
Variational Method in Hilbert Space

1. A Preview

Boundary-value problems lead us to consider certain function spaces.
Consider first the space H of real-valued functions u(·) on the interval
(a, b), each of which is continuous except for a finite number of discontinu-

ities and for which the Riemann integral
∫ b

a |u(x)|
2dx is finite. (This could

be an improper integral.) Addition and scalar multiplication are defined
pointwise. We say that u(·) = 0 almost everywhere if u(x) = 0 for all but
a finite number of points x ∈ (a, b). Then we identify any two functions
u(·), v(·) if u(·) = v(·) almost everywhere, that is, if u(·) − v(·) = 0 al-
most everywhere. The set of functions v(·) for which u(·) = v(·) almost
everywhere is called the equivalence class of u(·); note that the integral∫ b

a v(x)dx has the same value for all such v(·). We identity the entire
equivalence class with u(·). It is easy to check that H is a linear space
and that

(u, v)H ≡
∫ b

a

u(x)v(x) dx

is a scalar product on H. Note that the corresponding norm is

‖u‖H =
(∫ b

a

|u(x)|2 dx
) 1

2 .

It is necessary to extend this space somewhat, in the same way that the
set of rational numbers is extended to obtain the real number system. The
appropriate technical modification of the above is to use the more general
Lebesgue integral and to let almost everywhere mean except on a set of
measure zero. All finite sets have measure zero as before, but there are
also infinite sets of measure zero. Then we denote the corresponding space
by L2(a, b). Hereafter, we set H = L2(a, b). Further discussion of these
topics would require a discussion of Lebesgue integration.
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We need a notion of derivative. By u′ ∈ H we mean that u is an anti-
derivative of a function in H, hence, it is absolutely continuous and the
classical derivative u′(x) exists at a.e. point x in (a, b). We recall two of
the boundary-value problems from above. Let c ∈ R and F ∈ H be given.
The Dirichlet problem is to find

u ∈ H : −u′′ + cu = F in H, u(a) = u(b) = 0 ,

and the Neumann problem is to find

u ∈ H : −u′′ + cu = F in H, u′(a) = u′(b) = 0 .

An implicit requirement of each of these classical formulations is that
u′′ ∈ H. This smoothness condition can be relaxed in the following way:
multiply the equation by v ∈ H and integrate. If also v′ ∈ H we obtain
the following by an integration-by-parts. Let V0 ≡ {v ∈ H : v′ ∈ H and
v(a) = v(b) = 0}; a solution of the Dirichlet problem is characterized by

(1) u ∈ V0 and

∫ b

a

(u′v′ + cuv) dx =

∫ b

a

Fv dx , v ∈ V0 .

Similarly, a solution of the Neumann problem satisfies

(2) u ∈ V1 and

∫ b

a

(u′v′ + cuv) dx =

∫ b

a

Fv dx , v ∈ V1 ,

where V1 ≡ {v ∈ H : v′ ∈ H}. These are the corresponding weak for-
mulations of the respective problems. We shall see below that they are
actually equivalent to their respective classical formulations. Moreover we
see already the primary ingredients of the variational theory:

(1) Functionals . Each function, e.g., F ∈ H, is identified with a func-

tional, F̃ : H → R, defined by F̃ (v) ≡
∫ b

a Fv dx, v ∈ H. This iden-
tification is achieved by way of the L2 scalar product. For a pair
u ∈ V1, v ∈ V0 an integration by parts shows ũ′(v) = −ũ(v′). Thus,
for this identification of functions with functionals to be consistent
with the usual differentiation of functions, it is necessary to define
the generalized derivative of a functional f by ∂f(v) ≡ −f(v′),
v ∈ V0.

(2) Function Spaces . From L2(a, b) and the generalized derivative ∂
we construct the Sobolev space H1(a, b) ≡ {v ∈ L2(a, b) : ∂v ∈
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L2(a, b)}. We see that H1(a, b) is a linear space with the scalar
product

(u, v)H1 ≡
∫ b

a

(∂u∂v + uv) dx

and corresponding norm ‖u‖H1 = (u, u)
1/2
H1 , and each of its mem-

bers is absolutely continuous, hence, u(x) − u(y) =
∫ x

y ∂u for

u ∈ H1(a, b), a < y < x < b. This space arises naturally above
in the Neumann problem; we denote by H1

0(a, b) the subspace
{v ∈ H1(a, b) : v(a) = v(b) = 0} which occurs in the Dirichlet
problem.

(3) Forms . Each of our weak formulations is phrased as

u ∈ V : a(u, v) = f(v) , v ∈ V ,

where V is the appropriate linear space (either H1
0 or H1), f = F̃ is

a continuous linear functional on V , and a(·, ·) is the bilinear form
on V defined by

a(u, v) =

∫ b

a

(∂u∂v + cuv) dx , u, v ∈ V .

This form is bounded or continuous on V : there is a C > 0 such that

(3) |a(u, v)| ≤ C‖u‖V ‖v‖V , u, v ∈ V .

Moreover, it is V -coercive, i.e., there is a c0 > 0 for which

|a(v, v)| ≥ c0‖v‖2
V , v ∈ V

in the case of V = H1(a, b) if (and only if!) c > 0 and in the case of
V = H1

0(a, b) for any c > −2/(b − a)2. (This last inequality follows from
(6) below, but it is not the optimal constant.) We shall see that the weak
formulation constitutes a well-posed problem whenever the bilinear form
is bounded and coercive.

1.1. Functionals. But first we consider the notion of a generalized
derivative of functions and, even more generally, of functionals. Let −∞ ≤
a < b ≤ +∞. The support of a function ϕ : (a, b) → R is the closure in
(a, b) of the set {x ∈ (a, b) : ϕ(x) 6= 0}. We define C∞

0 (a, b) to be the
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linear space of those infinitely differentiable functions ϕ : (a, b) → R each
of which has compact support in (a, b). An example is given by

ϕ(x) =

{
exp[−1/(1− |x|2)] , |x| < 1

0 , |x| ≥ 1 .

We shall refer to C∞
0 (a, b) as the space of test functions on (a, b). A linear

functional, T : C∞
0 (a, b) → R, is called a distribution on (a, b). Thus, the

linear space of all distributions is the algebraic dual C∞
0 (a, b)∗ of C∞

0 (a, b).
Next we show that the space of distributions contains essentially all

functions. A (measurable) function u : (a, b) → R is locally integrable on
(a, b) if for every compact set K ⊂ (a, b), we have

∫
K |u| dx < ∞. The

space of all such (equivalence classes of) functions is denoted by L1
loc(a, b).

Suppose u is (a representative of) an element of L1
loc(a, b). Then we define

a corresponding distribution ũ by

ũ(ϕ) =

∫ b

a

u(x)ϕ(x) dx , ϕ ∈ C∞
0 (a, b) .

Note that ũ is independent of the representative and that the function
u 7→ ũ is linear from L1

loc to C∞∗
0 .

Lemma 1. If ũ = 0 then u = 0.

This is a technical result which means that if
∫
uϕ = 0 for all ϕ ∈ C∞

0 ,
then u(·) = 0 almost everywhere in (a, b). A consequence of it is the
following.

Proposition 1. The mapping u 7→ ũ of L1
loc(a, b) into C∞

0 (a, b)∗ is
linear and one-to-one.

We call {ũ : u ∈ L1
loc(G)} the regular distributions . Two examples in

C∞
0 (R)∗ are the Heaviside functional

H̃(φ) =

∫ ∞

0
φ , φ ∈ C∞

0 (R) ,

obtained from the Heaviside function: H(x) = 1 if x > 0 and H(x) = 0
for x < 0, and the constant functional

T (φ) =

∫
R
φ , φ ∈ C∞

0 (R)
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given by T = 1̃. An example of a non-regular distribution is the Dirac
functional given by

δ(φ) = φ(0) , φ ∈ C∞
0 (R) .

According to Proposition 1 the space of distributions is so large that it
contains all functions with which we shall be concerned, i.e., it contains
L1

loc. Such a large space was constructed by taking the dual of the “small”
space C∞

0 .

1.2. Derivative. Next we shall take advantage of the linear differen-
tiation operator on C∞

0 to construct a corresponding generalized differ-
entiation operator on the dual space of distributions. Moreover, we shall
define the derivative of a distribution in such a way that it is consistent
with the classical derivative on functions. Let D denote the classical de-
rivative, Dϕ = ϕ′, when it is defined at a.e. point of the domain of ϕ. As
we observed above, if we want to define a generalized derivative ∂T of a
distribution T so that for each u ∈ C∞(a, b) we have ∂ũ = ˜(Du), that is,

∂ũ(ϕ) = −
∫ b

a

u ·Dϕ = −ũ(Dϕ) , ϕ ∈ C∞
0 (a, b) ,

then we must define ∂ as follows.

Definition 1. For each distribution T ∈ C∞
0 (a, b)∗ the derivative ∂T ∈

C∞
0 (a, b)∗ is defined by

∂T (ϕ) = −T (Dϕ) , ϕ ∈ C∞
0 (a, b) .

Note that D : C∞
0 (a, b) → C∞

0 (a, b) and T : C∞
0 (a, b) → R are both

linear, so ∂T : C∞
0 (a, b) → R is clearly linear. Since ∂ is defined on all

distributions, it follows that every distribution has derivatives of all orders.
Specifically, every u ∈ L1

loc has derivatives in C∞
0 (a, b)∗ of all orders.

Example 1. Let f be continuously differentiable on R. Then we have

∂f̃(ϕ) = −f̃(Dϕ) = −
∫
fDϕdx =

∫
Dfϕ = ˜(Df)(ϕ)

for ϕ ∈ C∞
0 (R). The third equality follows from integration-by-parts and

all other equalities are definitions.
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This shows that the generalized derivative coincides with the classical
derivative on smooth functions. Of course the definition was rigged to
make this occur!

