. Transverse Vibrations 25
9. Longitudinal Vibrations 25
10. The Eigenfunction Expansion, II 27
11. Duhamel Formulae: Variation of Parameters 31

1



Eigenvalue Problems and Fourier Series

1. The Finite-Dimensional Case

Suppose that A is an n × n real symmetric matrix. It has a set of eigenvectors
xj, 1 ≤ j ≤ n, written as columns, xj = (xij), and these form an orthonormal basis for
R

n. That is, we have

Axj = λjxj, 1 ≤ j ≤ n,

with corresponding eigenvalues λj, and their scalar products satisfy (xi,xj) = δij. If C is
the unitary matrix which diagonalizes A, its (orthonormal) columns are the eigenvectors
xj, 1 ≤ j ≤ n, and we have

C ′AC = diag(λj) ≡ D, C =
(
x1,x2, . . . ,xn

)
.

This resolution of A into its eigenvectors makes many fundamental problems involving
A quite easy. This is illustrated by the following examples.

1.1. Stationary Systems. Consider the algebraic system of n equations in n un-
knowns,

(1) x ∈ R
n : Ax + λx = F in R

n

for a given number λ and column F . We first find the diagonalization of A as above.
Then look for a solution in the form x =

∑n
i=1 uixi. The unknown coefficients ui must

satisfy
∑n

i=1(λi+λ)uixi = F , so by the orthogonality of the eigenvectors this is equivalent
to the ‘separated’ equations

(λi + λ)ui = (F,xi)Rn , 1 ≤ i ≤ n.

Suppose that λi + λ �= 0 for all i. Then there exists exactly one solution determined
by ui = (λi + λ)−1(F,xi)Rn , hence,

x =
n∑

i=1

(λi + λ)−1(F,xi)Rnxi .

Note that we have F =
∑n

=1(F,xi)Rnxi and the solution is of the form x = (A + λ)−1F
suggested by the spectral form of the diagonalization as Ax =

∑n
i=1 λi(x,xi)Rnxi.

Suppose that λJ + λ = 0 for some J with 1 ≤ J ≤ n. From above, it follows that
there exists a solution only if F satisfies the orthogonality constraint

(F,xj)Rn = 0 for all j such that λj = λJ .
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Then there exist (many) solutions, and these are obtained as above in the form

x =
∑

λi �=λJ

(λi + λ)−1(F,xi)Rnxi +
∑

λi=λJ

uixi

in which the coefficients ui for which λi = λJ , are arbitrary. The number of these indices
i for which λi = λJ is the multiplicity of the eigenvalue λJ . Note that the constraint on
the data F is that it must be orthogonal to the whole eigenspace Ker(A − λJI).

1.2. Systems of Ordinary Differential Equations, I. Next we consider the lin-
ear system of ordinary differential equations

u̇(t) + Au(t) = F(t) in R
n,(2a)

u(0) = u0(2b)

with the matrix A given as above. We use directly the orthonormal basis {xj} of eigen-
vectors of the matrix A to compute the solution. First we represent the non-homogeneous
term and initial condition from (2) as

F(t) =
n∑

j=1

fj(t)xj , fj(t) = (F(t),xj)Rn ,

u(0) =
n∑

j=1

u0
jxj , u0

j = (u(0),xj)Rn .

Then we look for the solution of (2) in the form

(3) u(t) =
n∑

j=1

uj(t)xj .

A direct substitution into (2) gives us the equivalent system

u̇j(t) + λjuj(t) = fj(t) in R,

uj(0) = u0
j .

The solution of this separated system is given by

uj(t) = e−λjtuj
0 +

∫ t

0

e−λj(t−s)fj(s) ds ,

so we obtain our solution in the form

u(t) =
n∑

j=1

e−λjt(u(0),xj)xj +

∫ t

0

n∑
j=1

e−λj(t−s)(F(s),xj)xj .

For the special case of F = 0, we obtain a representation for the exponential of the
matrix A:

e−tAx =
n∑

j=1

e−λjt(x,xj)xj.

When t = 0 this is just the orthonormal expansion of x.
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1.3. Systems of Ordinary Differential Equations, II. For an initial-value prob-
lem with the system of second-order differential equations

ü(t) + Au(t) = F(t) in R
n,(4a)

u(0) = u0, u′(0) = v0 ,(4b)

a direct substitution of (3) into (4) gives us the equivalent system

üj(t) + λjuj(t) = fj(t) in R,

uj(0) = u0
j u′

j(0) = v0
j .

If all eigenvalues are positive, the solution of this system is given by

uj(t) = cos (λ
1/2
j t)u0

j + 1

λ
1/2
j

sin (λ
1/2
j t)v0

j +

∫ t

0

1

λ
1/2
j

sin (λ
1/2
j (t − s))fj(s) ds ,

and we obtain our solution as before from (3). Similar calculations follow if some of the
eigenvalues are negative.

We shall show that the solution of boundary-value problems and of initial-boundary-
value problems for the corresponding time-dependent partial differential equations to
be discussed below will follow this same pattern. First we introduce two elementary
applications which lead to boundary-value problems on an interval. Then we shall obtain
an analagous representation of the solutions by means of eigenfuctnion expansions.

2. Heat Conduction in an Interval

We shall describe the conduction of heat energy through a long thin rod with uniform
cross section S. We identify the rod with the open interval (a, b), and we assume the
rod is perfectly insulated along its length. Let u(x) denote the temperature within the
rod at a point x ∈ (a, b). The ends x = x1 and x = x2 of a section of the homogeneous
rod of length h = x2 − x1 are maintained at temperatures u1 and u2, respectively. In
the absence of heat sources, after a period of time (which depends on the material) the
temperature distribution is observed to be linear: the temperature at the position x is
given by

u(x) = (
x2 − x

h
)u1 + (

x − x1

h
)u2, x1 ≤ x ≤ x2 .

The quantity of heat per unit time and unit area which flows to the right is called the
heat flux, and it is observed to be given by

(5) q = −k
u2 − u1

h

for some constant k which is called conductivity. The conductivity is a property of the
material that is a measure of the flow rate per unit area, i.e., the flux q induced by
a given temperature gradient, du

dx
. The equation (5) defining k is the discrete form of

Fourier’s law. The minus sign arises since the heat flow is directed toward the lower
temperature. By letting h → 0, we see that the heat flux q(x) at the point x, i.e., the
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flow rate to the right per unit area, is proportional to the temperature gradient du
dx

. The
precise statement of this experimental fact is Fourier’s law of heat conduction,

(6) q(x) = −k(x)
du

dx
(x),

and this equation defines the thermal conductivity k(x) of the material at the point
x ∈ (a, b). Since heat flows in the direction of decreasing temperature, we see again that
the minus sign is appropriate. This is a constitutive law.

Now, setting to zero the rate at which heat flows into the section plus the rate at which
heat is generated within this section, we arrive at the conservation of energy equation
for the section [x, x + h]

S
(
q(x) − q(x + h)

)
+

∫ x+h

x

f(s)S ds = 0

where f(x) represents the rate at which heat per unit volume is delivered to the rod.
This heat source term is assumed to be a known function of location. Dividing this by
Sh and letting h → 0 yields the conservation law

(7) −dq

dx
(x) + f(x) = 0.

Finally, by substituting the Fourier law (6) into the energy conservation law (7), we
obtain the stationary one–dimensional heat conduction equation

(8) − d

dx

(
k(x)

du

dx
(x)

)
= f(x).

This is also known as the stationary diffusion equation or potential equation. If we modify
this to the more general situation in which the rod is partially insulated, then there is a
distributed loss given by a discrete Fourier law, K(x)(u(x) − U(x)), where K(x) is the
conductivity and U(x) is the outside temperature. This leads to the potential equation

(9) − d

dx

(
k(x)

du

dx
(x)

)
+ K(x)u(x) = f(x) + K(x)U(x).

If we assume that k(·) and K(·) are constants and rename f(x), then equation (9) may
be written in the form

(10) −k
d2u

dx2
(x) + Ku = f(x), x ∈ (a, b).

Note 1. If an isotropic material is specified by a bounded domain G ⊂ R
n and the

temperature at x ∈ G is denoted by u(x), the corresponding n–dimensional equation has
the form

−�∇ ·
(
k(x)�∇u(x)

)
= f(x).
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Boundary conditions. Since the heat equation is second–order, one may expect
that in order to have a well–posed problem, two boundary conditions should be specified.
We shall see that this is true here. We describe some examples of appropriate boundary
conditions. Each of these will be illustrated with a condition at the right end point,
x = b, and we note that another such condition will be prescribed at the left end point,
x = a.