Example 2. Let r(x) = xH(x) where H(x) is given above. For this
piecewise-differentiable function we have

∂r̃(ϕ) = −
∫ ∞

0
xDϕ(x) dx =

∫ ∞

0
ϕ(x) dx = H̃(ϕ) , ϕ ∈ C∞

0 (R) ,

so ∂r̃ = H̃ even though Dr(0) does not exist.

Example 3. For the piecewise-continuous function H(·) we have

∂H̃(ϕ) = −
∫ ∞

0
Dϕ(x) dx = ϕ(0) = δ(ϕ) , ϕ ∈ C∞

0 (R) ,

so ∂H̃ = δ, the non-regular Dirac functional.

More generally, let f : R → R be absolutely continuous in a neighbor-
hood of each x 6= 0 and have one-sided limits f(0+) and f(0−) from the
right and left, respectively, at 0. Then we obtain

∂f̃(ϕ) = −
∫ ∞

0
fDϕ−

∫ 0

−∞
fDϕ =

∫ ∞

0
(Df)ϕ+ f(0+)ϕ(0)

+

∫ 0

−∞
(Df)ϕ− f(0−)ϕ(0) = ˜(Df)(ϕ) + σ0(f)ϕ(0), ϕ ∈ C∞

0 ,

where σ0(f) = f(0+) − f(0−) is the jump in f at 0. That is, ∂f̃ =
D̃f+σ0(f)δ, and this formula can be repeated if Df satisfies the preceding
conditions on f :

∂2f̃ = ˜(D2f) + σ0(Df)δ + σ0(f)∂δ .

For example we have

∂(H · sin) = H · cos , ∂(H · cos) = −H · sin +δ .

Before discussing further the interplay between ∂ and D we note that
a distribution T on R is constant if and only if T = c̃ for some c ∈ R, i.e.,

T (ϕ) = c

∫
R
ϕ , ϕ ∈ C∞

0 .
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This occurs exactly when T depends only on the mean value of each
ϕ. This observation is the key to the description of primitives or anti-
derivatives of a given distribution. Suppose we are given a distribution S
on R; does there exist a primitive, a distribution T such that ∂T = S?
That is, do we have a distribution T for which

T (Dψ) = −S(ψ) , ψ ∈ C∞
0 (R) ?

Lemma 2.

(a) {Dψ : ψ ∈ C∞
0 (R)} = {ζ ∈ C∞

0 (R) :
∫
ζ = 0} and the correspon-

dence is given by ψ(x) =
∫ x

−∞ ζ. Denote this space by H.

(b) Let ϕ0 ∈ C∞
0 (R) with

∫
ϕ0 = 1. Then each ϕ ∈ C∞

0 (R) can be
uniquely written as ϕ = ζ + cϕ0 with ζ ∈ H, and this occurs when
c =

∫
ϕ.

Proposition 2.

(a) For each distribution S there is a distribution T with ∂T = S.
(b) If T1, T2 are distributions with ∂T1 = ∂T2, then T1 = T2+ constant.

Proof. (a) Define T onH by T (ζ) = −S(ψ), ζ ∈ H, ψ(x) =
∫ x

−∞ ζ,
and extend to all of C∞

0 (R) by T (ϕ0) = 0.
(b) If ∂T = 0, then T (ϕ) = T (ζ + cϕ0) = T (ϕ0)

∫
ϕ, so T = T (ϕ0)1̃ is

a constant.
�

Corollary 1. If T is a distribution on R with ∂T ∈ L1
loc(R), then

T = f̃ for some absolutely continuous f , and ∂T = D̃f .

Proof. Note first that if f is absolutely continuous then Df(x) is
defined for a.e. x ∈ R and Df ∈ L1

loc(R) with D̃f = ∂f̃ as before. In
the converse situation of Corollary 1, let g ∈ L1

loc with g̃ = ∂T and define

h(x) =
∫ x

0 g, x ∈ R. Then h is absolutely continuous, ∂(T − h̃) = 0,

so Proposition 2 shows T = h̃ + c̃ for some c ∈ R. Thus T = f̃ with
f(x) = h(x) + c, x ∈ R. �

Corollary 2. The weak formulations of the Dirichlet and Neumann
problems are equivalent to the original formulations.
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Exercise 1. Define the function k(·) by

k(x) = k1, 0 < x < 1, k(x) = k2, 1 < x < 2 .

Find the solution of the problem

−∂(k(·)∂u(·)) = 0 in L2(0, 2), u(0) = 1, u(2) = 0.

Exercise 2. Let V ≡ {v ∈ L2(0, 2) : ∂v ∈ L2(0, 2) and v(0) = 0}; the
function k(·) is defined above. Let F (·) ∈ L2(0, 2) and λ ∈ R be given.
Show that the function u(·) satisfies

u ∈ V and

∫ 2

0
(k(x)∂u(x)∂v(x) + λu(x)v(x)) dx

=

∫ b

a

F (x)v(x) dx , v ∈ V ,

if and only if it satisfies the interface problem

u(0) = 0, −∂(k1∂u(x)) + λu(x) = F (x), 0 < x < 1,

u(1−) = u(1+), k1∂u(1
−) = k2∂u(1

+),

−∂(k2∂u(x)) + λu(x) = F (x), 1 < x < 2, k2∂u(2) = 0 .

2. Hilbert Space

Let V be a linear space over the reals R and the function x, y 7→ (x, y)
from V × V to R be a scalar product . The corresponding norm on V is
given by ‖x‖ = (x, x)

1
2 , and we have shown that

(4) |(x, y)| ≤ ‖x‖ ‖y‖, x, y ∈ V.

A sequence {xn} converges to x in V if limn→∞ ‖xn − x‖ = 0. This is
denoted by limn→∞ xn = x. A convergent sequence is always Cauchy :
limm,n→∞ ‖xm − xn‖ = 0. The space V with norm ‖ · ‖ is complete if each
Cauchy sequence is convergent in V . A complete normed linear space is a
Banach space, and a complete scalar product space is a Hilbert space.

Example 4. Consider the space C[0, 1] of (uniformly) continuous func-

tions on the interval [0, 1] with the norm ‖x‖L2 =
(∫ 1

0 |x(t)|
2 dt
)1

2 . Let
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0 < c < 1 and for each n with 0 < c− 1/n define xn ∈ C[0, 1] by

xn(t) =

 1 , c ≤ t ≤ 1,
n(t− c) + 1 , c− 1/n < t < c,
0 , 0 ≤ t ≤ c− 1/n .

For m ≥ n we have ‖xm−xn‖2
L2 ≤ 1/n, so {xm} is Cauchy. If x ∈ C[0, 1],

then

‖xn − x‖2
L2 ≥

∫ c−1/n

0
|x(t)|2 dt+

∫ 1

c

|1− x(t)|2 dt .

This shows that if {xn} converges to x then x(t) = 0 for 0 ≤ t < c and
x(t) = 1 for c ≤ t ≤ 1, a contradiction. Hence, C[0, 1] is not complete
with the norm ‖ · ‖L2.

Exercise 3. Show that C[0, 1] is complete with the norm

‖x‖C[0,1] = sup{|x(t)| : 0 ≤ t ≤ 1} .

2.1. Examples. Some familiar examples of Hilbert spaces include Eu-
clidean space Rm = {~x = (x1, x2, . . . , xm) : xj ∈ R} with (~x, ~y) =∑m

j=1 xjyj and the sequence space `2 = {~x = {x1, x2, x3, . . .} :
∑∞

j=1 |xj|2 <
∞} with (~x, ~y) =

∑∞
j=1 xjyj.

Exercise 4. Show that Rm and `2 are Hilbert spaces.

The Lebesgue space L2(a, b) = {equivalence classes of measurable func-

tions f : (a, b) → R :
∫ b

a |f(x)|2 dx < ∞} has the scalar product (f, g) =∫ b

a f(x)g(x) dx. From the theory of the Lebesgue integral, we find that
this space is complete, hence, it is a Hilbert space.

Finally we describe the spaces that naturally arise in the consideration
of boundary-value problems. The Sobolev space H1(a, b) is given by

H1(a, b) = {u ∈ L2(a, b) : ∂u ∈ L2(a, b)}
where we have identified u ∼= ũ. Thus each u ∈ H1(a, b) is absolutely
continuous with

u(x)− u(y) =

∫ x

y

∂u , a ≤ x , y ≤ b .

This gives the Hölder continuity estimate

|u(x)− u(y)| ≤ |x− y|1/2‖∂u‖L2(a,b) , u ∈ H1(a, b), a ≤ x, y ≤ b .
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(We use the inequality (4) in L2 to prove this.) If also we have u(a) = 0
then there follow

|u(x)| ≤ (b− a)1/2‖∂u‖L2(a,b) , a ≤ x ≤ b ,(5)

‖u‖L2(a,b) ≤
(
(b− a)/

√
2
)
‖∂u‖L2(a,b) ,(6)

and such estimates also hold for those u ∈ H1(a, b) with u(b) = 0. Let
λ(x) = (x − a)(b − a)−1 and u ∈ H1(a, b). Then λu ∈ H1(a, b) and
∂(λu) = λ∂u+ (b− a)−1u, so ‖∂(λu)‖L2 ≤ ‖∂u‖L2 + (b− a)−1‖u‖L2. The
same holds for ∂((1− λ)u) so by writing u = λu+ (1− λ)u we obtain

max{|u(x)| : a ≤ x ≤ b} ≤ 2(b− a)1/2‖∂u‖L2(7)

+ 2(b− a)−1/2‖u‖L2 , u ∈ H1(a, b) .

This simple estimate will be very useful.

Exercise 5. Show that convergence in H1(a, b) implies uniform con-
vergence on the interval [a, b].

To verify that H1(a, b) is complete, let {un} be a Cauchy sequence, so
that both {un} and {∂un} are Cauchy sequences in L2(a, b). Since L2(a, b)
is complete there are u, v ∈ L2(a, b) for which limun = u and lim ∂un = v
in L2(a, b). For each ϕ ∈ C∞

0 (a, b) we have

−
∫ b

a

un ·Dϕ =

∫ b

a

∂unϕ , n ≥ 1 ,

so letting n → ∞ shows v = ∂u. Thus u ∈ H1(a, b) and limun = u in
H1(a, b).

More generally, we define for each integer k ≥ 1 the Sobolev space

Hk(a, b) = {u ∈ L2(a, b) : ∂ju ∈ L2(a, b)} , 1 ≤ j ≤ k .

Estimates analogous to those above can be easily obtained in appropriate
subspaces.

2.2. Continuity. Let V1 and V2 be normed linear spaces with corre-
sponding norms ‖ · ‖1, ‖ · ‖2. A function T : V1 → V2 is continuous at
x ∈ V1 if {T (xn)} converges to T (x) in V2 whenever {xn} converges to x in
V1. It is continuous if it is continuous at every x. For example, the norm
is continuous from V1 into R. If T is linear, we shall also denote its value
at x by Tx instead of T (x).
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Proposition 3. If T : V1 → V2 is linear, the following are equivalent:

(a) T is continuous at 0,
(b) T is continuous at every x ∈ V1,
(c) there is a constant K ≥ 0 such that ‖Tx‖2 ≤ K‖x‖1 for all x ∈ V1.

Proof. Clearly (c) implies (b) by linearity and (b) implies (a). If (c)
were false there would be a sequence {xn} in V1 with ‖Txn‖2 > n‖xn‖1,
but then yn ≡ ‖Txn‖−1

2 xn is a sequence which contradicts (a). �

Exercise 6. Show that the identity operator H1(a, b) → C[a, b] is con-
tinuous.

We shall denote by L(V1, V2) the set of all continuous linear functions from
V1 to V2; these are called the bounded linear functions because of (c) above.
Additional structure on this set is given as follows.

Proposition 4. For each T ∈ L(V1, V2) we have

‖T‖ ≡ sup{‖Tx‖2 : x ∈ V1, ‖x‖1 ≤ 1} = sup{‖Tx‖2 : ‖x‖1 = 1}
= inf{K > 0 : ‖Tx‖2 ≤ K‖x‖1 , x ∈ V1} ,

and this gives a norm on L(V1, V2). If V2 is complete, then L(V1, V2) is
complete.

Proof. Consider the two numbers

λ = sup{‖Tx‖2 : ‖x‖1 ≤ 1}, µ = inf{K > 0 : ‖Tx‖2 ≤ K‖x‖1 , x ∈ V1}.
If K is in the set defining µ, then for each x ∈ V1 with ‖x‖1 ≤ 1 we have
‖Tx‖2 ≤ K, so λ ≤ K. This holds for all such K so λ ≤ µ. If x ∈ V1 with
‖x‖1 > 0 then x/‖x‖1 is a unit vector and so ‖T (x/‖x‖1)‖2 ≤ λ. Thus
‖Tx‖2 ≤ λ‖x‖1 for all x 6= 0, and it clearly holds if x = 0, so we have
µ ≤ λ. This establishes the equality of the three expressions for ‖T‖.

Exercise 7. Verify that ‖T‖ defines a norm on L(V1, V2).

Suppose V2 is complete and let {Tn} be a Cauchy sequence in L(V1, V2).
For each x ∈ V1,

‖Tmx− Tnx‖2 ≤ ‖Tm − Tn‖ ‖x‖1

so {Tnx} is Cauchy in V2, hence, convergent to a unique Tx in V2. This
defines T : V1 → V2 and it follows by continuity of addition and scalar
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multiplication that T is linear. Also

‖Tnx‖2 ≤ ‖Tn‖ ‖x‖1 ≤ sup{‖Tm‖}‖x‖1

so letting n→∞ shows T is continuous with ‖T‖ ≤ sup{‖Tm‖}. Finally,
to show limTn = T , let ε > 0 and choose N so large that ‖Tm − Tn‖ < ε
for m,n ≥ N . Then for each x ∈ V1 ‖Tmx − Tnx‖2 ≤ ε‖x‖1, and letting
m→∞ gives

‖Tx− Tnx‖2 ≤ ε‖x‖1 , x ∈ V1 .

Thus, ‖T − Tn‖ ≤ ε for n ≥ N . �

As a consequence it follows that the dual V ′ ≡ L(V,R) of any normed
linear space V is complete with the dual norm

‖f‖V ′ ≡ sup{|f(x)| : x ∈ V, ‖x‖V ≤ 1}

for f ∈ V ′.

2.3. The Minimization Principle. Hereafter we let V denote a
Hilbert space with norm ‖ · ‖, scalar product (·, ·), and dual space V ′.
A subset K of V is called closed if each xn ∈ K and limxn = x im-
ply x ∈ K. The subset K is convex if x, y ∈ K and 0 ≤ t ≤ 1 imply
tx+ (1− t)y ∈ K. The following minimization principle is fundamental.

Theorem 1. Let K be a closed, convex, non-empty subset of the Hilbert
space V , and let f ∈ V ′. Define φ(x) ≡ (1/2)‖x‖2 − f(x), x ∈ V . Then
there exists a unique

(8) x ∈ K : φ(x) ≤ φ(y) , y ∈ K .

Proof. Set d ≡ inf{φ(y) : y ∈ K} and choose xn ∈ K such that
limn→∞ φ(xn) = d. Then we obtain successively

d ≤ φ
(
1/2(xm + xn)

)
= (1/2)

(
φ(xm) + φ(xn)

)
− (1/8)‖xn − xm‖2 ,

(1/4)‖xn − xm‖2 ≤ φ(xm) + φ(xn)− 2d ,

and this last expression converges to zero. Thus {xn} is Cauchy, it con-
verges to some x ∈ V by completeness, and x ∈ K since it is closed. Since
φ is continuous, φ(x) = d and x is a solution of (8). If x1 and x2 are both
solutions of (8), the last inequality shows (1/4)‖x1−x2‖ ≤ d+d−2d = 0,
so x1 = x2. �
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The solution of the minimization problem (8) can be characterized by
a variational inequality . For x, y ∈ V and t > 0 we have

(1/t)
(
φ
(
x+ t(y − x)

)
− φ(x)

))
= (x, y − x)− f(y − x) + (1/2)t‖y − x‖2,

so the derivative of φ at x in the direction y − x is given by

φ′(x)(y − x) = lim
t→0

(1/t)
(
φ
(
x+ t(y − x)

)
− φ(x)

)
= (x, y − x)− f(y − x) .(9)

From the definition of φ(·), we find that the above equals φ(y) − φ(x) +
(x, y)− (1/2)‖x‖2 − (1/2)‖y‖2, and (4) gives

(10) φ′(x)(y − x) ≤ φ(y)− φ(x) , x, y ∈ V .

Suppose x is a solution of (8). Since for each y ∈ K we have x+t(y−x) ∈ K
for small t > 0, it follows from (9) that

x ∈ K : ϕ′(x)(y − x) ≥ 0 , y ∈ K .

Conversely, for any such x it follows from (10) that it satisfies (8). Thus,
we have shown that (8) is equivalent to

(11) x ∈ K : (x, y − x) ≥ f(y − x) , y ∈ K .

The equivalence of (8) and (11) is merely the fact that the point where
a quadratic function takes its minimum is characterized by having a non-
negative derivative in each direction into the set.

2.4. Consequences of the Principle. As an example, let x0 ∈ V
and define f ∈ V ′ by f(y) = (x0, y) for y ∈ V . Then φ(x) = (1/2)(‖x −
x0‖2 − ‖x0‖2) so (8) means that x is that point of K which is closest to
x0. Recalling that the angle θ between x− x0 and y − x is determined by

(x− x0, y − x) = cos(θ)‖x− x0‖ ‖y − x‖ ,

we see (11) means x is that point of K for which −π/2 ≤ θ ≤ π/2 for
every y ∈ K. We define x to be the projection of x0 on K and denote it
by PK(x0).
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Corollary 3. For each closed convex non-empty subset K of V there
is a projection operator PK : V → K for which PK(x0) is that point of K
closest to x0 ∈ V ; it is characterized by

PK(x0) ∈ K :
(
PK(x0)− x0 , y − PK(x0)

)
≥ 0 , y ∈ K .

It follows from this characterization that the function PK satisfies

‖PK(x0)− PK(y0)‖2 ≤ (PK(x0)− PK(y0), x0 − y0) , x0, y0 ∈ V .

From this we see that PK is a contraction, i.e.,

‖PK(x0)− PK(y0)‖ ≤ ‖x0 − y0‖ , x0, y0 ∈ V ,

and that PK satisfies the angle condition

(PK(x0)− PK(y0), x0 − y0) ≥ 0 , x0, y0 ∈ V .

Corollary 4. For each closed subspace K of V and each x0 ∈ V
there is a unique

x ∈ K : (x− x0, y) = 0 , y ∈ K .

Two vectors x, y ∈ V are called orthogonal if (x, y) = 0, and the
orthogonal complement of the set S is S⊥ ≡ {x ∈ V : (x, y) = 0 for
y ∈ S}. Corollary 4 says each x0 ∈ V can be uniquely written in the form
x0 = x1 + x2 with x1 ∈ K and x2 ∈ K⊥ whenever K is a closed subspace.
We denote this orthogonal decomposition by V = K ⊕K⊥.