Dirichlet Boundary Conditions. One can specify the value of the temperature at an
end point:

u(b) = db ,

where db is given. This type of boundary condition describes perfect contact with the
boundary value, and it arises when the value of the end point temperature is known
(usually from a direct measurement). Such a condition arises when one sets the boundary
temperature to a prescribed value, for example, db = 0 when the end point is submerged
in ice-water.

Neumann Boundary Conditions. One can specify the heat flux into the rod at an end
point:

k(b)
du

dx
(b)S = fb ,

where fb is given. This type of boundary condition corresponds to a known heat source
fb at the end. The homogeneous case fb = 0 occurs at an insulated end point.

Robin Boundary Conditions. The heat flux is assumed to be lost through the end at
a rate proportional to the difference between the inside and outside temperatures:

k(b)
du

dx
(b)S + kb(u(b) − db)S = 0 .

Such a boundary condition arises from a partially insulated end point, and it corresponds
to Newton’s law of cooling at the end point x = b. This is just the discrete form
of Fourier’s law. Here, both db and fb are given functions. The first is the outside
temperature and the second is a heat source concentrated on the end. Note that the
first two boundary conditions can be formally obtained as extreme cases of the Robin
boundary condition; that is, as kb → ∞, u(b) → db, which formally yields the Dirichlet
boundary condition, and as kb → 0 we similarly obtain the Neumann boundary condition.
Thus, this third type of boundary condition is an interpolation between the first two types
for intermediate values of kb. Finally, note that there is sign change in this condition at
the left end, x = a, since we are accounting for the flux into the rod and flux is rightward.

Nonlocal Boundary Conditions. If the rod is perfectly insulated along its length, we
submerge it into a bath of well-stirred water, and we assume the end points of the rod
are in perfect contact with the water, then we obtain the boundary conditions

u(a) = u(b), k(a)
du

dx
(a)S = k(b)

du

dx
(b)S ,

where the common value of the endpoint temperatures is the (unknown) water tempera-
ture, and the second condition states that the total heat flow into the water is null. Note
that we have not introduced an additional unknown, so these two equations provide the
two boundary conditions. These are called periodic boundary conditions if k(a) = k(b).
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The same boundary conditions result if we assume the rod is bent around and the ends
are joined to form a large ring. Then at the endpoints we must match the temperature
and the flux. Note that again we have a total of two boundary constraints for the problem,
but here the constraints depend on the solution at more than a single point.

3. Transverse Displacement of Loaded String

Next we describe the small vertical (transverse) displacement of a stretched elastic
string. We identify its rest position with the horizontal interval G = (a, b). Let u(x, t)
be the upward displacement at the location x ∈ (a, b) and time t ≥ 0. Denote by T (x)
the tension on the string at each x ∈ (a, b). This is the force that is directed along the
length of the string in the tangential direction. It’s vertical and horizontal components
are T (x) sin θx and T (x) cos θx, respectively, where θx is the angle of inclination of the
tangent along the string. We assume that the only displacements are vertical. This
is equivalent to assuming that the horizontal forces on each small section of the string
[x, x+h] must be in balance, and we have T (x+h) cos θx+h = T (x) cos θx = T , a constant.
The upward vertical force on that section [x, x + h] due to the tension on its endpoints
is given by

T (x) sin θx+h − T (x) sin θx = T (tan θx+h − tan θx) = T (u′(x + h) − u′(x)).

Denote by f(x) the (upward) force per unit of length distributed along the string. Then
the total force acting on the string must sum to zero, so we have

Tu′(x + h) − Tu′(x) +

∫ x+h

x

f(s)ds = 0, [x, x + h] ⊂ (a, b).

Dividing by h and letting h → 0, we obtain

−(Tu′(x))′ = f(x), a < x < b.

Exercise 1. If there is an additional restoring force, such as an elastic support under
the string or a distribution of springs along its length, then the force-balance equation is

(11) −(Tu′(x))′ + Ku(x) = f(x), a < x < b.

Boundary conditions. The boundary conditions appropriate for the force-balance
equation (11) are similar to those for the heat conduction equation (10). As before, we
specify some examples of boundary conditions at the end x = b; a boundary condition is
specified at the other end x = a of one of these types.

Dirichlet Boundary Conditions. The displacement ub of the end of the string is spec-
ified by

u(b) = ub.

Neumann Boundary Conditions. If the end of the string is attached to a slider (with
negligible friction or mass) and a vertical force fb acts on that end, then

Tu′(b) = fb.
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Robin Boundary Conditions. If the position of the end is constrained by a spring
which directs it towards the position ub, the

Tu′(b) + kb(u(b) − ub) = fb,

where kb is the spring constant.
In summary, a typical boundary-value problem for the loaded elastic string is to find a

solution of (11) on the inteval (a, b) together with one of the boundary conditions above
at each end of the interval.

4. The Eigenvalue Problem

We begin by calculating the eigenfunctions for the periodic eigenvalue problem. Af-
terward we shall relate these to the eigenfunctions of other boundary-value problems.
We want to find non-null solutions of the boundary-value problem{

X ′′(x) + λX(x) = 0, 0 < x < �,
X(0) = X(�), X ′(0) = X ′(�).(12)

This is a fundamental Sturm-Liouville eigenvalue problem. Since the differential equation
in (12) is linear with constant coefficients, we can explicitly write down all possible
solutions, and they depend on the sign of λ. First we check that for the case of λ < 0, all
solutions of the equation are linear combinations of exponential functions and the only
solution of the boundary-value problem (12) is the null solution. If λ = 0 the solution is
any constant function, so we obtain the eigenvalue-eigenfunction pair λ0 = 0, X0(x) = 1.
For the case of λ > 0, we get the general solution of the differential equation in the form

X(x) = C1 cos (
√

λx) + C2 sin (
√

λx).

Then from the boundary conditions in (12) we find non-zero solutions only for λn =
(2nπ/�)2, and in that case both constants are arbitrary. That is, for each integer
n ≥ 1 we get the eigenvalue λn = (2nπ/�)2 and a corresponding pair of eigenfunctions,
cos(2nπ

�
x), sin(2nπ

�
x).

We denote these eigenfunctions and eigenvalues of the boundary-value problem (12)
by Xn(·), λn, n ≥ 0. Then we compute

(λm − λn)

∫ �

0

Xm(x)Xn(x) dx = −
∫ �

0

(
X ′′

m(x)Xn(x) − Xm(x)X ′′
n(x)

)
dx

= −
∫ �

0

d

dx

(
X ′

m(x)Xn(x) − Xm(x)X ′
n(x)

)
dx = 0 .

The boundary conditions in (12) have been used to obtain the last equality. If λm �= λn,
this calculation shows that the corresponding eigenfunctions Xm(·), Xn(·) are orthogonal

with respect to the scalar-product (·, ·) ≡ ∫ �

0

(·, ·) dx on the linear space of functions on
the interval (0, �). For each n ≥ 1, a direct calculation shows that the two eigenfunctions
cos(2nπ

�
x), sin(2nπ

�
x) are also orthogonal, so all pairs of eigenfunctions are orthogonal. By

replacing each such Xn(·) by the function obtained by dividing it by the corresponding
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norm ‖Xn(·)‖ = (Xn(·), Xn(·)) 1
2 , we obtain an orthonormal set of functions in that space.

That is, we have

(13) (Xm(·), Xn(·)) = δmn for m, n ≥ 0 ,

where we have scaled the eigenfunctions to get the orthonormal eigenfunctions on (0, �)

X0(x) =
1√
�
, X2k(x) =

√
2

�
cos(

2kπ

�
x), k ≥ 1,(14a)

X2k−1(x) =

√
2

�
sin(

2kπ

�
x), k ≥ 1,(14b)

with corresponding eigenvalues λ0 = 0 and λ2k = λ2k−1 = (2kπ
�

)2 for k ≥ 1. All but the
first of the eigenvalues have multiplicity 2. This normalization will greatly simplify many
calculations to follow. In particular, when we can write a function f(x), x ∈ (0, �), as
the sum of a series of the normalized eigenfunctions, say

f(x) ∼=
∞∑

n=0

cnXn(x), x ∈ (0, �),

then taking the scalar product with each of the eigenfunctions Xm(x) shows that the

coefficients are determined by (f, Xm) ≡ ∫ �

0
f(x)Xm(x)dx = cm, m ≥ 0. That is,

(15) f(x) ∼=
∞∑

n=0

(f, Xm) Xn(x).

This is the general Fourier expansion formula. We postpone the sense in which the series
converges to f(·), so we have denoted this by the symbol ∼= in (15). (See Theorem 10.3.1
in Text.)