Exercise 8. Show that S⊥⊥ = S, the closure of S.

The Riesz map R of V into V ′ is defined by R(x) = f if f(y) = (x, y)
for y ∈ V . It is easy to check that ‖Rx‖V ′ = ‖x‖V ; Theorem 1 with
K = V shows the following by way of (11).

Corollary 5. For each linear functional f ∈ V ′ there is a unique
vector

(12) x ∈ V : (x, y) = f(y) , y ∈ V .

Thus, the linear map R is onto V ′, so R is an isometric isomorphism
of the Hilbert space V onto its dual V ′.

We recognize (12) as the weak formulation of certain boundary value
problems. Specifically, when V = H1

0 or H1, (12) is the Dirichlet problem
(1) or the Neumann problem (2), respectively, with c = 1. An easy but
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useful generalization is obtained as follows. Let a(·, ·) : V × V → R be bi-
linear (linear in each variable separately), continuous (see (3)), symmetric
(a(x, y) = a(y, x), x, y ∈ V ) and V -elliptic: there is a c0 > 0 such that

(13) a(x, x) ≥ c0‖x‖2
V , x ∈ V .

Thus, a(·, ·) determines an equivalent scalar product on V : a sequence
converges in V with ‖ · ‖V if and only if it converges with a(·, ·)1/2. Thus
we may replace (·, ·)V by a(·, ·) above.

Theorem 2. Let a(·, ·) be a bilinear, symmetric, continuous and V -
elliptic form on the Hilbert space V , let K be a closed, convex and non-
empty subset of V , and let f ∈ V ′. Set φ(x) = (1

2)a(x, x) − f(x), x ∈ V .
Then there is a unique

(14) x ∈ K : φ(x) ≤ φ(y) , y ∈ K .

The solution of (14) is characterized by

(15) x ∈ K : a(x, y − x) ≥ f(y − x) , y ∈ K .

If, in addition, K is a subspace of V , then (15) is equivalent to

(16) x ∈ K : a(x, y) = f(y) , y ∈ K .

Now (16) is precisely our weak formulation, and we see it is the special
case of a variational inequality (15) which is the characterization of the
solution of the minimization problem (14).

2.5. Examples. Consider the vertical displacement u(x) within a fixed
plane of a string of length ` > 0 whose initial position (u = 0) is the in-
terval 0 ≤ x ≤ `. The string is stretched with tension T > 0 and it is
flexible and elastic, so this tension acts in the direction of the tangent. A
vertical load or force F (x) per unit length is applied and this results in the
displacement u(x) at each point x. For each segment [x1, x2] the balance
of vertical components of force gives

−T sin θx2
+ T sin θx1

=

∫ x2

x1

F (x) dx

where sin θx = u′(x)/
√

1 + (u′(x))2 is the vertical component of the unit
tangent at (x, u(x)). We assume displacements are small, so 1 + (u′)2 ∼= 1
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and we obtain

−T
(
u′(x2)− u′(x1)

)
=

∫ x2

x1

F (x) dx , 0 ≤ x1 < x1 ≤ ` .

If F is locally integrable on (0, `) it follows that u′ = ∂u is locally absolutely
continuous and the equation

−T∂2u = F in L1
loc(0, `)

describes the displacement of the string in the interior of the interval
(0, `). At the end-points we need to separately prescribe the behavior.
For example, at x = 0 we could specify either the position, u(0) = c,
the vertical force, T∂u(0) = f0, or some combination of these such as an
elastic restoring force of the form T∂u(0) = h(u(0)− c). Such conditions
will be prescribed at each of the two boundary points of the interval.

To calculate the energy that is added to the string to move it to the
position u, we take the product of the forces and displacements. These
tangential and vertical changes are given respectively by

T

∫ `

0

(√
1 + (u′)2 − 1

)
dx−

∫ `

0
F (x)u(x) dx

where the first term depends on the change in length of the string, and
for small displacements this gives us the approximate potential energy
functional

ϕ(u) =

∫ `

0

(
(T/2)(∂u)2 − Fu

)
dx .

Here we have used the expansion for small values of r√
1 + r2 = 1 +

1

2
r2 + · · · .

We shall see the displacement u corresponding to the external load F can
be obtained by minimizing (3.2) over the appropriate set of admissable
displacements. Moreover, this applies to more general loads. For example,
a “point load” of magnitude F0 > 0 applied at the point c, 0 < c < `,
leads to the energy functional

ϕ(u) = T/2

∫ `

0
(∂u)2 dx− F0u(c)

in which the second term is just a Dirac functional concentrated at c.
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Next we give a set of boundary-value problems on the interval (a, b).
Each is guaranteed to have a unique solution by Theorem ??. Each exam-
ple will be related to a stretched-string problem, and for certain special
cases we shall compute the displacement u to see if it appears to be con-
sistent with the physical problem. In both of these examples, we rescale
the load so that we may assume T = 1. Thus, the load becomes the ratio
of the actual load to the tension.

Example 5. The displacement of a string fixed at both ends is given
by the solution of

u ∈ H1
0(0, `) : −∂2u = f

where f ∈ H1
0(0, `)

′. This problem is well-posed by Theorem ??; note that
the corresponding bilinear form is H1

0 -elliptic by the estimate (1.4). If we
apply a load F (x) = sgn(x − `/2), where the sign function is given by
sgn(x) = x/|x|, x 6= 0, the resulting displacement is

u(x) =

{
−1

2x(`/2− x) , 0 < x < `/2
1
2(x− `/2)(`− x) , `/2 < x < `

If we apply a point load, δc concentrated at x = c, the displacement is

u(x) = 1/2(c− |x− c|) + (1/2− c/`)x

with maximum value u(c) = c(1−c/`). Both of these solutions can be com-
puted directly from the ordinary differential equation by using Proposition
1.2.

Example 6. Non-homogeneous boundary conditions arise when the dis-
placements at the end-points are fixed at non-zero levels. For example, the
solution to

u ∈ H1(0, `) : u(0) = f1 , u(`) = f2 , −∂2u = F

is obtained by minimizing (3.2) over the set of admissable displacements

K = {v ∈ H1(0, `) : v(0) = f1, v(`) = f2} .

This minimum u satisfies (2.9) where

a(u, v) =

∫ `

0
∂u∂v dx , f(v) =

∫ `

0
Fv dx u, v ∈ H1(0, `) .
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Since the set K is the translate of the subspace H1
0(0, `) by the function

u0(x) = (`− x)f1/`+ xf2/` ,

this variational inequality is equivalent to

u ∈ K : a(u, ϕ) = f(ϕ) , ϕ ∈ H1
0(0, `) .

Moreover, this problem is actually a “linear” problem for the unkown w ≡
u− u0 in the form

w ∈ H1
0(0, `) : a(w,ϕ) = f(ϕ)− a(u0, ϕ) , ϕ ∈ H1

0(0, `) ,

and thus it is well-posed by any one of the Theorems of Section 2.

Exercise 9. Let the function F (·) ∈ L2(0, `) and the numbers λ ≥
0, uo, a ≥ 0 and g ∈ R be given.

(a). Show that the function u(·) ∈ H1(0, `) is a solution of the problem

−∂2u(x) + λu(x) = F (x), 0 < x < `,

u(0) = u0, ∂u(`) + au(`) = g .

if and only if it satisfies

u ∈ H1(0, `) : u(0) = u0, and∫ `

0
(∂u(x)∂v(x) + λu(x)v(x)) dx+ au(`)v(`)

=

∫ `

0
F (x)v(x) dx+ gv(`) for all v ∈ H1(0, `) : v(0) = 0 .

(b). Show that Theorem 2 applies, and specify V, K, a(·, ·), f(·).

2.6. Adjoint Operator. Let V and W be Hilbert spaces and T ∈
L(V,W ). We define the adjoint of T as follows: if u ∈ W , then the
functional v 7→ (u, Tv)W belongs to V ′, so Theorem 5 shows that there is
a unique T ∗u ∈ V such that

(T ∗u, v)V = (u, Tv)W , u ∈ W , v ∈ V .

Exercise 10. If V and W are Hilbert spaces and T ∈ L(V,W ), then
T ∗ ∈ L(W,V ), Rg(T )⊥ = K(T ∗) and Rg(T ∗)⊥ = K(T ). If T is an iso-
morphism with T−1 ∈ L(W,V ), then T ∗ is an isomorphism and (T ∗)−1 =
(T−1)∗.
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3. Approximation of Solutions

The weak formulation of boundary-value problems is given by (16),
and this is precisely a special case of the variational inequality (15) which
characterizes the solution of the minimization problem (14). Here we
shall discuss the Rayleigh-Ritz-Galerkin procedure for approximating the
solution by means of a finite-dimensional problem that can be computed
very efficiently. This provides an example of a finite element method.

Suppose that we are in the situation of Theorem 2, and let u be the
solution of the variational equation

(17) u ∈ V : a(u, v) = f(v) , v ∈ V .

Let S be a subspace of V . Then Theorem 2 asserts likewise the existence
of a unique solution of the problem

(18) uS ∈ S : a(uS, v) = f(v) , v ∈ S .

We shall first show that the size of the error u− uS depends on how well
the subspace S approximates V .

Theorem 3. Let a(·, ·) be a bilinear, symmetric, continuous and V -
elliptic form on the Hilbert space V , let S be a closed subspace of V , and
let f ∈ V ′. Then (17) has a unique solution u and (18) has a unique
solution uS, and these satisfy the estimate

(19) ‖u− uS‖ ≤
C

c0
inf{‖u− v‖ : v ∈ S},

where C is the continuity constant of a(·, ·) and c0 is the V -elliptic con-
stant.

Proof. We need only to verify the estimate (19). By subtracting the
identities (17) and (18) we obtain

(20) a(uS − u, v) = 0 , v ∈ S .

Then for any w ∈ S we have

(21) a(uS − u, uS − u) = a(uS − u,w − u) + a(uS − u, uS − w),

and uS − w ∈ S, so the last term is zero and we obtain

c0‖uS − u‖2 ≤ C‖us − u‖‖w − u‖, w ∈ S,
and this gives the estimate (19). �
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The right side of equation (19) is determined by the best approximation
of V by S, namely, inf{‖u − v‖ : v ∈ S} = ‖u − PS(u)‖ where PS is the
projection onto S. In terms of the norm determined by the scalar-product
a(·, ·) on V , ‖ · ‖a = (a(·, ·))1/2, we have precisely

‖u− uS‖a = inf{‖u− v‖a : v ∈ S}.

Consider the case of a separable space V . That is, there is a sequence
{v1, v2, v3, . . . } in V which is a basis for V . For each integer m ≥ 1, the set
{v1, v2, . . . , vm} is linearly independent and its linear span will be denoted
by Vm. If Pm is the projection of V onto Vm, then limm→∞Pmv = v for
each v ∈ V . The approximate problem (18) with S = Vm is equivalent to

(22) um ∈ Vm : a(um, vj) = f(vj) , 1 ≤ j ≤ m .

For each integer m there is exactly one such um, and we have the estimate
‖um−u‖ ≤ C

c0
‖Pmu−u‖, so limm→∞um = u in V . Moreover, we can write

um as a linear combination of basis elements, um =
∑m

i=1 xivi and then
(22) is equivalent to the m×m algebraic system

(23)
m∑

i=1

a(vi, vj)xi = f(vj) , 1 ≤ j ≤ m .

This linear system with the matrix a(vi, vj) is invertible and can be solved
to obtain the coefficients, xi, and thereby the approximate solution um.

Now this linear system (23) will be large if we want our approximation
um to be close to the solution u, and so we need to keep the solution pro-
cedure as easy as possible. In particular, we may want to permit m to be
of the order of 102. Two fundamental approaches include the eigenfunc-
tion expansion method, which we consider in the following section, and
the finite element method which we discuss now.

Consider the Dirichlet problem of Example 6,

u ∈ H1
0(0, `) :

∫ `

0
∂u∂v dx =

∫ `

0
Fv dx , v ∈ H1

0(0, `) ,

where we have set V = H1
0(0, `) and

a(u, v) =

∫ `

0
∂u∂v dx , f(v) =

∫ `

0
Fv dx u, v ∈ H1

0(0, `) .
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The Approximation. We construct a finite-dimensional subspace of V
as follows. Let m ≥ 1 be an integer and define h > 0 by h(m + 1) = `.
Partition the interval (0, `) with nodes xj = jh, 1 ≤ j ≤ m, and set x0 =
0, xm+1 = `. Now we define the space Vh to be those continuous functions
on the interval [0, `] which are affine on each subinterval [xj−1, xj], 1 ≤ j ≤
m + 1, and which vanish at the end points, x0 = 0, xm+1 = `. These are
piecewise linear, and since their derivatives are piecewise constant, Vh is a
subspace of H1

0(0, `).
In order to parametrize the elements of Vh, we introduce a basis. For

each integer j, 1 ≤ j ≤ m, define lj(·) ∈ Vh by

lj(xi) =

{
1 if i = j,

0 if i 6= j.

That is, lj(·) is the continuous and piecewise affine function on (0, `) which
takes on the value 1 at the node xj and the value 0 at all other nodes.
Each function vh(·) ∈ Vh has the unique representation

vh(x) =
m∑

j=1

vjlj(x), 0 < x < `,

where the coefficients are given by the nodal values vj = vh(xj), 1 ≤ j ≤
m. In particular, the subspace Vh has dimension m. The corresponding
finite element method for the Dirichlet boundary-value problem consists
of the approximating problem (18) with S = Vh, and this is equivalent to
finding

ũh ∈ Vh : a(ũh, lj) = f(lj) , 1 ≤ j ≤ m .

In terms of the basis, the solution is given by

ũh(·) =
m∑

i=1

uili(·) ∈ Vh

where the coefficients satisfy the algebraic system

(24)
m∑

j=1

a(li, lj)ui = f(lj) , 1 ≤ j ≤ m,
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consisting of m equations in m unknowns. This is a matrix equation of
the form

~u ∈ Rm : A~u = ~f ∈ Rm,

where the matrix has elements aij = a(li, lj) and the right side has com-
ponents fj = f(lj).

The elements of the matrixA are easily computed. First, note that since
the support of lj(·) is the interval [xj−1, xj+1] we have a(li, lj) = 0 whenever
|i − j| ≥ 2. That is, the matrix is tridiagonal. Furthermore, we have
a(li, li) = 2

h and a(lj, lj−1) = − 1
h . Note that this is precisely the matrix

and corresponding algebraic problem obtained in the discrete models with
Dirichlet boundary conditions. This shows that those discrete models are
essentially projection approximations onto appropriate subspaces of the
corresponding continuum models.

Interpolation. Now we investigate the size of the best approximation
constants for the subspace Vh of V . For each function v ∈ V = H1

0(0, `)
we choose the piecewise linear interpolant of v to be that vh ∈ Vh for which
vh(xj) = v(xj) for each node xj, 1 ≤ j ≤ m. By considering the difference,
v(·)− vh(·), we are led to the subspace of V given by

V0 = {v ∈ V : v(xj) = 0, 1 ≤ j ≤ m}.

From the estimate (6) applied to each subinterval, [xj−1, xj], we obtain

(25) ‖v0‖L2(0,`) ≤
(
h/
√

2
)
‖∂v0‖L2(0,`) , v0 ∈ V0 .

Let v ∈ V = H1
0(0, `) be given. Then we can use Theorem 2 to show

there exists a unique

v0 ∈ V0 : (∂(v0 − v), ∂φ)L2(0,`) = 0, for all φ ∈ V0 .

Then the difference vh ≡ v − v0 satisfies

(26) v − vh ∈ V0 : (∂vh, ∂φ)L2(0,`) = 0, for all φ ∈ V0 .

By choosing φ ∈ C∞
0 (xj−1, xj), we see that −∂2vh = 0 on each subinterval

(xj−1, xj), and then with v − vh ∈ V0 it follows that vh is precisely the
piecewise linear interpolant of v. This computation is reversible, so we
find that (26) characterizes this interpolant. Thus, we have established
the orthogonal decomposition V = V0 ⊕ Vh with respect to the scalar
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product a(·, ·), in which each v ∈ V is written as v = v0 + vh as above. In
particular, we have

‖∂vh‖2
L2(0,`) + ‖∂(v − vh)‖2

L2(0,`) = ‖∂v‖2
L2(0,`)

because of the orthogonality of vh and v − vh. This leads to

(27) ‖∂(v − vh)‖L2(0,`) ≤ ‖∂v‖L2(0,`) ,

and as a consequence from (25) with v0 = v − vh we obtain

(28) ‖v − vh‖L2(0,`) ≤
(
h/
√

2
)
‖∂v‖L2(0,`) , v ∈ V .

That is, for a function v ∈ V , the piecewise linear interpolation gives
approximation with error estimate that is stable for the derivative and of
first order in h for the value. This implies that the approximate solution ũh

of the Dirichlet problem converges to the solution u, and it even shows the
rate of convergence with respect to the mesh size, h, of the partition. In
particular, it justifies the expectation that the computed ũh really is close
to the desired solution, u. Moreover, it shows that the discrete models are
close to the corresponding continuum models.

We have shown that the interpolation error vh − v is of order h when
v ∈ V . Next we obtain a better estimate when v is smoother. Specifically,
let’s assume that v ∈ V ∩H2(0, `). That is, v ∈ V has two derivatives in
L2(0, `). Then we compute explicitly

‖∂(v − vh)‖2
L2(0,`) =

m+1∑
j=1

∫ xj

xj−1

∂(v − vh)∂(v − vh) dx =

−
m+1∑
j=1

∫ xj

xj−1

∂2(v − vh)(v − vh) dx ≤ ‖∂2v‖L2(0,`)‖v − vh‖L2(0,`).

(We have use the fact that ∂2vh = 0 on each subinterval (xj−1, xj).) To-
gether with (25), this gives

‖∂(v − vh)‖2
L2(0,`) ≤ ‖∂2v‖L2(0,`)

(
h/
√

2
)
‖∂(v − vh)‖L2(0,`) ,

so we obtain

(29) ‖∂(v − vh)‖L2(0,`) ≤ ‖∂2v‖2
L2(0,`)

(
h/
√

2
)
.
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Finally, combining this with (25) again, we get

(30) ‖v − vh‖L2(0,`) ≤ ‖∂2v‖2
L2(0,`)

(
h2/2

)
.

Thus, for a smoother function v ∈ V ∩ H2(0, `), the piecewise linear in-
terpolation gives an approximation error estimate of first order for the
derivative and of second order for the value.

Second-order estimates. Let u be the solution of our Dirichlet problem
and let ũh be its Vh-approximation above. Let g = ‖u− ũh‖−1

L2(0,`)(u− ũh)

be the indicated normalized function, and then use Theorem 2 to find

w ∈ V : a(w, v) = (g, v)L2, v ∈ V .
Then we set v = u − ũh to obtain a(u − ũh, w) = ‖u − ũh‖L2, and so for
each v ∈ Vh we obtain

‖u− ũh‖L2 = a(u− ũh, w − v) ≤ ‖u− ũh‖a‖w − v‖a .