Since the eigenfunctions Xn are periodic with period �, any function satisfying (15)
on the interval (0, �) can be extended to R as an �-periodic function which satisfies (15)
on all of R. Such a function is determined by its values on any interval of length �. In
particular, if � = 2L, it suffices to know the values of f on the interval (−L, L). Then
the orthonormal eigenfunctions on (−L, L) are

X0(x) =
1√
2L

, X2k(x) =
1√
L

cos(
kπ

L
x), k ≥ 1,(16a)

X2k−1(x) =
1√
L

sin(
kπ

L
x), k ≥ 1,(16b)

with corresponding eigenvalues λ0 = 0 and λ2k = λ2k−1 = (kπ
L

)2 for k ≥ 1. These satisfy
the periodic eigenvalue problem{

X ′′(x) + λX(x) = 0, −L < x < L,
X(−L) = X(L), X ′(−L) = X ′(L).

(17)
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It is often convenient to write the Fourier expansion (15) directly in terms of the sines
and cosines (without the normalization)

(18) f(x) ∼= a0

2
+

∞∑
n=1

an cos(nπ
L

x) +
∞∑

n=1

an sin(nπ
L

x),

and then the coefficients are given by

(19) an =
1

L

∫ L

−L

f(s) cos(nπ
L

s) ds, n ≥ 0, bn =
1

L

∫ L

−L

f(s) sin(nπ
L

s) ds, n ≥ 1.

Note 2. This form will be useful to take advantage of symmetry properties of the
solutions of various boundary-value problems. Compare with the Euler-Fourier formulas
of Section 10.2 in Text.

Exercise 2. Given m, n ∈ N, show directly that

(a)

∫ 1

0

sin (mπx) sin (nπx) dx =

{
0, m �= n,
1
2
, m = n.

(b)

∫ 1

0

cos (mπx) cos (nπx) dx =

{
0, m �= n,
1
2
, m = n.

(c)

∫ 1

0

sin (mπx) cos (nπx) dx = 0 .

Symmetry and Boundary Conditions. Suppose that a continuous function f is
odd: f(−x) = −f(x). Then necessarily it satisfies f(0) = 0. Similarly, if f is odd with
respect to L, i.e., f(L−x) = −f(L+x), then continuity at L requires f(L) = 0. Likewise,
if f is even and the derivative f ′ is continuous at 0, then f ′(0) = 0, and if f is even with
respect to L then continuity of f ′ at L requires f ′(L) = 0.

Suppose the function f is 2L-periodic and continuously differentiable. Then f(−L +
x) = f(L + x) so f ′(−L + x) = f ′(L + x) and we have the boundary conditions f(−L) =
f(L) and f ′(−L) = f ′(L). If f is odd, then f(0) = f(−L) = f(L) = 0 and then f is
determined by its values on (0, L) and the boundary conditions f(0) = f(L) = 0. If f is
even, then f ′ is odd so we obtain f ′(0) = f ′(−L) = f ′(L) = 0 and f is determined by its
values on (0, L) and the boundary conditions f ′(0) = f ′(L) = 0.

These observations lead to very useful special cases of the Fourier expansion (15).
Assume the function f is given on the interval (0, L). Extend it to (−L, 0) as an odd
function, and then extend it 2L-periodically to R. The Fourier expansion (15) simplifies
considerably. All even coefficients vanish, an = 0, and the remaining odd coefficients can
be written over (0, L) as

(20) bn =
2

L

∫ L

0

f(s) sin(
nπ

L
s)ds, n ≥ 1,

so we obtain the Fourier sine series

f(x) ∼=
∞∑

n=1

bn sin(
nπ

L
x).
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Similarly, if we extend f to (−L, 0) as an even function and then extend it 2L-periodically
to R, all odd coefficienents vanish, bn = 0, and the remaining even coefficients can be
written over (0, L) as

(21) an =
2

L

∫ L

0

f(s) cos(
nπ

L
s)ds, n ≥ 1,

and we have the Fourier cosine series

f(x) ∼= 1

L

∫ L

0

f(x)dx +
∞∑

n=1

an cos(
nπ

L
x).

Stationary System. We can use the eigenfunctions (13) to determine the solution
of the corresponding non-homogeneous boundary-value problem

−X ′′(x) + λX(x) = F (x), 0 < x < �,(22a)

X(0) = X(�), X ′(0) = X ′(�),(22b)

where λ ∈ R and the function F (·) are given. As for the algebraic case (1), we begin by
looking for a solution X(·) given by a series of the eigenfunctions (14) of the corresponding
homogeneous boundary-value problem (12),

(23) X(x) =
∞∑

n=1

cnXn(x).

Taking the scalar product of the ordinary differential equation (22a) with the eigenfunc-
tion Xm(x), we integrate by parts and use the boundary conditions (22b) to obtain

(X ′′, Xm) = (X, X ′′
m) = −λm(X, Xm).

This shows that the coefficient {cm} must satisfy

(λm + λ)cm = (F, Xm) ≡
∫ �

0

F (x)Xm(x)dx, m ≥ 0.

From this it follows that if λ �= −λm for all m ≥ 0, then (22) has exactly one solution
given by

(24) X(x) =
∞∑

n=0

(F, Xn)

λn + λ
Xn(x).

If for some N ≥ 0 we have λ = −λN , then there are solutions of (22) only if F (·) satisfies
the orthogonality constraint (F, Xn) = 0 for all n such that λn = λN , and the solutions
are given by

(25) X(x) =
∑

λn �=λN

(F, Xn)

λn − λN

Xn(x) +
∑

λn=λN

cnXn(x)

with coefficients cn for λn = λN that are arbitrary. As in the algebraic case, the number
of indices n for which λn = λN is the multiplicity of the eigenvalue λN and the constraint
on the data F is that it must be orthogonal to all eigenfunctions of (12) with λ = λN .
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5. Dynamic Heat Conduction

We shall describe the diffusion of heat energy through a long thin rod G with uniform
cross section S. As before, we identify G with the open interval (a, b), and we assume
the rod is perfectly insulated along its length. Let u(x, t) denote the temperature within
the rod at a point x ∈ G and at time t > 0. Our previous experience shows that the heat
flux q(x, t) at the point x, i.e., the flow rate to the right per unit area, is proportional to
the temperature gradient ∂u

∂x
. The precise statement of this experimental fact is Fourier’s

law of heat conduction,

(26) q(x, t) = −k(x)
∂u

∂x
(x, t),

and this equation defines the thermal conductivity k(x) of the material at the point
x ∈ (a, b). Since heat flows in the direction of decreasing temperature, we see again that
the minus sign is appropriate.

The amount of heat stored in the rod within a section [x, x + h] with h > 0 is given
by ∫ x+h

x

c(s)ρ(s)Su(s, t) ds,

where c(·) is the specific heat of the material, and ρ(·) is the volume-distributed density.
The specific heat provides a measure of the amount of heat energy required to raise the
temperature of a unit mass of the material by a degree.

Now, equating the rate at which heat is stored within the section to the rate at which
heat flows into the section plus the rate at which heat is generated within this section,
we arrive at the conservation of energy equation for the section [x, x + h]

d

dt

∫ x+h

x

c(s)ρ(s)Su(s, t) ds = S
(
q(x, t) − q(x + h, t)

)
+

∫ x+h

x

f(s, t)S ds

where f(x, t) represents the rate at which heat is generated per unit volume. This heat
generation term is assumed to be a known function of space and time. Dividing this by
Sh and letting h → 0 yields the conservation of energy equation

(27) c(x)ρ(x)
∂u

∂t
(x, t) +

∂q

∂x
(x, t) = f(x, t).

Finally, by substituting the Fourier law (26) into the energy conservation law (27), we
obtain the one–dimensional heat conduction equation

(28) c(x)ρ(x)
∂u

∂t
(x, t) − ∂

∂x

(
k(x)

∂u

∂x
(x, t)

)
= f(x, t).

This is also known as the diffusion equation.
If we assume the material properties c(·), ρ(·), and k(·) are constants, then equation

(28) may be written in the form

(29)
∂u

∂t
(x, t) − α2∂2u

∂x2
(x, t) =

1

cρ
f(x, t), x ∈ G, t > 0,
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where α2 ≡ k
cρ

is called the thermal diffusivity of the material and is a measure of the rate

of change of temperature of the material. For example, if the material is made out of a
substance with a high thermal conductivity and low heat capacity cρ, then the material
will react very quickly to transient external conditions.

Initial and Boundary conditions. Since the heat equation is second–order in space
and first–order in time, one may expect that in order to have a well–posed problem, two
boundary conditions and one initial condition should be specified. We shall see that this
is true here.