But u ∈ H2(0, `) and w ∈ H2(0, `), so if we choose v to be the interpolant
of w, that is, v = wh, then we obtain

‖u− ũh‖L2 ≤ ‖∂(u− ũh)‖L2‖∂(w − wh)‖L2

≤ ‖∂(u− ũh)‖L2‖‖∂2w‖2
L2(0,`)

(
h/
√

2
)

≤ ‖∂2u‖2
L2(0,`)

(
h/
√

2
)
‖g‖2

L2(0,`)

(
h/
√

2
)

= ‖F‖2
L2(0,`)

(
h2/2

)
That is, the approximation error ‖u− ũh‖L2 in this finite element method
is of the same order as the best approximation error of the corresponding
subspace, Vh. This calculation depended on the fact that the solution of
the boundary-value problem is in H2(0, `) when the data F is in L2(0, `).
This is a typical regularizing property for elliptic problems.

4. Expansion in Eigenfunctions

4.1. Fourier Series. We consider the Fourier series of a vector in the
scalar product space H with respect to a given set of orthogonal vectors.
The sequence {vj} of vectors in H is called orthogonal if (vi, vj)H = 0
for each pair i, j with i 6= j. Let {vj} be such a sequence of non-zero
vectors and let u ∈ H. For each j we define the Fourier coefficient of u
with respect to vj by cj = (u, vj)H/(vj, vj)H . For each n ≥ 1 it follows
that

∑n
j=1 cjvj is the projection of u on the subspace Mn spanned by

{v1, v2, . . . , vn}. This follows from Corollary 4 by noting that u−
∑n

j=1 cjvj
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is orthogonal to each vi, 1 ≤ j ≤ n, hence belongs to M⊥
n . We call the

sequence of vectors orthonormal if they are orthogonal and if (vj, vj)H = 1
for each j ≥ 1.

Proposition 5. Let {vj} be an orthonormal sequence in the scalar
product space H and let u ∈ H. The Fourier coefficients of u are given by
cj = (u, vj)H and satisfy

(31)
∞∑

j=1

|cj|2 ≤ ‖u‖2 .

Also we have u =
∑∞

j=1 cjvj if and only if equality holds in (31).

Proof. Let un ≡
∑n

j=1 cjvj, n ≥ 1. Then u− un ⊥ un so we obtain

(32) ‖u‖2 = ‖u− un‖2 + ‖un‖2 , n ≥ 1 .

But ‖un‖2 =
∑n

j=1 |cj|2 follows since the set {vi, . . . , vn} is orthonormal,

so we obtain
∑n

j=1 |cj|2 ≤ ‖u‖2 for all n, hence (31) holds. It follows from
(32) that limn→∞ ‖u− un‖ − 0 if and only if equality holds in (31). �

The inequality (31) is Bessel’s inequality and the corresponding equality
is called Parseval’s equation. The series

∑∞
j=1 cjvj above is the Fourier

series of u with respect to the orthonormal sequence {vj}.

Proposition 6. Let {vj} be an orthonormal sequence in the scalar
product space H. Then every element of H equals the sum of its Fourier
series if and only if {vj} is a basis for H, that is, its linear span is dense
in H.

Proof. Suppose {vj} is a basis and let u ∈ H be given. For any ε > 0,
there is an n ≥ 1 for which the linear span Mn of the set {v1, v2, . . . , vn}
contains an element which approximates u within ε. That is, inf{‖u−w‖ :
w ∈Mn} < ε. If un is given as in the proof of Proposition 5, then we have
u− un ∈M⊥

n . Hence, for any w ∈Mn we have

‖u− un‖2 = (u− un, u− w)H ≤ ‖u− un‖ ‖u− w‖ ,
since un − w ∈Mn. Taking the infimum over all w ∈Mn then gives

(33) ‖u− un‖ ≤ inf{‖u− w‖ : w ∈Mn} < ε .

Thus, limn→∞ un = u. The converse is clear. �
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4.2. Eigenvalue Problem. Let T ∈ L(H). A non-zero vector v ∈ H
is called an eigenvector of T if T (v) = λv for some λ ∈ R. The number
λ is the eigenvalue of T corresponding to v. We shall show that certain
operators possess a rich supply of eigenvectors. These eigenvectors form
an orthonormal basis to which we can apply the preceding Fourier series
expansion techniques.

Definition 2. An operator T ∈ L(H) is called self-adjoint if (Tu, v)H =
(u, Tv)H for all u, v ∈ H. A self-adjoint T is called non-negative if
(Tu, u)H ≥ 0 for all u ∈ H.

Lemma 3. If T ∈ L(H) is non-negative self-adjoint, then ‖Tu‖ ≤
‖T‖1/2(Tu, u)

1/2
H , u ∈ H.

Proof. The bilinear form [u, v] ≡ (Tu, v)H satisfies the first two scalar-
product axioms and this is sufficient to obtain

(34) |[u, v]|2 ≤ [u, u][v, v] , u, v ∈ H .

(If either factor on the right side is strictly positive, this follows from the
proof of (3). Otherwise, 0 ≤ [u+ tv, u+ tv] = 2t[u, v] for all t ∈ R, hence,
both sides of (34) are zero.) The desired result follows by setting v = T (u)
in (34). �

The operators we shall consider are the compact operators.

Definition 3. If V,W are normed linear spaces, then T ∈ L(V,W )
is called compact if for any bounded sequence {un} in V its image {Tun}
has a subsequence which converges in W .

Exercise 11. The composition of a continuous operator with a compact
operator is compact.

The essential fact we need is the following.

Lemma 4. If T ∈ L(H) is self-adjoint and compact, then there exists a
vector v with ‖v‖ = 1 and T (v) = µv, where |µ| = ‖T‖L(H) > 0.

Proof. If λ is defined to be ‖T‖L(H), it follows from Proposition 4
that there is a sequence un in H with ‖un‖ = 1 and limn→∞ ‖Tun‖ = λ.
Then ((λ2 − T 2)un, un)H = λ2 − ‖Tun‖2 converges to zero. The operator
λ2 − T 2 is non-negative self-adjoint so Lemma 3 implies {(λ2 − T 2)un}
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converges to zero. Since T is compact we may replace {un} by an ap-
propriate subsequence for which {Tun} converges to some vector w ∈ H.
Since T is continuous there follows limn→∞(λ2un) = limn→∞ T

2un = Tw,
so w = limn→∞ Tun = λ−2T 2(w). Note that ‖w‖ = λ and T 2(w) = λ2w.
Thus, either (λ+ T )w 6= 0 and we can choose v = (λ+ T )w/‖(λ+ T )w‖,
or (λ + T )w = 0, and we can then choose v = w/‖w‖. Either way, the
desired result follows. �

Theorem 4. Let H be a scalar product space and let T ∈ L(H) be
self-adjoint and compact. Then there is an orthonormal sequence {vj} of
eigenvectors of T for which the corresponding sequence of eigenvalues {µj}
converges to zero and the eigenvectors are a basis for the closure of Rg(T ),

Rg(T ), that is, all the limit points of Rg(T ).

Proof. By Lemma 4 it follows that there is a vector v1 with ‖v1‖ = 1
and T (v1) = µ1v1 with |µ1| = ‖T‖L(H). Set H1 = {v1}⊥ and note T{H1} ⊂
H1. Thus, the restriction T |H1

is self-adjoint and compact so Lemma 4
implies the existence of an eigenvector v2 of T of unit length in H1 with
eigenvalue µ2 satisfying |µ2| = ‖T‖L(H1) ≤ |µ1|. Set H2 = {v1, v2}⊥ and
continue this procedure to obtain an orthonormal sequence {vj} in H and
sequence {µj} in R such that T (vj) = µjvj and |µj+1| ≤ |µj| for j ≥ 1.

We claim that limj→∞(µj) = 0. Otherwise, since |µj| is decreasing we
would have all |µj| ≥ ε for some ε > 0. But then

‖T (vi)− T (vj)‖2 = ‖µivi − µjvj‖2 = ‖µivi‖2 + ‖µjvj‖2 ≥ 2ε2

for all i 6= j, so {T (vj)} has no convergent subsequence, a contradiction.
We shall show {vj} is a basis for Rg(T ). Let w ∈ Rg(T ) and

∑
bjvj the

Fourier series of w. Then there is a u ∈ H with T (u) = w and we let∑
cjvj be the Fourier series of u. The coefficients are related by

bj = (w, vj)H = (Tu, vj)H = (u, Tvj)H = µjcj ,

so there follows T (cjvj) = bjvj, hence,

(35) w −
n∑

j=1

bjvj = T

(
u−

n∑
j=1

cjvj

)
, n ≥ 1 .
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Since T is bounded by |µn+1| on Hn, and since ‖u−
∑n

j=1 cjvj‖ ≤ ‖u‖ by
(32), we obtain from (35) the estimate

(36)

∥∥∥∥∥w −
n∑

j=1

bjvj

∥∥∥∥∥ ≤ |µn+1| · ‖u‖ , n ≥ 1 .

Since limj→∞ µj = 0, we have w =
∑∞

j=1 bjvj as desired.
It remains to show the eigenvectors form a basis for the closure of

Rg(T ). So let w belong to this closure, and set Mn = 〈v1, v2, . . . vn〉, the
linear span of the first n eigenvectors. As before, we let wn =

∑n
j=1(w, vj)Hvj

be the partial Fourier expansion of w in H For any w0 ∈ H we have
‖w − wn‖ = dist(w,Mn) ≤ ‖w − w0‖ + dist(w0,Mn). Now choose w0 ∈
Rg(T ) and close to w, then choose n so large that the second term is small
by Proposition 6, and we see that w = limn→∞wn as desired. �

Corollary 6. Assume that H is complete, that is, a Hilbert space. If
w = T (u) ∈ Rg(T ) and un =

∑n
j=1 cjvj is the partial Fourier expansion

of u as above, then un → u∗ and T (un) → w for a vector u∗ ∈ H with
T (u∗) = w.

This is a stronger statement: the sequence [un, wn] converges to [u,w] in
the graph of T in the product space H ×H.

When Rg(T ) is finite-dimensional, we get additional structure. Suppose
the sequence {µj} is eventually zero; let n be the first integer for which
µn = 0. Then Hn−1 ⊂ K(T ), since T (vj) = 0 for j ≥ n. Also we see
vj ∈ Rg(T ) for j < n, so Rg(T )⊥ ⊂ {v1, v2, . . . , vn−1}⊥ = Hn−1 and from
Exercise 10 follows K(T ) = Rg(T )⊥ ⊂ Hn−1. Therefore K(T ) = Hn−1
and Rg(T ) equals the linear span of {v1, v2, . . . , vn−1}.

4.3. Eigenvalues for Boundary-Value Problems.
4.3.1. The boundary-value problems. We recall three examples of the

weak formulation of boundary-value problems.

Example 7. Let F (·) ∈ L2(0, `) and c ∈ R be given; define the bilinear
form

a(u, v) =

∫ `

0
(∂u ∂v + c u v) dx, u, v ∈ V ,
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and the linear functional

f(v) =

∫ `

0
F v dx, v ∈ V ,

on the Hilbert space V = H1(0, `). Then the variational equation

(37) u ∈ V : a(u, v) = f(v) for all v ∈ V,

is equivalent to the Neumann problem

u ∈ H2(0, `) : −∂2u+ c u = F , ∂u(0) = ∂u(`) = 0 .

If the constant satisfies c > 0, then the bilinear form a(·, ·) is V -elliptic,
and Theorem 2 shows that there is exactly one solution of the problem.

Example 8. With the same bilinear form and functional as above, take
the space V = H1

0(0, `). Then the variational statement (37) is equivalent
to the Dirichlet problem

u ∈ H2(0, `) : −∂2u+ c u = F , u(0) = u(`) = 0 .

From Theorem 2 it follows that this problem has exactly one solution if
c ≥ 0.

Example 9. For our last example, we choose the space V = {v ∈
H1(0, `) : v(0) = v(`)}. Then the variational statement (37) is equivalent
to the periodic problem

u ∈ H2(0, `) : −∂2u+ c u = F , u(0) = u(`), ∂u(0) = ∂u(`) .

If the constant satisfies c > 0, then there is exactly one solution of the
problem.

In each of these examples we have constructed on the Hilbert space H =
L2(0, `) an operator which represents the corresponding boundary-value
problem.

4.3.2. The Compactness. Consider now the identity map H1(0, `) →
L2(0, `). This map is certainly continuous, that is, the H1 norm is stronger
than the L2 norm. But we can say much more. In fact we have the Hölder
continuity estimate

|u(x)− u(y)| ≤ |x− y|1/2‖∂u‖L2(0,`) , u ∈ H1(0, `), 0 ≤ x, y ≤ ` ,
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and the uniform estimate

max{|u(x)| : 0 ≤ x ≤ `} ≤ 2(`)1/2‖∂u‖L2

+ 2(`)−1/2‖u‖L2 , u ∈ H1(0, `) .

From these it follows that the unit ball in H1(0, `) is a set of functions that
is equicontinuous and uniformly bounded. From the Ascoli-Arzela Theo-
rem, we see that any sequence from this set has a uniformly convergent
subsequence. That is, the identity map of H1(0, `) → C[0, `] is compact,
and from this it follows that the map H1(0, `) → L2(0, `) is likewise com-
pact.

We describe the general situation as follows. Let V and H be Hilbert
spaces with respective norms ‖ · ‖V and | · |H , and assume V is dense and
continuously imbedded in H: ‖v‖V ≥ |v|V for all v ∈ V . We identify
H with its dual through the scalar product of H, so we also obtain the
identifications H = H ′ ⊂ V ′. Since V is dense in H, each f ∈ H ′ is
determined by its restriction to the dense subspace V .

Assume the bilinear form a(·, ·) is continuous on V , symmetric, and for
some c ∈ R, a(·, ·) + c(·, ·)H is V -elliptic: there is a c0 > 0 for which

a(v, v) + c (v, v)H ≥ c0‖v‖2
V , v ∈ V .

By taking K = V in the situation of Theorem 2, we see that for each
F ∈ H there is a unique

u ∈ V : a(u, v) + c (u, v)H = (F, v)H , v ∈ V .

4.3.3. The strong operator. We define a subspace of V by

D(A) = {u ∈ V : for some F ∈ H, a(u, v) = (F, v)H , v ∈ V }

and then define the operator A : D(A) → H by Au = F . Since V is dense
in H, this holds for at most one F ∈ H. Thus, Au = F means that u ∈ V ,
F ∈ H, and

(38) a(u, v) = (F, v)H , v ∈ V .

Furthermore, we have noted above that A + cI : D(A) → H is a one-
to-one map onto H, and this is precisely the map which characterizes
the boundary-value problems in the preceding examples. Note that the
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domain of A is a proper subspace of H and the symmetry of a(·, ·) gives

(Au, v)H = (u,Av)H , u, v ∈ D(A),

so A is a symmetric. The operator A is not bounded on H. However, from
the V -ellipticity condition we obtain

c0‖v‖2
V ≤ ((A+ cI)v, v)H ≤ |(A+ cI)v|H |v|H ,

and since |v|H ≤ ‖v‖V we can delete this factor to obtain

c0‖v‖V ≤ |(A+ cI)v|H , v ∈ D(A).

Thus, the inverse (A+ cI)−1 is bounded from H into V .
Finally, we note that D(A) is dense in H. To see this, let w ∈ D(A)⊥.

Set w = (A+ cI)u to obtain

0 = (w, u)H = ((A+ cI)u, u)H ≥ c0‖u‖2
V ,

so u = 0 and then w = 0. Thus, D(A)⊥ = {0} and D(A) is dense in H.

4.4. The Expansion Theorem. Each of the examples above is an
instance of the following situation.

Theorem 5. Let the Hilbert spaces H and V be given with the dense
and compact embedding V → H and the identification H = H ′. Let a(·, ·)
be a bilinear, symmetric and continuous form on the Hilbert space V and
c ∈ R a number for which a(·, ·) + c (·, ·)H is V -elliptic: there is a c0 > 0
such that

(39) a(v, v) + c (v, v)H ≥ c0‖v‖2
V , v ∈ V .

Let the operator A be given by (38). Then there is an H-orthonormal
sequence {vj} of eigenvectors of A for which the corresponding sequence
of eigenvalues is monotone and satisfies {λj →∞}, and the eigenvectors
are a basis for H.

Proof. The operator A + cI is one-to-one onto H. Define T ≡ (A +
cI)−1. Then T is continous from H into V . Since V → H is compact,
T is a compact operator on H. Furthermore, we check that it is self-
adjoint and non-negative: (T (F ), F )H ≥ 0 for all F ∈ H. Let {vj} be the
orthonormal sequence of eigenvectors of T for which the corresponding
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sequence of (necessarily positive) eigenvalues {µj} converges downward to
zero. Then from Tvj = µjvj we obtain

Avj = λjvj, j ≥ 1

where λj ≡ 1
µj
−c. It remains to check that the sequence {vj} is a basis for

all of H. But D(A) = D(A+ cI) is dense in H, and Rg(T ) = D(A+ cI),
so this is immediate. �

4.4.1. The eigenfunctions. The eigenfunctions for the Neumann prob-
lem are the non-zero solutions of

u ∈ H2(0, `) : −∂2u = λu , ∂u(0) = ∂u(`) = 0 .

We compute that these are given by

vn(x) =


√

2
` cos(

nπx
` ), n ≥ 1 ,

1√
`
, n = 0 ,

with the corresponding eigenvalues λn =
(

nπ
`

)2
, n ≥ 0. It follows from

above that these are are a basis for L2(0, `), so every such function is equal
to the sum of its cosine series.

Similarly, the eigenfunctions for the Dirichlet problem are the non-zero
solutions of

u ∈ H2(0, `) : −∂2u = λu , u(0) = u(`) = 0 ,

and these are the functions

vn(x) =

√
2

`
sin(

nπx

`
), n ≥ 1 ,

with the corresponding eigenvalues λn =
(

nπ
`

)2
. These are likewise a basis

for L2(0, `), so every such function is equal to the sum of its sine series.
Finally, the eigenvalue problem for the periodic problem is

u ∈ H2(0, `) : −∂2u = λu , u(0) = u(`), ∂u(0) = ∂u(`) ,

and the corresponding eigenfunctions consist of the functions

vn(x) =


√

2
` cos(

2nπx
` ) and

√
2
` sin(2nπx

` ), n ≥ 1,
1√
`
, n = 0,
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with the eigenvalues λn =
(2nπ

`

)2
. Note that for n ≥ 1 the multiplicity

of each eigenvalue is two. That is, there are two corresponding eigenfunc-
tions.

4.4.2. Eigenvalue characterization of the subspaces. We have obtained
an orthonormal basis of eigenvectors of A in H:

Avj = λjvj, j ≥ 1,

where λj → +∞ as j → +∞. For each w ∈ H we have
∑∞

j=1(w, vj)
2
H <

+∞ and w = limn→∞wn where wn =
∑n

j=1(w, vj)Hvj is the partial Fourier
expansion of w in H.