We want to find a solution of (28) which satisfies an initial condition of the form

u(x, 0) = u0(x), a < x < b,

where u0(·) is given. Following the outline in Chapter 1, we describe some examples of
appropriate boundary conditions. Each of these will be illustrated with a condition at
the right end point, x = b, and we note that another such condition will be prescribed
at the left end point, x = a.

Dirichlet Boundary Conditions. One can specify the value of the temperature at an
end point:

u(b, t) = db(t), t > 0 ,

where db(·) is given. This type of boundary condition describes perfect contact with the
boundary value, and it arises when the value of the end point temperature is known
(usually from a direct measurement). Such a condition arises when one sets the bound-
ary temperature to a prescribed value, for example, db(t) = 0 when the end point is
submerged in ice-water.

Neumann Boundary Conditions. One can specify the heat flux into the rod at an end
point:

k
∂u

∂x
(b, t)S = fb(t), t > 0 ,

where fb(·) is given. This type of boundary condition corresponds to a known heat source
fb(·) at the end. The homogeneous case fb(t) = 0 occurs at an insulated end point.

Robin Boundary Conditions. The heat flux is assumed to be lost through the end at
a rate proportional to the difference between the inside and outside temperatures:

k
∂u

∂x
(b, t)S + kb(u(b, t) − db(t))S = fb(t), t > 0 .

Such a boundary condition arises from a partially insulated end point, and it corresponds
to Newton’s law of cooling at the end point x = b. This is just the discrete form of
Fourier’s law. Here, both db(·) and fb(·) are given functions. The first is the outside
temperature and the second is a heat source concentrated on the end. Note that the
first two boundary conditions can be formally obtained as extreme cases of the Robin
boundary condition; that is, as kb → ∞, u(b, t) → db(t), which formally yields the
Dirichlet boundary condition, and as kb → 0 we similarly obtain the Neumann boundary
condition. Thus, this third type of boundary condition is an interpolation between the
first two types for intermediate values of kb.
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Dynamic Boundary Conditions. As in the discrete case, another type of boundary
condition arises when we assume the end of the rod has an effective specific heat given by
c0 > 0: this is a concentrated capacity at the end. For example, the end of the rod can
be capped by a piece of material whose conductivity is very high, so the entire piece is
essentally at the same temperature, or the end is submerged in an insulated container of
well-stirred water. If we assume the heat energy is supplied to the concentrated capacity
by the flux from the interior of the rod and supplemented by a given heat source located
at that end point, fb(t), then we are led to the boundary condition

c0ut(b, t) + kux(b, t)S = fb(t), t > 0.

Implicit in this boundary condition is the assumption that we have “perfect” contact
between the end of the rod and the concentrated capacity. If we permit some insulation
between the end point and the concentrated capacity, then the temperature uc(·) of the
concentrated capacity is different from that of the endpoint of the rod, and the boundary
condition is {

c0
duc(t)

dt
+ kb(uc(t) − u(b, t)) = fb(t), t > 0,

k ∂u
∂x

(b, t) + kb(u(b, t) − uc(t)) = 0.

Here we have an extra condition, but we have also introduced an additional unknown, so
this pair of equations should be regarded as a single constraint. Note that, as kb → ∞,
u(b, t) → uc(t), and this partially insulated dynamic boundary condition formally yields
the “perfect” contact dynamic boundary condition.

Each of the preceding boundary conditions must be supplemented with an additional
boundary condition at the other endpoint, x = a, and the two boundary conditions
need not be of the same type. These two boundary constraints together with the initial
condition on a solution of (28) will comprise a well–posed problem.

Nonlocal Boundary Conditions. If the rod is bent around and the ends are joined to
form a large ring, then at the endpoints we must match the temperature and the flux:

u(a, t) = u(b, t), t > 0,

k
∂u

∂x
(a, t)S = k

∂u

∂x
(b, t)S .

These are called periodic boundary conditions. Note that again we have a total of two
boundary constraints for the problem, but here the constraints depend on the solution
at more than a single point.

Another example arises in the case that we submerge the entire rod into a bath of
well-stirred water and assume the end points of the rod are in perfect contact with the
water. Then we obtain the dynamic and nonlocal boundary conditions

u(a, t) = u(b, t) = uc(t), t > 0,

c0
duc(t)

dt
+ k(b)

∂u

∂x
(b, t) − k(a)

∂u

∂x
(a, t) = 0,

where the common value of the endpoint temperatures uc(t) is unknown. Note that
we have not introduced an additional unknown, so these two equations provide the two
boundary conditions.
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Exercise 3. Assume the rod G is submerged in a perfectly insulated container of
well-stirred water. The rod is partially insulated along its length, so there is some limited
heat exchange with the surrounding water along the length, a < x < b. Also, assume the
rod is in perfect contact with the water at the end points. Find an initial-boundary-value
problem which models this situation.

6. The Porous Medium Equation

We shall describe the diffusion of fluid through the long thin tube G with uniform
cross section S. As before, we identify G with the open interval (a, b), but here we
assume that the tube is packed with a distribution of particles, such as sand or gravel,
which impede the flow of the fluid. The fluid is constrained to flow in the complementary
region of open channels and pores not occupied by the particles. The porous medium is
assumed to be rigid, so its structure is not deforming. It is also assumed to remain fully
saturated: all the pore space is occupied by the fluid. This is often the case for fluids
in the subsurface, for example, in the groundwater region or below a lake or sea. The
one-dimensional model can be appropriate for depth in a wide region for which horizontal
variations are insignificant.

The conservation law. Let ρ(x, t) denote the (average) density of the fluid within
the tube at a point x ∈ G and at time t > 0. The mass of fluid stored in the section
[x, x + h] ⊂ (a, b) of length h > 0 is given by∫ x+h

x

φ(s)ρ(s, t)S ds,

where φ(x) is the porosity of the porous medium at x, i.e., the volume fraction of the
medium occupied by the fluid. We assume this is non-zero, so 0 < φ(x) ≤ 1. The
(averaged) fluid velocity v(x, t) at the point x is the flow rate to the right per unit area
measured in volume of fluid per unit area per time. Equating the rate at which fluid is
stored within the section to the rate at which fluid flows into the section plus the fluid
source rate within this section, we arrive at the fluid conservation equation for the section
[x, x + h],

∂

∂t

∫ x+h

x

φ(s)ρ(s, t)S ds = S
(
ρ(x, t)v(x, t) − ρ(x + h, t)v(x + h, t)

)
+

∫ x+h

x

ρ(x, t)f(s, t)S ds ,

where f(x, t) represents the rate at which fluid volume is inserted per unit volume of
themedium. This source term is assumed to be a known function of space and time.
Dividing by Sh and letting h → 0 yields the fluid conservation equation

(30) φ(x)
∂ρ(x, t)

∂t
+

∂(ρ(x, t)v(x, t))

∂x
= ρ(x, t)f(x, t).
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Darcy’s law. Let p(x, t) denote the pressure of the fluid in the pores. This is measured
in force per unit area. A fundamental experimental observation is that the fluid flow rate
through the section [x, x+h] of the porous media is proportional to the pressure difference
at its ends per unit length, that is,

(31) v =
k(x)

μ h

(
p(x, t) − p(x + h, t)

)
.

Thus, letting h → 0 we get the fluid velocity v(x, t) at the point x proportional to the
pressure gradient,

(32) v(x, t) = −k(x)

μ

∂p(x, t)

∂x
.

The constant μ is the viscosity of the fluid, a measure of its resistance to shear, and the
equation (32) defines the permeability k(x) of the porous medium at the point x ∈ (a, b).
It is a measure of the conductivity of the medium, i.e., the inverse of resistance of the
medium to internal flow. Since fluid flows in the direction of decreasing pressure, the
minus sign is appropriate. In fact, if we write this in the form

μ

k(x)
v(x, t) = −∂p(x, t)

∂x
,

it is a balance of forces on the fluid as it flows through the medium, and the coefficient
μ/k(x) is the resistance to flow. The porous medium is characterized by its porosity
and the permeability, and they are related, usually by a power law. By substituting
Darcy’s law (32) into the fluid conservation law (30), we obtain the one–dimensional
porous medium equation

(33) φ(x)
∂ρ

∂t
− ∂

∂x

(
ρ

k(x)

μ

∂p

∂x

)
= ρ(x, t)f(x, t).

Note that the product ρ ∂p
∂x

makes (33) nonlinear.
It remains to specify the state equation, the relation between density ρ and pressure

p for the particular fluid. If the compressibility, c = 1
ρ

dρ
dp

, of the fluid is constant, then we

have ρ = ρ0e
c(p−p0). In this case the chain rule shows that ρpx = 1

c
ρx, so we obtain the

linear diffusion equation for fluid density

(34) φ(x)
∂ρ

∂t
− ∂

∂x

(
k(x)

c μ

∂ρ

∂x

)
= ρ(x, t)f(x, t).

If the compressibility is small, the fluid is called slightly compressible and the density is
nearly constant, ρ(x) ≈ ρ0; then (33) is further simplified to the pressure equation

(35) c φ(x)
∂p

∂t
− ∂

∂x

(
k(x)

μ

∂p

∂x

)
= f(x, t).

If the fluid is incompressible, i.e., if c = 0, then we obtain the equation

(36) − ∂

∂x

(
k(x)

μ

∂p

∂x

)
= f(x, t).
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Of course, either of these must be supplemented with appropriate initial and boundary
conditions to get a well posed problem which determines the density and pressure along
the length of the tube, and then these determine the Darcy velocity (32).

Initial and Boundary Conditions. We record boundary and initial conditions for
the case of the pressure equation (35). The initial value of the pressure is given as

p(x, 0) = p0(x), a < x < b.

As before, we describe various boundary conditions for the right end x = b. One of these
should be given, and we note that any one of these types will be prescribed independently
at the left end x = a.

Dirichlet Boundary Conditions. The value of the pressure at an end point is specified
or measured,

p(b, t) = pb(t), t > 0 ,

so pb(·) is given. This corresponds to the drained condition in which fluid flows freely
into or out of the boundary of the rod in order to maintain that pressure balance.

Neumann Boundary Condition. The fluid source vb(t) is known at the sealed or im-
perveous boundary x = b, so we have

k(b)

μ

∂p(b, t)

∂x
= vb(t), t > 0.

Robin Boundary Condition. When the boundary is permeable to an outside pressure
pb(t) with a flow rate satisfying the discrete Darcy law (31), and there is a source vb(t)
at the boundary, we obtain

k(b)

μ

∂p(b, t)

∂x
+

Kb

μ

(
p(b, t) − pb(t)

)
= vb(t), t > 0.

Dynamic Boundary Condition. There may be a very high porosity concentrated at
the boundary, so that a substantial concentration of fluid can accumulate there. This
occurs because the ‘packing’ of the grains of the medium is less efficient there. In that
case, we will have

c φb
∂p(b, t)

∂t
+

k(b)

μ

∂p(b, t)

∂x
= vb(t), t > 0.

7. The Eigenfunction Expansion, I

We shall illustrate the method of separation of variables by obtaining the eigen-
function expansion of the solution of an initial-boundary-value problem with Dirichlet
boundary conditions. The same method works for the other boundary conditions.

Example 1. Suppose the rod G = (0, �) is perfectly insulated along its length and
made of an isotropic material with thermal diffusivity α2. Assuming no internal heat



7. THE EIGENFUNCTION EXPANSION, I 19

sources or sinks, i.e., f(x, t) = 0, suppose both ends of the rod are held at a fixed tem-
perature of zero and the initial temperature distribution is given by u0(x). The initial-
boundary-value problem for this scenario is

∂u

∂t
(x, t) = α2∂2u

∂x2
(x, t), 0 < x < �, t > 0,(37a)

u(0, t) = 0, u(�, t) = 0, t > 0,(37b)

u(x, 0) = u0(x), 0 < x < �.(37c)

Exercise 4. Let u(x, t) be a solution of the initial-boundary-value problem and show
that

d

dt

∫ �

0

u2(x, t) dx ≤ 0.

Show that this implies there is at most one solution of the problem.

We begin by looking for a non-null solution of the form

(38) u(x, t) = X(x)T (t).

Substituting (38) into (37a) and dividing by u yields

T ′(t)
α2T (t)

=
X ′′(x)

X(x)
, for all x and t.

Note that the left side of this last equation is exclusively a function of t, while the right
side of is exclusively a function of x. The only way this equation can hold for all values
of x and t is for each side to equal a common constant. Denoting this constant by −λ
leads to the pair of ordinary differential equations

T ′(t) + λα2T (t) = 0, t > 0,

X ′′(x) + λX(x) = 0, 0 < x < �.

The boundary conditions given in (37b) imply that X(0) = X(�) = 0.
Note that if X(·) and T (·) are solutions of these respective equations, then it follows

directly that their product is a solution of (37a). The first of these ordinary differential

equations has the solution T (t) = e−λα2t. Thus, it remains to find a non-null solution of
the boundary-value problem{

X ′′(x) + λX(x) = 0, 0 < x < �,
X(0) = 0, X(�) = 0.

(39)

This is a “regular” Sturm-Liouville boundary-value problem and we will see later that
such problems have very special properties. Since this is a linear equation with constant
coefficients, we can explicitly write down all possible solutions, and they depend on the
sign of λ. First we check that for the cases of λ < 0 and λ = 0, the only solution of
the boundary-value problem (39) is the null solution. For the case of λ > 0, we get the
general solution of the differential equation in the form

X(x) = C1 sin (
√

λx) + C2 cos (
√

λx),
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and then from the boundary conditions we see that necessarily

C2 = 0, and C1 sin (�
√

λ) = 0,

respectively. Since sin (�
√

λ) = 0 has solutions λn = (nπ/�)2, this does not force C1 =
0. These specific values for λ are called the eigenvalues of the regular Sturm-Liouville
problem (39), and the solutions to (39), namely, multiples of

Xn(x) = sin (
√

λnx),

are the corresponding eigenfunctions. If we combine these with the corresponding time-
dependent solutions Tn(t) = e−λnα2t, we obtain solutions e−λnα2t sin (

√
λnx) of (37a) and

(37b). From the superposition principle we obtain a large class of solutions of (37a) and
(37b) in the form

(40) u(x, t) =
N∑

n=1

Ane
−λnα2tXn(x),

for any integer N . We check directly that (40) satisfies (37a) and (37b) for any choice of
the coefficients {An}. In order to satisfy the initial condition (37c), the coefficients must
be chosen to satisfy

(41) u0(x) =
N∑

n=1

AnXn(x).

Now this is a severe restriction on the initial data, but we shall find that we can go to
a corresponding series with N = +∞, and then there is essentially no restriction on the
initial data! This will follow from the observation that the corresponding coefficients in
(40) have exponentially decaying factors that make the series converge extremely rapidly
for t > 0.

Let’s take a preliminary look at the boundary-value problem (39). We have denoted
its non-null solutions by Xn(·), λn, n ≥ 1 First we compute

(λm − λn)

∫ �

0

Xm(x)Xn(x) dx = −
∫ �

0

(
X ′′

m(x)Xn(x) − Xm(x)X ′′
n(x)

)
dx

= −
∫ �

0

d

dx

(
X ′

m(x)Xn(x) − Xm(x)X ′
n(x)

)
dx = 0 .

Since λm �= λn for m �= n, this shows that the eigenfunctions Xn(·) are orthogonal with

respect to the scalar-product (·, ·) ≡ ∫ �

0

(·, ·) dx on the linear space of continuous functions
on the interval [0, �]. By replacing each such Xn(·) by the function obtained by dividing

it by the corresponding norm ‖Xn(·)‖ = (Xn(·), Xn(·)) 1
2 , we obtain an orthonormal set

of functions in that space. That is, we have

(Xm(·), Xn(·)) = δmn for m, n ≥ 1 ,

where we have scaled the eigenfunctions to get the normalized eigenfunctions

Xn(x) =

√
2

�
sin(

nπ

�
x).
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Now it is clear how to choose the coefficients An in (41): take the scalar product of that
equation with Xm(·) to obtain

(u0(·), Xm(·)) = Am, m ≥ 1 .

Thus we obtain

(42) u(x, t) =
N∑

n=1

e−λnα2t(u0(·), Xn(·))Xn(x),

when u0(·) is appropriately restricted. We shall see below that we can go to the corre-
sponding series with N = +∞ as indicated with essentially no restriction on u0(·).

The technique used in Example 1 is called the method of separation of variables.
Since it depends on superposition, this technique is appropriate for solving linear initial-
boundary-value problems with homogeneous boundary conditions. It can easily be mod-
ified to solve initial-boundary-value problems that contain constant non-homogeneous
boundary conditions. In particular, for the problem⎧⎨

⎩
ut(x, t) = α2uxx(x, t), 0 < x < �, t > 0,
u(0, t) = d0, u(�, t) = d�, t > 0,
u(x, 0) = u0(x), 0 < x < �,

(43)

define w(x, t) = u(x, t)−(
d0

�−x
�

+d�
x
�

)
and transform the above problem into an equivalent

initial-boundary-value problem for w(x, t). Note that w(0, t) = w(�, t) = 0, and so now
we have a problem with homogeneous boundary conditions as in Example 1.