Recall that the bilinear form [u, v] = a(u, v) + c (u, v)H is a scalar
product on V that is equivalent to the original scalar product on V . From
the computation [vi, vj] = (λj +c)(vi, vj)H we find that the sequence {(λj +

c)−
1
2vj} is orthonormal in V with the scalar product [·, ·]. More generally,

we find that if w ∈ V then [w, vj] = (λj+c)(w, vj)H , so wn =
∑n

j=1[w, (λj+

c)−
1
2vj](λj + c)−

1
2vj is also the partial Fourier expansion of w in V . From

the orthogonality of the eigenvectors, we find that

[wm − wn, wm − wn] = ((A+ cI)(wm − wn), wm − wn)H

=
m∑

j=n+1

(λj + c)(w, vj)
2
H ,

so the sequence {wn} is Cauchy in V if and only if
∑+∞

j=1(λj +c)(w, vj)
2
H <

∞. It follows from these remarks that w ∈ V if and only if
∑+∞

j=1(λj +

c)(w, vj)
2
H <∞, and in this case we have w = limn→∞wn in V .

It is easy to see that ((A+cI)u, (A+cI)v)H is a scalar product on D(A)
with a norm that is stronger than that of V . As above, we find that the
sequence {(λj + c)−1vj} is orthonormal in D(A) with respect to this scalar
product, and that w ∈ D(A) if and only if

∑+∞
j=1(λj + c)2(w, vj)

2
H < ∞,

and in this case we have w = limn→∞wn in D(A). We summarize these
results in the following.

Corollary 7. For each w ∈ H we have
∑∞

j=1(w, vj)
2
H < +∞ and w =

limn→∞wn, where wn =
∑n

j=1(w, vj)Hvj is the partial Fourier expansion
of w in H.
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w ∈ V if and only if
∑+∞

j=1(λj + c)(w, vj)
2
H < ∞, and in this case we

have w = limn→∞wn in V .
w ∈ D(A) if and only if

∑+∞
j=1(λj + c)2(w, vj)

2
H < ∞, and in this case

we have w = limn→∞wn in D(A) and

Aw =
∞∑

j=1

λj(w, vj)H vj .

Similar results hold for functions with values in the various spaces.
For example, for each w(·) ∈ C([0, T ], H) we have

∑∞
j=1(w(t), vj)

2
H ≤

|w(t)|2H ≤ C < +∞ and w(t) = limn→∞wn(t) for each t ∈ [0, T ], where
wn(t) =

∑n
j=1(w(t), vj)Hvj is the partial Fourier expansion of w(t) in

H. Furthermore, the sequence of continuous real-valued funcions ‖w(t)−
wn(t)‖2 =

∑+∞
j=n+1 |(w(t), vj)H |2 converges monotonically to zero, so by

Dini’s theorem, the convergence is uniform on [0, T ]. That is, we have con-
vergence wn(·) → w(·) in C([0, T ], H) as n→ +∞. If w(·) ∈ C1([0, T ], H),
we find similarly that wn(·) → w(·) in C1([0, T ], H). Similar statements
follow for functions taking values in the spaces V and D(A).

Such results are fundamental for developing the expansion theory for
our problems below. In particular, recall that in our examples above,
convergence in V implies (uniform) convergence in C[0, `]. Similarly, we
check that convergence in D(A) implies convergence in C1[0, `].

4.5. Applications of the Expansion Theorem.
4.5.1. The elliptic problem. For given λ ∈ R and F ∈ H, describe the

solutions of

(40) Au = λu+ F .

The vector u ∈ D(A) is a solution of (40) if and only if

∞∑
j=1

λj(u, vj)H vj = λ
∞∑

j=1

(u, vj)H vj +
∞∑

j=1

(F, vj)H vj ,

and this holds exactly when (λj −λ)(u, vj)H = (F, vj)H for all j ≥ 1. This
observation yields the following.
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Corollary 8. If λ 6= λj for all j ≥ 1, then for every F ∈ H there is
exactly one solution of (40), and it is given by the series

u =
∞∑

j=1

(F, vj)H

λj − λ
vj

which converges in D(A).
If λ = λJ for some J ≥ 1, then a solution exists only if (F, vj)H = 0

for all j with λj = λJ , and then a solution is given by

u =
∑

{j:λj 6=λJ}

(F, vj)H

λj − λ
vj +

∑
{j:λj=λJ}

cjvj

where the constants {cj} are arbitrary for each index in the finite set {j :
λj = λJ}.

Exercise 12. Discuss the convergence of this series representation of
the solution u.

4.5.2. The diffusion equation. For given u0 ∈ H, describe the solutions
of the basic initial-value problem

(41) u̇(t) + Au(t) = 0 , u(0) = u0 .

If u(·) ∈ C([0, T ], H) is a solution of (41) with u(·) ∈ C1((0, T ], D(A)),
then each coefficient uj(t) = (u(t), vj)H satisfies

u̇j(t) + λjuj(t) = 0 , uj(0) = (u0, vj)H .

These are then given by

uj(t) = e−λjt(u0, vj)H , j ≥ 1 ,

so the Fourier series for u(t) converges in C([0, T ], H). But the convergence
is much stronger because of the exponential coefficients. In fact, for any
polynomial P (λ) and ε > 0, the product P (λ)e−λt is uniformly bounded
on λ ≥ 0 and converges to 0 for λ→ +∞, uniformly for all t ≥ ε.

From this it follows that the series for the derivative u̇(t) as well as that
for Au(t) converges in H for every t > 0. Moreover, much more is true
and we summarize it as follows.
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Corollary 9. If u0 ∈ H, then there is exactly one solution u(·) ∈
C([0, T ], H) of (41) with u̇(·), Au(·) ∈ C((0, T ], H), and it is given by the
series

u(t) =
∞∑

j=1

e−λjt(u0, vj)H vj .

Moreover, for any ε > 0, every derivative of any power of A of this series
converges uniformly in C([ε, T ], H), so u(t) is an infinitely differentiable
function of x ∈ (0, `), t > 0.

Exercise 13. Let A be as above, and discuss the solvability of the
initial-value problem for the pseudo-parabolic equation,

u̇(t) + εAu̇(t) + Au(t) = 0 , u(0) = u0 ,

in which ε > 0.

4.5.3. The wave equation. For given g ∈ H, describe the solutions of
the basic initial-value problem

(42) ẅ(t) + Aw(t) = 0 , w(0) = 0, ẇ(0) = g .

We have seen that this is the fundamental problem whose solution w(t) =
S(t)g defines the operators S(·) which yield the general solution of the
initial-value problem for the corresponding non-homogeneous

ü(t) + Au(t) = F (t) , u(0) = u0, u̇(0) = v0 .

The solution is then represented by

u(t) = S ′(t)u0 + S(t)v0 +

∫ t

0
S(t− s)F (s) ds .

If w(·) ∈ C([0, T ], D(A)) is a solution of (42), then each coefficient
wj(t) = (w(t), vj)H satisfies the equation

ẅj(t) + λjwj(t) = 0 , wj(0) = 0, ẇj(0) = (g, vj)H .

These are given by

wj(t) = λ
−1

2
j sin(λ

1
2
j t)(g, vj)H

if λj > 0, by wj(t) = (g, vj)H t if λj = 0, and by the hyperbolic function

wj(t) = (−λj)
−1

2sinh((−λj)
1
2 t)(g, vj)H
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if λj < 0. Note that all but a finite number of λj’s will be strictly posi-
tive, so all convergence issues are determined by the terms with positive
eigenvalues. Thus, with the coefficients given by the above, the Fourier
series for w(t) converges in C([0, T ], V ), and the series for the derivative
ẇ(t) converges in C([0, T ], H).

If we require further that g ∈ V , so that its expansion has an ex-

tra factor of λ
−1

2
j , then it follows that the series for w(t) converges in

C([0, T ], D(A)), the series for ẇ(t) converges in C([0, T ], V ), and the series
for the second derivative ẅ(t) converges in C([0, T ], H) to give a solution
as desired. Note that the solution is exactly as smooth as the initial con-
dition allows, i.e., the smoothness is preserved. We summarize this in the
following.

Corollary 10. If g ∈ V , then there is exactly one solution of (42)
with ẅ(·), Aw(·) ∈ C([0, T ], H), and it is given by the series

w(t) =
∞∑

j=1

λ
−1

2
j sin(λ

1
2
j t)(g, vj)H vj = S(t)g

if all eigenvalues are positive, and it is modified accordingly in a finite
number of terms otherwise.

We obtain the solution of the wave equation with given initial value u0,

(43) ẅ(t) + Aw(t) = 0 , w(0) = u0, ẇ(0) = 0 .

by solving (42) with g = u0 and then computing its time derivative to
obtain

w(t) =
∞∑

j=1

cos(λ
1
2
j t)(u0, vj)H vj = S ′(t)u0 .

In order for this to have the same smoothness as above, we need to require
that u0 ∈ D(A).

Exercise 14. Find conditions on the function F (t) for which the initial-
value problem

ü(t) + Au(t) = F (t) , u(0) = 0 , u̇(0) = 0 ,

has a solution.
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Exercise 15. Let A be as above, and discuss the solvability of the
initial-value problem for the wave equation with transverse inertia

ü(t) + εAü(t) + Au(t) = 0 , u(0) = u0 , u̇(0) = v0 .

Exercise 16. Let A be as above, and discuss the solvability of the
initial-value problem for the strongly-damped wave equation

ü(t) + εAu̇(t) + Au(t) = 0 , u(0) = u0, u̇(0) = v0 .