Exercise 5. Compute the solution of (43) for the case of u0(·) = 0, d0 = 0 and
d� = 1.

However, if the boundary values are given by a pair of time dependent functions,
d0(t), d�(t), then we are led to a non-homogeneous partial differential equation. More
generally, we can start with a non-homogeneous initial-boundary-value problem of the
form

ut(x, t) = α2uxx(x, t) + f(x, t), 0 < x < �, t > 0,

u(0, t) = d0(t), u(�, t) = d�(t), t > 0,

u(x, 0) = u0(x), 0 < x < � ,

and then define w(x, t) = u(x, t) − (
d0(t)

�−x
�

+ d�(t)
x
�

)
to transform the above problem

into an equivalent initial-boundary-value problem of the form

wt(x, t) = α2wxx(x, t) + f̃(x, t), 0 < x < �, t > 0,

w(0, t) = 0, w(�, t) = 0, t > 0,

w(x, 0) = w0(x), 0 < x < �,

where w0(x) = u0(x) − (
d�(0)x

�
+ d0(0) �−x

�

)
and f̃(x, t) = f(x, t) − (

d′
�(t)

x
�

+ d′
0(t)

�−x
�

)
.

Thus, by such a change of variable, we can always reduce the initial-boundary-value
problem to the form with homogeneous boundary conditions.
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Example 2. Find the eigenfunction expansion of the solution of the initial-boundary-
value problem

ut(x, t) = α2uxx(x, t) + f(x, t), 0 < x < �, t > 0,(46a)

u(0, t) = 0, u(�, t) = 0, t > 0,(46b)

u(x, 0) = u0(x), 0 < x < �,(46c)

with non-homogeneous partial differential equation and homogeneous boundary condi-
tions. Recall that for f(x, t) = 0, the solution to this case was given by equation (40).
For the problem with a non-homogeneous partial differential equation (46a), we look for
the solution in the form

(47) u(x, t) =
∞∑

n=1

un(t)Xn(x).

If we assume that both f(x, t) and u0(x) also have eigenfunction expansions given by

f(x, t) =
∞∑

n=1

fn(t)Xn(x) and u0(x) =
∞∑

n=1

un
0Xn(x),

respectively, where

fn(t) ≡
∫ �

0

f(ζ, t)Xn(ζ) dζ and un
0 ≡

∫ �

0

u0(ζ)Xn(ζ) dζ,

then substituting each of these expansions into equation (46a) yields

∞∑
n=1

[
u̇n(t) + λnα

2un(t)
]
Xn(x) =

∞∑
n=1

fn(t)Xn(x).

By equating the coefficients of the series given in this last equation, we are led to the
initial-value problems

u̇n(t) + λnα
2un(t) = fn(t), t > 0(48a)

un(0) = un
0 .(48b)

The solution to (48) is

un(t) = e−λnα2tun
0 +

∫ t

0

e−λnα2(t−τ)fn(τ) dτ

Now, if we use this in (47), we find that the solution to our non-homogeneous initial-
boundary-value problem (46) is

(49) u(x, t) =
∞∑

n=1

e−λnα2tun
0Xn(x) +

∞∑
n=1

∫ t

0

e−λnα2(t−τ)fn(τ)Xn(x) dτ,

with the coefficients un
0 and fn(·) computed as above.
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This formula has the tyical structure of the solution of an initial-value problem. That
is, if we use the first term in this representation to define a family of operators E(t), t ≥ 0,
on the space of functions on the interval [0, �] by

[E(t)u0](x) =
∞∑

n=1

e−λnα2t
(
u0, Xn

)
Xn(x) ,(50)

then the solution (49) takes the form

(51) u(·, t) = E(t)u0 +

∫ t

0

E(t − τ)f(τ) dτ .

In particular, the operator E(t) in this specific case is an integral operator

[E(t)u0](x) =
∞∑

n=1

e−λnα2t

∫ �

0

(u0(s) sin(
nπ

�
s)) ds

2

�
sin(

nπ

�
x)

=

∫ �

0

2

�

( ∞∑
n=1

e−λnα2t sin(
nπ

�
s) sin(

nπ

�
x)

)
u0(s) ds

=

∫ �

0

G(x, s, t)u0(s) ds

for which the kernel

G(x, s, t) =
2

�

( ∞∑
n=1

e−λnα2t sin(
nπ

�
s) sin(

nπ

�
x)

)
is the Green’s function for the problem.

Exercise 6. Compute the solution of (37a) with initial condition u(x, 0) = 0 and
the boundary conditions u(0, t) = 0 and u(�, t) = t.

Example 3. For the situation of Example 1, suppose the left end of the rod is insulated
while the right end has a heat loss given by −ux(�, t) = k� u(�, t) where k� ≥ 0. The initial-
boundary-value problem for this situation is given by

ut(x, t) = α2uxx(x, t), 0 < x < �, t > 0,(52a)

ux(0, t) = 0, k� u(�, t) + ux(�, t) = 0, t > 0,(52b)

u(x, 0) = u0(x), 0 < x < �.(52c)

We seek a solution in the form

u(x, t) = X(x)T (t),

where the boundary conditions imply X ′(0) = 0 and k� X(�) + X ′(�) = 0. The method
of separation of variables leads us to the time-dependent problem

T ′(t) + λα2T (t) = 0, t > 0,

and the boundary-value problem

X ′′(x) + λX(x) = 0, 0 < x < �,(53a)

X ′(0) = 0, k� X(�) + X ′(�) = 0.(53b)
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For values of λ < 0, we find that there are no non-null solutions. For the case of λ = 0,
only if k� = 0 do we get a non-zero solution, and this is X0(x) = (1

�
)1/2 with λ0 = 0. But

for λ > 0, the general solution to (53a) is

X(x) = C1 sin (λ1/2x) + C2 cos (λ1/2x),

and the boundary conditions (53b) imply that

C1 = 0, and k� C2 cos (�λ1/2) − C2λ
1/2 sin (�λ1/2) = 0.

Since we are only interested in non-null solutions, the latter equation is equivalent to
solving λ1/2 tan (�λ1/2) = k�. That is, we have tan (�λ1/2) = k�

λ1/2 . The tangent function
is π-periodic, so we obtain a sequence λn, n ≥ 0, of solutions to this equation, and the
corresponding eigenfunctions are given by

Xn(x) =
(2

�

)1/2
cos (λ1/2

n x), n ≥ 1.

Note that the eigenvalues belong to intervals determined by �(λn)1/2 ∈ [nπ, nπ+ 1
2
π], n ≥

0, and that for small k�

(λn)1/2 we have

λn ≈ (
nπ

�
)2,

so the eigenvalues are asymptotically close to those of the preceding example. Com-
bining these results with the time-dependent solutions Tn(t) = e−λnα2t and using the
orthogonality of the eigenfunctions, we find solutions of (52a) in the form

u(x, t) =
∞∑

n=0

(u0(·), Xn(·))e−λnα2tXn(x),

and it is understood that the sum starts at n = 1 if k� > 0.

Exercise 7. Compute the solution of (37a) with initial condition u(·, 0) = u0(·) and
the boundary conditions u(0, t) = 0 and ux(�, t) = 0.

Exercise 8. Consider the problem

u′′(x) + u′(x) = f(x)

u′(0) = u(0) =
1

2
[u′(�) + u(�)],

where f(x) is a given function.

(a) Is the solution unique?
(b) Does a solution necessarily exist, or is there a condition that f(x) must satisfy

for existence?

Exercise 9. Let the rod G be defined over the interval (0, 1), and suppose its lateral
surface is perfectly insulated along its length. Furthermore, let’s assume the material
properties of the rod are constant, its thermal diffusivity is α2, and there are no internal
heat sources or sinks. Assuming both ends of the rod are insulated and the initial tem-
perature distribution in the rod is given by u0(x) = x, find the temperature distribution
u(x, t) within rod G.
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Exercise 10. Given the same setup as in the previous example, find the temperature
distribution u(x, t) within rod G, under the following conditions:

i. The thermal diffusivity α2 of the rod is some known constant.
ii. The left end of the rod is held at the fixed constant temperature u(0, t) = TL,

while the right end is held at the fixed constant temperature u(1, t) = TR.
iii. The initial temperature distribution within the rod is given by u0(x).

8. Transverse Vibrations

9. Longitudinal Vibrations

We recall the discussion of the longitudinal vibrations in a long narrow cylindrical
rod of cross section area S. The rod is located along the x−axis, and we identify it
with the interval [a, b] in R. The rod is assumed to stretch or contract in the horizontal
direction, and we assume that the vertical plane cross-sections of the rod move only
horizontally. Denote by u(x, t) the displacement in the positive direction from the point
x ∈ [a, b] at the time t > 0. The corresponding displacement rate or velocity is denoted
by v(x, t) ≡ ut(x, t).

Let σ(x, t) denote the local stress , the force per unit area with which the part of the
rod to the right of the point x acts on the part to the left of x. Since force is positive
to the right, the stress is positive in conditions of tension. For a section of the rod,
x1 < x < x2, the total (rightward) force acting on that section due to the remainder of
the rod is given by (

σ(x2, t) − σ(x1, t)
)
S .

If the density of the rod at x is given by ρ > 0, the momentum of this section is just∫ x2

x1

ρ ut(x, t) S dx .

If we let F (x, t) denote any external applied force per unit of volume in the positive
x−direction, then we obtain from Newton’s second law that

d

dt

∫ x2

x1

ρ ut(x, t) S dx =
(
σ(x2, t) − σ(x1, t)

)
S +

∫ x2

x1

F (x, t) S dx

for any such x1 < x2. For a sufficiently smooth displacement u(x, t), we obtain the
conservation of momentum equation

(54) ρ utt(x, t) − σx(x, t) = F (x, t) , a < x < b, t > 0 .

The stress σ(x, t) is determined by the type of material of which the rod is composed
and the amount by which the neighboring region is stretched or compressed, i.e., on the
elongation or strain, ε(x, t). In order to define this, first note that a section [x, x+h] of the
rod is deformed by the displacement to the new position [x+u(x), (x+h)+u(x+h)]. The
elongation is the limiting increment of the change in the length due to the deformation
as given by

lim
h→0

[u(x + h) + (x + h)] − [u(x) + x] − h

h
=

d u(x)

dx
,

so the strain is given by ε(x, t) ≡ ux(x, t).
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The relation between the stress and strain is a constitutive law, usually determined
by experiment, and it depends on the type of material. In the simplest case, with small
displacements, we find by experiment that σ(x, t) is proportional to ε(x, t), i.e., that
there is a constant k called Young’s modulus for which

σ(x, t) = k ε(x, t) .

The constant k is a property of the material, and in this case we say the material is
purely elastic.

A rate-dependent component of the stress-strain relationship arises when the force
generated by the elongation depends not only on the magnitude of the strain but also on
the speed at which it is changed, i.e., on the strain rate εt(x, t) = vx(x, t). The simplest
such case is that of a visco-elastic material defined by the linear constitutive equation

σ(x, t) = k ε(x, t) + μ εt(x, t) ,

in which the material constant μ is the viscosity or internal friction of the material.
Finally, if we include the effect of the transverse motions of the rod that result from the
elongations under conditions of constant volume or mass, we will get an additional term
to represent the transverse inertia. If the constant P denotes Poisson’s ratio, and r is
the average radius of that cross section, then the corresponding stress-strain relationship
is given as before by

σ(x, t) = k ε(x, t) + μ εt(x, t) + ρ r2 P εtt(x, t) .

In terms of displacement, the total stress is

(55) σ(x, t) = kux(x, t) + μuxt(x, t) + ρ r2 Puxtt(x, t) .

The partial differential equation for the longitudinal vibrations of the rod is obtained by
substituting (55) into (54).

Initial and Boundary conditions. Since the momentum equation is second–order
in time, one may expect that in order to have a well–posed problem, two initial conditions
should be specified. Thus, we shall specify the initial conditions

u(x, 0) = u0(x), ut(x, t) = v0(x), a < x < b ,

where u0(·) and v0(·) are the initial displacement and the initial velocity, respectively.
We list a number of typical possibilities for determining the two boundary conditions.

Each of these is illustrated as before with a condition at the right end, x = b, and we
note that another such condition will also be prescribed at the left end, x = a.

1. The displacement could be specified at the end point:

u(b, t) = db(t), t > 0 .

This is the Dirichlet boundary condition, or boundary condition of first type. It could be
obtained from observation of the endpoint position, or it could be imposed directly on
the endpoint. The homogeneous case db(t) = 0 corresponds to a clamped end.

2. The horizontal force on the rod could be specified at the end point:

σ(b, t) = fb(t), t > 0 .
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For the purely elastic case, σ = kux, this is the Neumann boundary condition, or bound-
ary condition of second type. The homogeneous condition with fb(t) = 0 corresponds to
a free end.

3. The force on the end is determined by an elastic constraint, a restoring force
proportional to the displacement:

σ(b, t) + k0(u(b, t) − db(t)) = fb(t), t > 0 .

For the purely elastic case this is the Robin boundary condition, or boundary condition of
third type. Here both db(·) and fb(·) are prescribed. The first is a prescribed displacement
of the spring reference, and the second is a horizontal force concentrated on the right
end point. For k0 → ∞, we obtain formally the Dirichlet boundary condition, while
for k0 → 0 we get the Neumann condition. Thus the effective tension k0 interpolates
between the first two types.

4. Another type of boundary condition arises if there is a concentrated mass at the end
point. Then u(b, t) is the displacement of this mass, and we have the dynamic boundary
condition

ρ0utt(b, t) + σ(b, t) = fb(t), t > 0 ,

which is the boundary condition of fourth type for the elastic case.

10. The Eigenfunction Expansion, II

We shall apply the method of separation of variables to the initial-boundary-value
problem for longitudinal vibrations with Dirichlet boundary conditions.

Example 4. Suppose the rod (0, �) is perfectly elastic and set α2 = k
ρ
. Assume there

are no internal forces, i.e., f(x, t) = 0, and that both ends of the rod are fixed. The
initial displacement and velocity are given by u0(x) and v0(x), respectively. The initial-
boundary-value problem for this scenario is

utt(x, t) = α2uxx(x, t), 0 < x < �, t > 0,(56a)

u(0, t) = 0, u(�, t) = 0, t > 0,(56b)

u(x, 0) = u0(x), ut(x, 0) = v0(x), 0 < x < �.(56c)

We look for non-null solutions of the form u(x, t) = X(x)T (t) and find as before that

T ′′(t)
α2T (t)

=
X ′′(x)

X(x)
, 0 < x < �, t > 0 .

Each side must be equal a common constant, denoted by −λ, and this leads to the pair
of ordinary differential equations

T ′′(t) + λ α2 T (t) = 0, t > 0,

X ′′(x) + λ X(x) = 0, 0 < x < �.

The boundary conditions given in (56b) imply that X(0) = X(�) = 0.
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Note that if X(·) and T (·) are solutions of these respective equations, then it follows
directly that their product is a solution (56a). We have already found the non-null
solutions of the boundary-value problem{

X ′′(x) + λX(x) = 0, 0 < x < �,
X(0) = 0, X(�) = 0.

(57)

The solutions are the normalized eigenfunctions

Xn(x) =

√
2

�
sin(

nπ

�
x)

corresponding to the eigenvalues λn = (nπ/�)2. If we combine these with the corre-
sponding time-dependent solutions cos(α

√
λnt) and sin(α

√
λnt) of the first differential

equation and take linear combinations, we obtain a large class of solutions of the partial
differential equation (56a) and boundary conditions (56b) in the form of a series

u(x, t) =
∞∑

n=1

(
An cos(α

√
λnt) + Bn sin(α

√
λnt)

)
Xn(x),

where the sequences {An} and {Bn} are to be determined. From the initial conditions
(56c), it follows that these coefficients must satisfy

∞∑
n=1

AnXn(x) = u0(x),
∞∑

n=1

Bnα
√

λnXn(x) = v0(x), 0 < x < �,

so we obtain

Am = (u0(·), Xm(·)), Bm =
(v0(·), Xm(·))

α
√

λm

, m ≥ 1 .

In summary, the solution of the initial-boundary-value problem (56) is given by the series

u(x, t) =
∞∑

n=1

(
cos(α

√
λnt)(u0(·), Xn(·)) + sin(α

√
λnt)

(v0(·), Xn(·))
α
√

λn

)
Xn(x).

Denote the second term in the preceding formula by

[S(t)v0](x) =
∞∑

n=1

(
sin(α

√
λnt)

(v0(·), Xn(·))
α
√

λn

)
Xn(x).

This defines the operator S(t) on the space of functions on [0, �]. We can use this operator
to represent the solution by

(58) u(·, t) = S ′(t)u0 + S(t)v0 .

Example 5. Suppose the rod (0, �) is perfectly elastic and set α2 = k
ρ
. Assume that

both ends of the rod are fixed, the initial displacement and velocity are both null, and that
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there are distributed forces f(x, t) along its length. The initial-boundary-value problem
for this case is

utt(x, t) = α2uxx(x, t) + f(x, t), 0 < x < �, t > 0,(59a)

u(0, t) = 0, u(�, t) = 0, t > 0,(59b)

u(x, 0) = 0, ut(x, 0) = 0, 0 < x < �.(59c)

For this problem with a non-homogeneous partial differential equation (59a), we look
for the solution in the form

(60) u(x, t) =
∞∑

n=1

un(t)Xn(x).

If we assume that f(x, t) has the eigenfunction expansion

f(x, t) =
∞∑

n=1

fn(t)Xn(x) ,

then the coefficients are given by

fn(t) ≡
∫ �

0

f(s, t)Xn(s) ds ,

and substituting this expansion into equation (59a) yields

∞∑
n=1

[
ün(t) + λnα

2un(t)
]
Xn(x) =

∞∑
n=1

fn(t)Xn(x) .

By equating the coefficients of the series given in this last equation, we are led to the
sequence of initial-value problems

ün(t) + λnα
2un(t) = fn(t), t > 0(61a)

un(0) = 0, u̇n(0) = 0 .(61b)

The solution to (61) is

un(t) =

∫ t

0

�

nπα
sin(

nπα

�
(t − τ))fn(τ) dτ

Now, if we use this in (60), we find that the solution to our non-homogeneous initial-
boundary-value problem (46) is

(62) u(x, t) =

∫ t

0

∞∑
n=1

�

nπα
sin(

nπα

�
(t − τ))fn(τ)Xn(x) dτ.

Note that we can use the operator S(t) to represent this formula as

(63) u(·, t) =

∫ t

0

S(t − τ)f(τ) dτ.
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As before, each S(t) is an integral operator of the form

[S(t)v0](x) =
∞∑

n=1

�

nπα
sin(

nπα

�
t)

∫ �

0

(v0(s) sin(
nπ

�
s)) ds

2

�
sin(

nπ

�
x)

=

∫ �

0

2

�

( ∞∑
n=1

�

nπα
sin(

nπα

�
t) sin(

nπ

�
s) sin(

nπ

�
x)

)
v0(s) ds

=

∫ �

0

H(x, s, t)v0(s) ds

for which the kernel

H(x, s, t) =
2

�

( ∞∑
n=1

�

nπα
sin(

nπα

�
t) sin(

nπ

�
s) sin(

nπ

�
x)

)
is the Green’s function for the problem.

Example 6. Suppose the left end of the elastic rod is free while the right end has an
elastic constraint given by u(�, t) + ux(�, t) = 0. The initial-boundary-value problem for
this situation is

utt(x, t) = α2uxx(x, t), 0 < x < �, t > 0,(64a)

ux(0, t) = 0, u(�, t) + ux(�, t) = 0, t > 0,(64b)

u(x, 0) = u0(x), ut(x, 0) = v0(x), 0 < x < �.(64c)

We seek a solution in the form

u(x, t) = X(x)T (t),

where the boundary conditions imply that Xx(0) = 0 and X(�)+Xx(�) = 0. The method
of separation of variables leads us to the boundary-value problem

Xxx(x) + λX(x) = 0, 0 < x < �,

X ′(0) = 0, X(�) + X ′(�) = 0.

We obtain a sequence of eigenvalues λn and corresponding eigenfunctions given by

Xn(x) =
(2

�

)1/2
cos (λ1/2

n x).(65)

Note that for large λn we have

λn ≈ (
nπ

�
)2,

so the eigenvalues are asymptotically close to those of the preceding example. Combin-
ing these results with the time-dependent solutions and using the orthogonality of the
eigenfunctions, we find solutions of the initial-boundary-value problem (64) in the form

u(x, t) =
∞∑

n=1

(
cos(α

√
λnt)(u0(·), Xn(·)) + sin(α

√
λnt)

(v0(·), Xn(·))
α
√

λn

)
Xn(x),
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with the eigenfunctions given by (65). Once again, this can be represented in the form
(58) for an appropriate family of operators {S(t) : t ≥ 0}.

Exercise 11. Suppose the rod (0, �) is elastic and that we account for the inertia
of lateral extension. Set α2 = k

ρ
and β2 = r2P , where P is Poisson’s ratio and r is

the average radius of a cross section as above. Assume there are no internal forces, i.e.,
f(x, t) = 0, and that both ends of the rod are fixed. The initial displacement and velocity
are given by u0(x) and v0(x), respectively. The initial-boundary-value problem is

utt(x, t) = α2uxx(x, t) + β2uxxtt(x, t), 0 < x < �, t > 0,(66a)

u(0, t) = 0, u(�, t) = 0, t > 0,(66b)

u(x, 0) = u0(x), ut(x, 0) = v0(x), 0 < x < �.(66c)

Find the solution by separation of variables. Find the family of operators {S(t) : t ≥ 0}
for which this can be represented in the form (58).

11. Duhamel Formulae: Variation of Parameters

We would like to investigate further the structure of the solutions of both the first
and second order equations that we found above. The point is that the forms we found
above are indeed quite general, and we find in each case that the formula for a solution of
the general non-homogeneous problem can be written down immediately, once we know
the formula for a basic problem.

11.1. First Order Equations. Suppose that we know the basic initial-value prob-
lem for the first-order evolution equation

u̇(t) + Au(t) = 0, u(0) = ϕ,

is well-posed, that is, that there exists exactly one solution of this problem for each choice
of the initial function ϕ. This defines the semigroup of operators {EA(t)} by

u(t) ≡ EA(t)ϕ, t ≥ 0 .

In particular cases, this permits us to write a formula for EA(·) as an integral operator
with an explicit kernel. Now suppose that we have a solution u(·) of the more general
problem with a nonhomogeneous equation,

u̇(t) + Au(t) = f(t), u(0) = ϕ.

From the formal computation

d

dτ
EA(t − τ)u(τ) = EA(t − τ){u̇(τ) + Au(τ)} = EA(t − τ)f(τ) ,

and an integration in time, we obtain

u(t) = EA(t)ϕ +

∫ t

0

EA(t − τ)f(τ) dτ .

This is just the form (51). In particular, we can use our formula for the integral operators
EA(·) to obtain an explicit representation and verify directly that this formula gives the
solution of the non-homogeneous problem.
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11.2. Second Order Equation. Now for the second-order evolution equation, we
suppose that the basic initial-value problem

ẅ(t) + Aw(t) = 0, w(0) = 0, ẇ(0) = ψ,

is well-posed. This defines the operators {SA(t)} by

w(t) ≡ SA(t)ψ .

Note first that the derivative of these operators can be used to represent the solution of
the corresponding problem

ẅ(t) + Aw(t) = 0, w(0) = ψ, ẇ(0) = 0,

by the formula

w(t) = S ′
A(t)ψ .

Now consider the general initial-value problem with non-homogeneous data in the form

ẅ(t) + Aw(t) = f(t), w(0) = ϕ, ẇ(0) = ψ.

We make the formal computation

d

dτ
{SA(t − τ)ẇ(τ) + S ′

A(t − τ)w(τ)} =

SA(t − τ){ẅ(τ) + Aw(τ)} = SA(t − τ)f(τ),

and then an integration in time yields the representation

w(t) = S ′
A(t)ϕ + SA(t)ψ +

∫ t

0

SA(t − τ)f(τ) dτ.

This is just the combination of the two formulae (58) and (63). Again, we find that if we
find the formula for the integral operators SA(·) which gives the explicit representation
of the solution to the basic initial-value problem, then the corresponding formula for the
solution of the general non-homogeneous problem can be written immediately.

Exercise 12. Suppose the rod (0, �) is perfectly elastic and set α2 = k
ρ
. Assume that

the left end of the rod is fixed, the right end is free, and the initial displacement is null.
The initial-boundary-value problem for this situation is

utt(x, t) = α2uxx(x, t), 0 < x < �, t > 0,

u(0, t) = 0, ux(�, t) = 0, t > 0,

u(x, 0) = 0, ut(x, 0) = v0(x), 0 < x < �.

Find the kernel H(x, s, t) for which the solution is given by the integral operator

u(x, t) =

∫ �

0

H(x, s, t)v0(s) ds .
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Find a corresponding formula for the solution of the non-homogeneous problem with
given initial displacement, velocity, and distributed forces f(x, t) along its length:

utt(x, t) = α2uxx(x, t) + f(x, t), 0 < x < �, t > 0,

u(0, t) = 0, ux(�, t) = 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = v0(x), 0 < x < �.


